On sequence spaces defined by a regularly varying modulus

ENNO KOLK

ABSTRACT. Let λ be an F-seminormed solid sequence space. We characterize the F-seminormability of the sequence space $\lambda(f) = \{(x_k) : (f(|x_k|)) \in \lambda\}$ for a regularly varying modulus function f.

1. Introduction

By the term sequence space we shall mean, as usual, any linear subspace of the vector space ω of all (real or complex) sequences $x = (x_k) = (x_k)_{k \in \mathbb{N}}$, where $\mathbb{N} = \{1, 2, \ldots\}$. A sequence space λ is called solid if $(x_k) \in \lambda$ and $|y_k| \leq |x_k|$ $(k \in \mathbb{N})$ yield $(y_k) \in \lambda$.

A function $f:[0,\infty)\to [0,\infty)$ is called a modulus function (or simply a modulus) if

- (M1) f(t) = 0 if and only if t = 0,
- (M2) $f(t+u) \le f(t) + f(u)$,
- (M3) f is increasing,

86),

966. avi-

ons.

NIA

ξET,

(M4) f is continuous from the right at 0.

Provided a modulus f and a sequence spaces λ , Ruckle [4], Maddox [3] and some other authors define a new sequence space $\lambda(f)$ by

$$\lambda(f) = \{(x_k) \in \omega : (f(|x_k|)) \in \lambda\}.$$

It is not difficult to see that $\lambda(f)$ is a solid sequence space whenever the sequence space λ is solid.

Received October 31, 2000.

²⁰⁰⁰ Mathematics Subject Classification. 46A45, 26A12, 40F05.

Key words and phrases. Modulus function, F-seminorm, regularly varying function, slowly varying function.

This research was in part supported by Estonian Scientific Foundation Grant 3991.

A positive, finite and measurable function f, defined on $[a, \infty)$ for some a > 0, is said to be regularly varying at infinity (see [1]) if the limit

$$\lim_{t \to \infty} \frac{f(ut)}{f(t)} = \mu(u)$$

is positive and finite for each u > 0. The function $\mu(u)$ is called *index* function of regularly varying function f. It is known ([1], Theorem 1.4.1) that the index function of a regularly varying function f is necessarily in the form

$$\mu(u) = u^{\rho}$$

for some $\rho \in \mathbb{R}$ and for each u > 0. Here the number ρ is called *index* of f. Thus f varies regularly with index ρ at infinity if for each u > 0,

$$\lim_{t \to \infty} \frac{f(ut)}{f(t)} = u^{\rho}.$$
 (1)

A positive, finite and measurable function f, defined on (0, b] for some b > 0, is said to be regularly varying of index $\sigma \in \mathbb{R}$ at the origin if

$$\lim_{t \to 0+} \frac{f(ut)}{f(t)} = u^{\sigma} \tag{2}$$

for each u > 0. This is equivalent to saying that the function f(1/t) varies regularly with index $-\sigma$ at infinity.

Regularly varying function of index $\rho = 0$ ($\sigma = 0$) is said to be slowly varying at infinity (at the origin).

In this note we describe the F-seminormability of $\lambda(f)$ assuming that λ is an F-seminormed solid sequence space and the modulus function f is regularly varying at infinity and at the origin.

2. On topologization of $\lambda(f)$

Recall that an F-seminorm g on a vector space X is a functional $g: X \to \mathbb{R}$ satisfying for all $x, y \in X$ the axioms

- (N1) g(0) = 0,
- (N2) $g(x+y) \le g(x) + g(y)$,
- (N3) $g(\alpha x) \leq g(x)$ for all scalars α with $|\alpha| \leq 1$,
- (N4) $\lim_{n} g(\alpha_n x) = 0$ for every scalar sequence (α_n) with $\lim_{n} \alpha_n = 0$.

An F-seminorm on a solid sequence space λ is said to be absolutely monotone if $g(x) \leq g(y)$ for all $x = (x_k)$, $y = (y_k)$ from λ with $|x_k| \leq |y_k|$ $(k \in \mathbb{N})$.

If the sequence space λ is topologized by an F-seminorm (or paranorm) g then for the topologization of $\lambda(f)$ it is natural to consider the functional g_f defined by

$$g_f(x) = g(f(|x|)) \qquad (x \in \lambda(f)).$$

It is known (cf. [3], Theorem 8) that g_f may not be an F-seminorm on $\lambda(f)$ in general. From some results of Soomer ([5], Theorem 3) and the author ([2], Theorem 1) we immediately get

Proposition 1. Let f be a modulus and let g be an absolutely monotone F-seminorm on a solid sequence space λ . The functional g_f is an absolutely monotone F-seminorm on $\lambda(f)$ if f satisfies one of following two equivalent conditions:

- (M5) There exists a function ν with $f(ut) \leq \nu(u)f(t)$ $(0 < u \leq 1, t > 0)$ and $\lim_{u \to 0+} \nu(u) = 0$;
- (M6) $\lim_{u\to 0+} \sup_{t>0} \frac{f(ut)}{f(t)} = 0.$

First we characterize indices of regularly varying moduli.

Proposition 2. Any modulus function which is regularly varying at infinity (or at the origin) has index from the interval [0, 1].

Proof. Let f be a modulus function. By monotonicity and subadditivity of f we have

$$f(ut) \le f(([u]+1)t) \le ([u]+1)f(t),$$

where [u] denotes the integer part of u. Hence for all u, t > 0,

$$0 < \frac{f(ut)}{f(t)} \le u + 1. \tag{3}$$

If f is also regularly varying at infinity of index ρ , then (1) holds, and by (3) we see that $0 \le \rho \le 1$.

If f is regularly varying at the origin of index σ , then from (2) and (3) we similarly get $0 \le \sigma \le 1$.

In the following we give some examples of regularly and slowly varying modulus functions.

Example 1. Every bounded modulus f is slowly varying at infinity by

$$\lim_{t\to\infty}\frac{f(ut)}{f(t)}=\frac{\sup_{t>0}f(ut)}{\sup_{t>0}f(t)}=1.$$

Example 2. The unbounded modulus $f(t) = t^p$ (0 is a regularly varying function of index <math>p because of $f(ut)/f(t) = u^p$.

Example 3. The unbounded modulus $f(t) = \ln(1+t)$ is slowly varying at infinity by $\lim_{t\to\infty} \ln(1+ut)/\ln(1+t) = 1$ and regularly varying of index 1 at the origin by $\lim_{t\to 0} \ln(1+ut)/\ln(1+t) = u$.

Example 4. The unbounded modulus $f(t) = t/\ln(t + e^2)$, considered by Maddox (see [3], p. 164), varies regularly with index 1 at infinity and at the origin.

Now we are ready to prove our main result.

Theorem. Let g be an absolutely monotone F-seminorm on a solid sequence space λ . If a modulus f varies regularly with index ρ at infinity and with index σ at the origin, then the functional g_f is an absolutely monotone F-seminorm on $\lambda(f)$ whenever $\min\{\rho, \sigma\} > 0$. If f is slowly varying at infinity or at the origin, then conditions (M5) and (M6) are not satisfied.

Proof. Let f be a modulus which varies regularly with index $\rho > 0$ at infinity and with index $\sigma > 0$ at the origin. It is known ([1], Theorem 1.5.2) that the equalities (1) and (2) hold uniformly in u on each interval (0,b] with b>0. Thus for an arbitrary number $\varepsilon > 0$ we can find a number $t_1>0$ and a natural number $t_2>t_1$ such that

$$\frac{f(ut)}{f(t)} < u^{\sigma} + \frac{\varepsilon}{2} \quad (0 < t < t_1), \quad \frac{f(ut)}{f(t)} < u^{\rho} + \frac{\varepsilon}{2} \quad (t_2 < t < \infty)$$

for all $u \in (0,1]$. If $t \in [t_1, t_2]$, then by monotonicity and subadditivity of f we have

$$\frac{f(ut)}{f(t)} \le \frac{t_2}{f(t_1)} f(u).$$

Since u^{σ} , u^{ρ} and f(u) tend to zero as $u \to 0+$, there exists $\delta > 0$ such that

$$max\{u^{\sigma},\ u^{
ho}\}<rac{arepsilon}{2},\ f(u)<rac{f(t_1)}{t_2}arepsilon$$

for $0 < u < \delta$. Consequently, we get

$$\sup_{t>0} \frac{f(ut)}{f(t)} \le \varepsilon \qquad (0 < u < \delta),$$

which shows that the condition (M6), and hence the equivalent condition (M5), of Proposition 1 hold.

1) is a

arying f index

red by at the

plid seity and notone ying at sfied.

> 0 at 1.5.2) b] with 0 and

ty of f

h that

ndition

If the modulus f varies slowly at infinity or at the origin, then

$$\lim_{t \to \infty} \frac{f(ut)}{f(t)} = 1 \quad \text{or} \quad \lim_{t \to 0+} \frac{f(ut)}{f(t)} = 1.$$

Since for $0 < u \le 1$ we have

$$0<\frac{f(ut)}{f(t)}\leq 1,$$

then clearly

$$\sup_{t>0} \frac{f(ut)}{f(t)} = 1.$$

Thus (M6), and hence (M5), are not satisfied in this case.

Examples 1-4 show that the conditions (M5) and (M6) of Proposition 1 hold for moduli $f(t) = t^p$ (0 < $p \le 1$) and $f(t) = t/\ln(t + e^2)$, but are not satisfied for bounded moduli and for unbounded modulus $f(t) = \ln(1+t)$.

References

- 1. N. H. Bingham, C. M. Goldie and J. L. Teugels, *Regular Variation*, Cambridge University Press, Cambridge, 1987.
- 2. E. Kolk, F-seminormed sequence spaces defined by a sequence of modulus functions and strong summability, Indian J. Pure Appl. Math. 28 (1997), 1547-1566.
- 3. I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100 (1986), 161-166.
- 4. W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973-978.
- 5. V.Soomer, On the sequence spaces defined by a sequence of moduli and on the rate-spaces, Acta Comment. Univ. Tartuensis Math. 1 (1996), 71-74.

Institute of Pure Mathematics, University of Tartu, 50090 Tartu, Estonia E-mail address: ekolk@math.ut.ee