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On sequence spaces defined by
a regularly varying modulus

Enno KoLk

ABSTRACT. Let A be an F-seminormed solid sequence space. We characterize
the F-seminormability of the sequence space A(f) = {(zx) : (F(Jzx])) € A}
for a regularly varying modulus function f.

1. Introduction

By the term sequence space we shall mean, as usual, any linear subspace
of the vector space w of all (real or complex) sequences & = (zx) = (T&)ken,
where N = {1,2,...}. A sequence space A is called solid if (z;) € A and
|yl < lzil (k€ N) yield (yx) € A.

A function f : [0,00) = [0, 00) is called a modulus function (or simply a
modulus) if
(M1) f(t) =0if and only if t = 0,
M2) f(t+u) < f(¢) + f(u),

(
(M3) f is increasing,
(M4) f is continuous from the right at 0.

Provided a modulus f and a sequence spaces A, Ruckle [4], Maddox [3]
and some other authors define a new sequence space A(f) by

AS) ={(ex) €w: (f(lek]) € A}

It is not difficult to see that A(f) is a solid sequence space whenever the
sequence space A is solid.

Received October 31, 2000.

2000 Mathematics Subject Classification. 46A45, 26A12, 40F05.

Key words and phrases. Modulus function, F-seminorm, regularly varying function,
slowly varying function.

This research was in part supported by Estonian Scientific Foundation Grant 3991.

11




12 ENNO KOLK

A positive, finite and measurable function f, defined on [a, 00) for some
a > 0, is said to be regularly varying at infinity (see [1]) if the limit

)
tll>r2<> f(t) = )

is positive and finite for each u > 0. The function u(u) is called index
function of regularly varying function f. It is known ([1], Theorem 1.4.1)
that the index function of a regularly varying function f is necessarily in the
form

p(u) = v’

for some p € R and for each u > 0. Here the number p is called index of f.
Thus f varies regularly with index p at infinity if for each u > 0,

. flut) P
tli)rgo fey — (1)

A positive, finite and measurable function f, defined on (0, 5] for some
b > 0, is said to be regularly varying of index o € R at the origin if

L fut)
tl—l-gl-}- f(t) U @)

for each u > 0. This is equivalent to saying that the function f(1/t) varies
regularly with index —o at infinity.

Regularly varying function of index p = 0 (o = 0) is said to be slowly
varying at infinity (at the origin).

In this note we describe the F-seminormability of A(f) assuming that
A is an F-seminormed solid sequence space and the modulus function f is
regularly varying at infinity and at the origin.

2. On topologization of A(f)

Recall that an F-seminorm g on a vector space X is a functional g : X -+ R

satisfying for all z,y € X the axioms

(N1) g(0) =0,

(N2) g(z+y) <g(z)+9(y),

(N3) g(az) < g(z) for all scalars o with |a] < 1,

(N4) lim, g(anz) = 0 for every scalar sequence (a,) with lim, @, = 0.
An F-seminorm on a solid sequence space A is said to be absolutely monotone
if g(z) <g(y) for all z = (z), y = (yx) from X with |zx| < |yx| (k€ N).
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If the sequence space A is topologized by an F-seminorm (or paranorm)
g then for the topologization of A(f) it is natural to consider the functional

gy defined by
95(x) = g(f(z)) (= € A())-

It is known (cf. {3], Theorem 8) that g; may not be an F-seminorm on A(f)
in general. From some results of Soomer ([5], Theorem 3) and the author
([2], Theorem 1) we immediately get

)
)
|4

Proposition 1. Let f be a modulus and let g be an absolutely monotone
F-seminorm on a solid sequence space A. The functional g; is an absolutely
monotone F-seminorm on A(f) if f satisfies one of following two equivalent
conditions:

(M5) There exists a function v with f(ut) < v(u)f(t) (0<u<1,t>0)
and lim,_,o4 v(u) = 0;

. flut)
R O

First we characterize indices of regularly varying moduli.

Proposition 2. Any modulus function which is regularly varying at in-
finity (or at the origin) has indez from the interval [0, 1].

Proof. Let f be a modulus function. By monotonicity and subadditivity
of f we have

fut) < F(([u]+ D) < ([w]+ 1) £(),

where [u] denotes the integer part of u. Hence for all u,¢ > 0,

0<f—(35)—§u+1. (3)

f(#)
If fis also regularly varying at infinity of index p, then (1) holds, and by
(3) wesee that 0 < p < 1.

If f is regularly varying at the origin of index o, then from (2) and (3)
we similarly get 0 < o < 1. d

In the following we give some examples of regularly and slowly varying
modulus functions.

Example 1. Every bounded modulus f is slowly varying at infinity by

. fut) _ supyy f(ut)
1 = = 1.
t500 f(t) SUPyso f(2) !
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Example 2. The unbounded modulus f(t) =t (0 < p < 1)isa
regularly varying function of index p because of f(ut)/f(t) = uP.

Example 3. The unbounded modulus f(t) = In(1+¢) is slowly varying
at infinity by lim; o In(14ut)/In(1+¢) = 1 and regularly varying of index
1 at the origin by lim; o In(1+ wt)/In(1 +¢) = .

Example 4. The unbounded modulus f(t) = t/In(t + €*), considered by

Maddox (see [3], p. 164), varies regularly with index 1 at infinity and at the
origin.

Now we are ready to prove our main result.

Theorem. Let g be an absolutely monotone F-seminorm on a solid se-
quence space . If a modulus f varies regularly with index p at infinity and
with indez o at the origin, then the functional gy is an absolutely monotone
F-seminorm on A(f) whenever min{p, o} > 0. If f is slowly varying at
infinity or at the origin, then conditions (M5) and (M6) are not satisfied.

Proof. Let f be a modulus which varies regularly with index p > 0 at
infinity and with index ¢ > 0 at the origin. It is known ([1], Theorem 1.5.2)
that the equalities (1) and (2) hold uniformly in u on each interval (0, 5] with
b > 0. Thus for an arbitrary number £ > 0 we can find a number ¢; > 0 and
a natural number ¢5 > t; such that

f(ut)

f(ut) s . £ p L €
0 <u +-2— (0<t<ty), 7(Z§_<u +2 (ty < t < 0)

for all w € (0,1]. If ¢ € [t1,¢2], then by monotonicity and subadditivity of f
we have (u)
ut 2
< —f(u).
70 < 7w’

Since u?, u” and f(u) tend to zero as u — 0+, there exists § > 0 such that

o),
t2

maz{u’, w} < 2, flu) <

for 0 < u < §. Consequently, we get

sup f(ut) <e (0 <u<id),

>0 f(t) —

which shows that the condition (M6), and hence the equivalent condition
(M5), of Proposition 1 hold.
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If the modulus f varies slowly at infinity or at the origin, then

lim f(ut) = or i M =
t—00 f(t) t=0+ f(1)

Since for 0 < u < 1 we have

then clearly
o 200

t>0 f(t)
Thus (M6), and hence (M5), are not satisfied in this case. 0

Examples 1-4 show that the conditions (M5) and (M6) of Proposition 1
hold for moduli f(t) =#? (0 < p< 1) and f(t) =t/In(t + €?), but are not
satisfied for bounded moduli and for unbounded modulus f(¢) = In(1 +¢).
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