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On r-convex sequence spaces ‘
defined by modulus functions .

VIRGE SOOMER

ABSTRACT. Let E be a sequence space and let F = (fi) be a sequence of
r-convex modulus functions. The purpose of this paper is to study some
properties of the spaces E(F) = {(&:)|(fx(|&])) € E}.

1. Introduction

Let F be a real linear space and r > 0.

Definition 1. A set K C FE is called r-conver in E if z,y € K and
a,f>0with o™+ 8" =1imply ez + Sy € K. .

Remark 1. If r = 1, then the above definition gives the concept of a
convex set in a linear space.

Definition 2. A functional ¢ on an r-convex set K C F is called
r-convez if for all z,y € K and o,8 > 0 with o” + 7 = 1 one has the !
inequality
plaz + By) < o’ p(z) + B e(y). %

Definition 3. A function f : [0,00) — [0, 00) is called a modulus func-
tion if f is strictly increasing and continuous on [0, 00), f(t+u) < f(t)+f(u)
for all u,t > 0 and f(0) =0.

Let F be a sequence space of real sequences and F = (fi) be a sequence g
of modulus functions. The space E(F) is defined as follows:

E(F) ={z = (&)] F(=) = (fx(&])) € E}.

In this paper we investigate some properties of the spaces E(F) defined ’
by r-convex (0 < r < 1) modulus functions. }
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2. Preliminaries

A sequence space E is called solid (or normal) if from (n;) € E and
|€k| < |nxl, it follows that (&) € E.
A rea] function g on a linear space F is called an F-seminorm, if
(1) g(0) =0,
(ii) o] <1 (¢ € K) = g(az) < g(z) forall z,y € E,
(i) 9(z+v) < 9(2)+ g(y) for all 2,y € B,
(iv) limpan, =0 (an € K), z € E = lim, g(a,z) = 0.

An F-space is defined as a complete F-seminormed space. An F-seminorm
g in a sequence space FE is called absolutely monotone if |£x| < ]nkl implies

9(z) < g(y) for all z = (&), y = () in E.

Let gr(z) = g(F(z)). According to the results of Kolk ([3], Theorem 1)
and the author ([6], Theorem 3) we immediately get:

Theorem 1. Let F = (fx) be a sequence of moduli and let g be an
absolutely monotone F-seminorm on a solid sequence space E. The func-
tional g defines an absolutely monotone F-seminorm on E(F) if one of the
following two equivalent conditions holds:

(F1) There exists a function v such that fi(ut) < v(u)fi(t),0 < u < 1,

t >0, and lim ,—04 v(u) = 0;
(F'2) limy_04 supy sup,sq fx(ut)/ fi(t) = 0.

Remark 2. It is easy to check that condition (F1) holds for each
r-convex (0 < r < 1) modulus function.

We give some examples.

Example 1. The function f(z) =17, 0 < p <1, is a p-convex modulus
function.

Example 2. Let f(t) = In(1+1t), then f is a modulus function, but f
is not r-convex.

3. On #-convexity of the space E(F)
We start with the following definitions.

Definition 4. For 7 > 0 a non-empty subset K in a linear space F is
called absolutely r-convez in E if z,y € K and |&|” + ||” < 1 imply that
az + By € K (or equivalently zy,...,z, € K, Y _; |ag|” < 1 imply that
ZZ:l apTE € I().

It is easy to check that every absolutely r-convex set is absolutely s-convex
whenever 0 < s < r < 1.
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Definition 5. A linear topological space is called r-convez if there is a
neighbourhood base of zero that consists of absolutely r-convex sets.

It is clear that the 1-convexity of F means that E is locally convex in the
ordinary sense. For r > 1 Maddox and Roles [4] have proved that a topo-
logical linear space F is r-convex if and only if E is the only neighbourhood
of zero.

Theorem 2. Let F = (fi) be a sequence of si-convexr modulus functions
with 0 < infy, s, = s < 1 and let g be a T-convez (0 < T < 1) absolutely mono-
tone F-seminorm on a solid sequence space E. Then E(F) is an r-conver
(r = Ts) sequence space with the F-seminorm gr.

Proof. By Theorem 1 and Remark 2 g is an F-seminorm. It is sufficient
to show that the set

Vs = {z = (&)lgr(z) < &}

is an absolutely Ts-convex set.
Indeed, by the assumptions for g and F, we have that for each z,y € Vs
and |a|" 4+ |B]|” < 1, r = 75, the following estimates are true

= g(F(az + By)) = g[(fi(lebr + Bnkl))]
< glllal®™ £l + 181 F(lme)] < g(lal*F () + 181°F (1))
< (leof" +18]7)8 < 6,

g7 (ax + By)

so that ax 4 By € Vs. Thus Vj is absolutely r-convex. t

Remark 3. If the function f is s;-convex, then it is s;-convex for each
0 < S < s1. Therefore the si-convex modulus functions fj are s-convex if
= infy s > 0.

Further we will apply Theorem 2 to the investigation of the r-convexity
of the space [m4]P.
Let A = (ank) be an infinite matrix with anr > 0, n,k € N, and let

[ma]={z = (fk)lsupzandﬁkl < oo},
k=1

i.e. [ma] is the space of strongly A-bounded sequences. The space [m 4] is a
locally convex space with absolutely monotone seminorm g, where

9(z) = Sgpz Ak |Ek]-
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If we take fip(t) = tP* (¢ > 0) with 1 > py > infypy = p > 0, then
the sequence F = (f;) satisfies the assumptions of Theorem 2. And by
Theorem 2 we get that the space

[mal(F) = [mal? = {z = (€)lsup > anslésl™ < 0o}, p= (p),
"ok

is p-convex.

In the case when
1, k<n,

App =
" 0, k>n,

we get that [m 4] = ¢ and therefore the space

£(p) = {z = ()| Y _ 1&xI™ < oo}

is p-convex for 0 < p = infyp, < pr < 1. This result was proved by
Landsberg [1] and Simons [5]. :

Note that for inf py < p < 1 the space ¢(p) is not p-convex (cf. [5]). The
spaces £(p), p = (pr), 0 < px < 1, were first investigated in order to find
a linear topological space which is r-convex for some r < 1 but not locally
convex.

A topological linear space E is called locally bounded if there exists a
bounded neighbourhood of zero. We recall that K C E is bounded if and
only if (z,) C K and A, = 0 (A, € R, n € N)imply that Az, — 0, n — .
Using this criteria of boundedness it is easy to show that the sets V5 =
{z|g(z) < &} and V3(F) = {z]|gr(z) < &} are bounded in topological linear
spaces E and E(F) respectively if the conditions of Theorem 2 are satisfied.
Therefore these spaces are locally bounded.

It is known (cf. [2]) that every locally bounded space is r-convex for some
r> 0.

4. On r-convexity of the space £(F)

We denote £, for £(p) if p, = p for all k¥ € N. For ¢; we write £ as usual.
If we take E' = £, then we have the space

eF)={z = (&) D _ fulléx]) < oo}

k=1
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Theorem 3. Let F = (fi) be a sequence of unbounded modulus functions
such that
(i) fu(tu) > C fi(t) fr(u) for some C > 0 and for allt,u > 0,k € N,
(ii) inf fx(t) > 0 for allt > 0.
If the space £(F) is r-convez, then £, C £(F).

Proof. The space £(F) is an F-seminormed space with the F-seminorm
g7(z) =Y e fe(|€x]) for an arbitrary sequence F = (fx) of modulus func-
tions. Indeed, the assertion of Theorem 1 is true for an arbitrary F = (f) if
F is an AK-space (see [3], Theorem 2). Let V. = {z|gr(z) < €}, then there
exist 0 < § < 1 and an absolutely convex set U such that

Vs CcU CV.

If we take 7, = f,;"l(é)ek where e, = (6,1), then gr(Zx) = fkfk'l(zs) =
0 < 1 and thus z;, € U for all k € N. Therefore for each m € N the inequality
S oreq lak|™ < 1 implies that Y-, e € U C V4, so that

FOQ o) =) fullewlfiH(8) < 1. (1)
k=1 k=1

If now @ = (&) € I, and S = 350, |&]", then 3°40, 4[&|" < 1. Thus, if

we take o = #Kkl in (1), then we have that

sz (S rran < ©

Now applying conditions (i) and (ii) of the present theorem we have that

Ful L0 > s,

where s = inf}, fk(ﬁl—p) > 0. It follows from condition (2) that

> Fellnd < g

for all m € N and thus z = (&) € £(F). O

Example 3. Take fi(t) = Axt™, where infi Ax > 0, supp A < o0,
r = inf ri > 0. Then the space £(F) is r-convex by Theorem 2 and conditions
(i) and (ii) of Theorem 3 are fulfilled.

Remark 4. If 0 < p;, < 1, 0 <7 < 1 and fi(t) = tP*, then £, C £(F)
implies that £(F) is r-convex (cf. [5]).

Let us take now fi = f for each k € N and write £(f) instead of £(F).
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Theorem 4. Let an unbounded modulus function f satisfy the following
conditions:

(1) f(tu) > Cf(t)f(u) for some C > 0 and for all t,u > 0,
ve . 1/7.. __
(ii) tgr&_ f(tY7)/t = o0,

then the space £(f) is not r-convez.

Proof. If we suppose that the space £(f) is r-convex, then there exist an
absolutely r-convex neighbourhood of zero U and § > 0, such that

Vs U C Vi,
where V, = {& = (&)]gx(z) = %f(lfk]) < e}

Let us take z, = f‘l(g)ek, k € N; then gr(zy) = % and thus z; € Vs C
U. By r-convexity of the set U the inequality Y, _, |e|” < 1 implies that
> k=1 @kzk € U. But for a = n~(1/") we have by the assumption (i) that

k3

gr(z _n—}/?:vk) = Zf(nl/r f—l(i)) z Cé_nf(;ﬁ—/?)
k=1

k=1 b=

Now it follows from (ii) that

1
k=1

for sufficiently large n. Therefore the space £(f) is not r-convex if the mo-
dulus function f satisfies the assumptions (i) and (ii). t

Remark 5. If we take f(t) = ¢ in Theorem 4, then we get the well-
known result: the space £, is not r-convex for 0 < p < 7.
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