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Semi-parallel and parallel symplectic surfaces
in the four-dimensional symplectic space

AIvOo PARRING

ABSTRACT. Parallel and semi-parallel symplectic surfaces in the symplectic
space Sps are studied. It is proved that a symplectic surface is semi-parallel if
and only if its tangent connection is flat. The parallel symplectic surfaces are
characterized and the existence of semi-parallel symplectic surfaces which are
not parallel is exhibited. The study is conducted by the method of moving
frame.

1. The concept of the symplectic space

Let us consider the four-dimensional symplectic space Sps. This is an
affine space Whose direction space is a symplectic vector space, which we shall
denote by Sp. pg. The latter 1s a, vector space with regular skew- symmetrlc
scalar product i.e. for each a:, y € ?p,; there holds the equality ( Zz, Y )
—( Y, T ) As it follows from here that I |2= ( z, T ) = 0, all vectors in
this space have length zero.

We denote a moving frame in Sps by {X; e[} where the indices I, J,.
acquire the values 1, 2, 3, 4. Instead of the origin X € Sp4 of the frame
we often use its position vector ?:O_X’ relative to an optional fixed point
O € Sps. The motion of the frame is described by the differentiation
formulae

? = wher, J?[:wf’—gi, (1.1)

where the 1-forms w’ and w¥ satisfy the conditions of complete integrability
(the structure equations)

dw! = WP AWl dwk = wk Awl. (1.2)
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The matrix G =|| grx || formed by scalar products grx = (—e—)[,weéK y of
the basis vectors is regular and skew-symmetric. Differentiation of the scalar
products grx with use of (1.1) gives

dgrx = gLwa + gILw}('a (1.3)
which is often useful in the matrix notation

dG = —(Gw)T + Gu, (1.4)

where w =|| wk ||. In what follows, for all matrices, the upper index is the
row index.

2. The symplectic surface

Let us consider the surfaces with symplectic tangent planes in the sym-
plectic space Spy. Any such surface M, will be called a symplectic surface.
The study of a symplectic surface can be reduced to study of a suitable

. i . .
moving frame {X; ¢;, €, } connected with that symplectic surface. Here and
in what follows we take 7,j5,...= 1,2 and ¢, 3,... = 3,4.

We require that the symplectic surface should be described by the origin

X of the moving frame (X € M,). The basis vectors ¢ are in the vector

space Tx M, (determined by the tangent plane T'x M;) and the basis vectors

e, are in the vector space Ty M, (determined by the normal plane T§ M).
Accordingly

TxMy =X + L(€1,¢), TiMy =X+ L(es,€p).

It needs to be pointed out that the symplecity of the symplectic surface M,
assures the uniqueness of the orthogonal complement T M, of Tx M2, and

?XMz + '_[?;%Mz = ?XMz & ?XLMz = ?294-
We shall call the selected frame the adapted frame of the symplectic surface.
By this choice of frame the condition (7,_2}) = 0 holds for each 7 € ?XM‘Z

and 7 ¢ ?XLMg , hence g;, = (a,—e—}a ) = 0. So, in turn, dg;, = 0, and the
equations (1.3) become

dgix = gskw] + Giswi, d9ap = Gypwl + GarWp

and
k ki
Wy = —g Zw?gva- (2.1)
Here g** are the elements of the matrix G7', which is the inverse of the
skew-symmetric matrix Gy = || gix || and is also skew-symmetric.

It may be remarked that in an analogous way we may get the matrices
G2 = || gap || and G3* = || g°7 ||, where
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G = G1 @ GQ.

Let us now return to studying the symplectic surface M;. For the adapted
frame the differential dZ of the position vector @ of an arbitrary point X
of M, belongs to the subspace L(?l,?g), in consequence of which the first
of the equations (1.1) takes the form dz = we,, or

w® = 0. (2.2)

The equations (2.2) are called the differential equations of the symplec-
tic surface. By double extension of these equations (that is, by exterior
differentiation and use of the Cartan lemma) we get

wi = hiw®, hi =h3 (2.3)

511

dh$ — hSw? — h&w? + hiwd = he,w®, R, = S (2.4)

s ij

In the equations (2.4) the functions hsy are symmetric not only with respect
to the last pair of lower indices, as required by the Cartan lemma, but also

with respect to all the lower indices, as can be checked directly from (2.4).
Let us construct the vectors 7?“ = h?j—éz, 7?1- j € ?)J('Mz, which determine
a subspace Nx M, of the normal plane T's M,,

NxMy =X + L(ﬁn,—ﬁ)lz,ﬁn)-

This is called the (first) normal plane of the symplectic surface M; at the
point X € M,;. Here we took note of the fact that _5)21 ::7'?12. Because of
dimNxM, = rank{f?ll,%‘}m,—/?gg}, the dimension of this normal plane is 2,
1 or 0. In the first case Nx My = T M,. It is worth noting that if we have a
symplectic space Spy, (n > 2) with higher dimension, instead of Spy, then
it is possible to achieve dimNx M, = 3.

The basis vectors €, and ¢, of the moving frame {X €5, s} at a point
X of the symplectic surface M, are not unique. It is only known that
E E_TX M, and ?a € )'J(’Mg. Hence at each point X € M, it is permissible
to effect basis transformations

! e —
e, =Al¢;, €, =APTes, (2.5)
where A; =|| A? || and A, =|| A? || are regular matrices. The equations

(2.5) describe the arbitrariness of the adapted frame at the point X of a
symplectic surface. The functions h; are transformed by the equations

'R = A$ALRGAS, (2.6)
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where /ig are the elements of the inverse matrix As L

By means of the equations (2.2) we get from the structure equations (1.2)
of Spy the structure equations of the symplectic surface My

dw' = w* AW, dw{ =w! Awl + QZ (2.7)

and the structure equations for the manifold of normal vector spaces
?LMQ == U ?)‘}‘M2
XeM;
dwg =w] A w,e + Qg (2.8)

In the equations (2.7) and (2.8) the 2-forms Q! and QF are the curvature
forms of the tangential connection V of the symplectic surface M, and of
the normal connection V<, respectively. In particular,

Qf = sttws Awh, QF = RP W' AW,

i3

where, taking into account (2.1) and (2.3), the functions R{st and R? , may
be expressed as
i

Rgst = gjkhiofsh’ﬁclt]go‘ﬁ’ Rgﬁt = ga'yh’y[shlﬁktt]gki' (2'9)

Here the bracketed indices are alternated except for the indices between the
vertical lines | | . The functions RJ,, and R®_, are the curvature tensors of
the tangential and normal connections, respectively. In order to bring to
light a property of these tensors it is useful to define

Rijst = giuR;'Lsta Raﬁst = gaTREsﬂ (2'10)

which will also be called curvature tensors. They are symmetric with respect
to the first pair of indices, i.e.

Rijst = Rjista Raﬁst = Rﬁast-
The property alluded to follows from the equations
Rijst = gaﬁ'h?[sh‘ﬁﬂt]» Raﬁst = gm—g,@'yh?ishfk]z]gki’ (2'11)

which result from (2.10) with the help of the equations (2.9). For the curva-

ture tensors RJ_, and Rgst, or R;;s: and Rugst, only the elements Rglz and

Rgm, or R;ji2 and R,p12, may be non-zero. Henceforth we denote these
elements as follows:

RI=Rl, RE=RS, Rij=Rii, Rup=Rapa (2.12)
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As it is well known, the curvature tensors transform under the basis trans-
formation (2.5) in accordance with the tensor law. So, for example, in the
case of (2.11)

!
Rijs

= AFALAY AV Riguy,  Rhypy = ALASAAYRysun.
Using these relations we get the transformation equations for R;; and R,:
Ri;=| Ay | A¥A'Ru, RLz=| A1 | ALA5R,s. (2.13)

Here | A; | is the determinant of matrix A;.
Let us suppose from now on that the adapted frame {X ;—?i,?a} of a
symplectic surface is symplectic. This means that the matrix G has the
I 0 0 1 10 0

form
0o I|’ I:”——l OH’ 0=1lo ol'

Now, as dG = 0, the equation (1.4) leads to (Gw)T = Gw, from which it
follows that

o=

wi=—wl, wi=—wd Wwl=—wl Wi=uwl o =0l Wi =-wl (2.14)
The freedom of choice of the adapted symplectic frame for each point X €M,
may be inferred from the equations (2.5). In these equations A; and Ay must
be such that the matrices G; = G5 = I would not change under transition
from one adapted frame to another at any point X€M,, i.e. G} = G and

5 = G, or equivalently,

ATTA, =1, AlTA;=1.

From here we see that the only condition which must hold in the choice of
the matrices A; and Aj is that | 4; |=1 and | Ay [= 1. Now the equations
(2.13) simplify
R, = AA'R., R,;=ALASR.;.

Thus the transformations follow the tensor law. With the help of the equa-
tions (2.12) and (2.11) we may express R;; and Ry in terms of the functions
hg;

hi1  Riy

3 3
hll h22

Ri1 =
H Wl b

y Rig=Ro1 =1 y Rgg =

and




28

AIVO PARRING

To get analogous expressions for Rj and RP we must take into account the

equations
R;
Ry

- R}
~Rj

Rl?a
R3‘1’

Rj
R}

~Rys,
—1%441

R}
Rj

Rii;
Ras.

As it is shown in [6], the symplectic surfaces fall into five classes A, ...,

As. Using a suitable symplectic fra

classes are characterized as in Tabl

me the symplectic surfaces in the various
e 1.

Table 1.
Class of symplectic Expression of tensors
surfaces o and R
hey = eh{y, hi, = —eh}|, hiy = —hi,,
A (e =1) | R =eR) = (1) — (b))’ # 0,
Ay (e = -1) Rl = R} = R} = R} =,
Rl = —cR? R} = —cRj
hiy = hi, =0, ki, # 0, hi, #0,
As P =2h3 01, #£0, Ri=2(hi,)? #£0,
Rl=R}=R)=PR} =R, =R} =0
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3. Parallel and semi-parallel symplectic surfaces

In this section we consider a pair of closely connected classes of symplectic
surfaces in the symplectic space Spy — the parallel and semi-parallel sym-
plectic surfaces. Parallel and semi-parallel submanifolds in the Euclidean
space and the space with a constant curvature have been studied by several
authors (e.g. Deprez [1], Ferus [2], Lumiste [4], Vilms [7]). Parallel and semi-
parallel symplectic submanifolds in the symplectic space have been studied
in [5].

To present the concepts of such symplectic surfaces, let V = (V, V1)
denote the van der Waerden-Bortolotti connection of a symplectic surface.
The covariant differentials of the functions h; relative to the connection v

Vhg = dhgs — hwf — hiw? + hfwg,

)

may be expressed as .
VA = hijw?, (3.1)

ijs

where the functions A, are the ones used earlier in the equations (2.4). The
covariant differentials of the functions hg,

Vh$, = dhy, — h3jw! — h&w? — h wi + hfjkwg (3.2)

ijs

may be expressed as

Lo L« s
Vhijk = hijksw .

Definition (see [5]). A symplectic surface in the symplectic space Spq
will be called parallelif VA% = 0.

tj

From the equations (3.1) we see that the condition of parallelism is equiv-
alent to

h;y = 0. (33)

To establish the concept of a semi-parallel symplectic surface we write out
the exterior differential for the expression (3.1):

Vh, Awk = hEQ% — h,08 — Q2. (3.4)

The formulae (2.7) and (2.8) were used here to substitute for dw? and dw?.

Definition (see [5]). A symplectic surface in the symplectic space Spq
will be called semi-parallel if

hEQ% — R0 — hEQS = 0. (3.5)
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It is seen that every parallel symplectic surface is also semi-parallel. In-
deed, using (3.3) in (3.2), we get thk = 0, and the use of (3.4) gives (3.5).
This indicates that it is useful to study the semi-parallel symplectic surfaces
first and only thereafter the parallel symplectic surfaces.

So let us begin with semi-parallel symplectic surfaces. As we have divided
the symplectic surfaces in the preceding into five classes Ay, ..., As, we need
to consider the semi-parallel symplectic surfaces likewise in accordance with
these classes. First of all we note that the condition (3.5) is by reason of
(2.12) equivalent to

YRS — h%R3 — hE RS = 0. (3.6)

When writing this out in detail, we keep in mind that, for all the surface

classes Aj,...,As, the frame of the symplectic surface is assumed to be
canonized so that R} = R2 = 0 and R} = R} = 0 (see Table 1), and the
equations (3.6) read

hi Ry — 2h},RT =0, h} R; — 2R}, R} =0,
h‘izRZ’ - hngi - h%IR% =0, h?zRg - h§2R% - hillR% =0,
h%zRi - 2h?2R% =0, h§2R§ - 2"'%23% =0.

Using Table 1 we see that classes A;, Ay and A3 do not contain semi-
parallel symplectic surfaces, but every symplectic surface in the classes Ay
and As is semi-parallel. To formulate these conclusions into a theorem, we
note first that if the symplectic surface belongs to one of the classes A;, A
or Az, then its tangent connection is not flat, whereas the tangent connection
of a symplectic surface of class A4 or As is flat.

Now we can summarize the above in the following theorem.

Theorem 1. A symplectic surface is semi-parallel if and only if its tan-
gent connection V 1is flat.

The final part of this section is devoted to a study of parallel symplectic
surfaces of the symplectic space Sps. As a parallel symplectic surface is
also semi-parallel, we may say that the classes .4, .45 and A3 do not contain
parallel symplectic surfaces. Parallel surfaces must therefore be sought from
the classes A4 and As.

Now we must specify the symplectic frame. To this end we write out (2.4)
in detail, taking into account the equalities (2.14). We have

dh3y — b3y (2wi — wi) - 203,07 + h11w4 = h}jw' + k0’
dh3y — b wy + hfyws — B3ywi + hiywi = h 1w 4 hlyw?, (3.7)
dh3y + B3, (2w] +wd) — 2h35wy + hyywi = hiyw' 4 hjgyw?
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and
dhi; — hiy (20} +w3) — 2RT,w] + BY W) = Ay w! + ATy,
dhl; — hijwy — hipwd — Ripw] + hiyws = hijpw! + hipo?, (3.8)
dhy + hy (20] — w3) — 2hisw) + h3,w3 = hiyw! + hipw?.
Let us consider a symplectic surface of class A4. From Table 1 we get

h; =0, hijh, — () #0. (3.9)

Hence h$; and h%, and likewise h3, and hf, are not zero at the same time.
With the help of the basis transformations which preserve the conditions
(3.9) it is possible to achieve h%; > 0. Indeed, from (2.6) it follows that the
basis transformation

- _—= - _—
€1 = €3, €q = €qy

gives 'h%; = h},, hence we may confine attention to the case where A}, and
hi, are not simultaneously zero. Let us suppose h%, # 0. If h{; = 0, then
hi, = 0 and h}, # 0. With the help of the basis transformation

S = = 2 = —
& '=e1t+er, €' =6, €' =€
we get from (2.6) that 'h$, = 2h%, # 0. To obtain h}, > 0 we make the basis
transformation

> _—= =1 _ =

€, — €5, €r = —ECy
which gives 'h{; = —h%;. From the equations (3.8) it now follows that, with
the help of the 1-forms w}, wj and w3, it is possible to get hf; =1, hf, =0
and hi, = ¢, where ¢ = £1. Thus canonization has led to the following
results:

h?j =0, h%l =1, h%z =0, h%2 =g, Riz=¢, ¢&==l1. (3_10)

The forms w and w} now appear as

wi’:: , wg:(), w‘f: (3.11)
2 _ 1 _ 2 _ — ’
wy =0 wy=0, wy=w =

As to the remaining forms, by means of (3.7) and (3.8) with the use of (3.10),
we may say that

_ 4 4 1 4 4y 2
(—hi1g +ehlgg)w” + 1(—hi1s + Ehoe)w”,
_Ew% h ghilzwl —- Eh%22w2,

4 4 1 4 4 2
—1(h11 +ehiin)w' — $(h11p +ehisy)w?,

= (.
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The forms wj and w4 are arbitrary. In addition we have R = hd, =

hiyy = hyy = 0.
Let us consider a symplectic surface of class As. From Table 1 we get

3
h;l] = Ahij? (3.13)

and the conditions R;; = 0 and Rup = 0 must also hold. From (2.15) it
follows that the condition R;; = 0 is an identity and thus does not restrict
the functions A$;. From the condition R,s = 0 we get for the functions h;
the equation

3 3
Ru=0 & Py by =0, (3.14)

Wy hiy| ™
because, with the help of (2.16), we see that
R33 =X Ry4, Ras = Rz = ARus.

If dimNxM,; = 1, then we may assume, without loss of generality, that

h$; # 0. Here is the explanation. If k3, = 0, but A3, # 0, we select the
basis transformatlon_ez ::_(?2 and ?)2' = ——-?1. In this case, by reason of (2.6),
'h$y = h$y, 'hsy = h{y and 'h$, = —h$y, whence 'h}, = h3, £ 0. If b3, = 0
and h22 = 0, then A%, # 0. Now we make a change of basw?l =) + &
and &, €, _?2 The equations (2.6) then give

'hii = BTy +2h5y + hy, 'hiy =R +hSy, 'hS =R

Hence, when a = 3, we get 'k}, = 2h3, # 0.
On account of thls, (3.14) becomes

hiy = phiy, By = phiy = ©*hiy, (3.15)
and due to the latter result the relation (3.13) now appears as
hiy = =AMy, by = Muhiy,  hy,y = Ay - (3.16)

It turns out that it is possible to choose such an adapted symplectic frame
for which p = 0 Here is an explanatlon of the details. If p # 0 we transform
the basis by €] ___ei and ¢, ez = —;Lel + es. Then

'hiy = RSy, 'y = —phfy + b, 'hy = Py — 2uhfy + b,

and as 'h}; = h$,, the condition 'h}; # 0 remains intact. In addition we get
from these equations

,h§2 = 0, l]l?z = 0, Ih42 - O
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as a result of which (3.15) and (3.16) show that p has become zero. Thus
we have

h?1 75 0, h?2 =0, hgz =0, h‘h = )‘h?u h‘fz =0, h§2 =0. (3-17)

To complete the canonization we recall the differential equations (3.7) and
(3.8). We obtain

dhiy + B3y (=2w] + w3) + AR} e = b ! + B Wt

—hyw; = hipwt + hip?,

0= h?”wl + hgzzwz,

h31dA+ Adh3; — AR, (2w] +w3) + B wf = hYj Wt + ki,
—AhG Wy = hijpw! + hiyy?,

4 1 4 2

(3.18)

From the first of these it is seen that, depending on the sign of h3;, we may
replace h; by +1 or ~1. Therefore h3, = &, where ¢ = +1. Furthermore,
the fourth equation of the system (3.18) allows, with the help of the form
w4, to replace A by zero.

In summary, we have obtained the following.

If dimNxM, = 1, then from (3.17)

h?l =&, h?z = 0, hgz - Uy h;l] = O-

The forms w® and w? are given by

3 _ 1 3 _ 4 _ 4 _
wy =ew, wy, =0, wj=0, w,=040,
2 1 1 2 1 (3.19)
wy = —Ew’, =0, 0 =

The relations (3.18) give

1,,3__ 33 1 3 2 1_ 3 1 4_ 34 1
—2wi +wy = ¢ehjj W +ehj W, w, = —ehd,w!, w3 = ehjw. (3.20)

If dimNxM, = 0, then h?j = 0.

Let us find the differential equations of a parallel symplectic surface of
class A4. These equations are given by the formulae of infinitesimal dis-
placement of an adapted frame {X; —et-, ?o,} of the particular surface which
must be reduced on account of the condition ki = 0. From the equations
(3.12) we therefore obtain
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Taking also into account (3.11), we find that the differential equations of a
parallel symplectic surface are

—-—).
d—f::wl_é)l+w2?2, d'a:—ew%%—}—wla, d%:w%el-i—sw?a,

dey = —ew?e) + Wi, +wiey, de, =T
3

It is seen that a parallel symplectic surface is located in a three-dimensional
subspace of the symplectic space Sp; whose direction space is the linear
cover L(?l,—é)g,_e_t;). Since dey = 0, the subspace L(E)l:e—)g ,?4), in turn, con-
tains the one-dimensional fixed subspace L(Zi). So the differential equations
of a parallel symplectic surface become

07 = w'e) +w'ey, dé) = —ewid; +w'd), 3.21)
dey = wiey +ew’dy, de; =T, '

where we have used the relation wj + ew} = 0. The presence of the form w?
shows that, on the tangent plane X + L(€}, &), it is permissible to effect a
basis transformation {€;} — {€,'} given by the equations

@ = (cosg)el + (sin ¢)h, & = (—sing)e, + (cos ey (e = 1),

¢ = (che)er + (shejes, € = (shg)e + (chgeh (e = —1).

(3.22)
Let us fix the position of the basis vectors {Z} at the point X of the sym-

plectic surface. As in such case w} = w? = 0, we get from the equations
(3.21)

dd=w'e +w7e), d& =w'e;, deh=ew?ds, dei=0  (3.23)

These formulae retain their form for each position of the basis vectors {ét}
which is admissible by the equations (3.22). Consequently the sections of
the parallel symplectic surface with the planes z4 = const are "circles” for
€ = 1 and "hyperbolae” for ¢ = —1.

Now we may describe the structure of the parallel symplectic surface with
the help of the coordinate lines w? = 0 and w! = 0 on it.

For the coordinate line w? = 0 we have dw! = 0 whence w! is the total
differential, i.e. w! = dt. From the formulae (3.23) the differential equations
of this coordinate line are

from which we get

;;:?4(0) - ﬁ(o)+?>l(0) — 7+ (0)
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We see that the coordinate line is a parabola with axis Xp + L(—éz(o)), where
X = Xp is the point on the parallel symplectic surface from which we begin
drawing the coordinate line (parabola) w? = 0, and —5)1(0) ,_6)4(0) are the basis
vectors?l,—ei fixed at the point Xy. Here, of course, the vector—ei is invariable
at all points of the symplectic surface, seeing that ara =T.

For the coordinate line w! = 0 we have dw? = 0, i.e. w? = dt. From the

formulae (3.23) the differential equations of this coordinate line are

from which we get

2220 B @@ 120, P=21e2? O 420,

We see that the coordinate line is a parabola with axis Xg + L@(O)). Sum-
ming up, we may say that the parallel symplectic surface is an elliptic pa-
raboloid for € = 1 and a hyperbolic paraboloid for € = —1.

Let us next find the differential equations for a parallel symplectic surface
of class As. As the canonization of the frame in this class leads to two distinct
cases, we must consider both of them.

In the first case we must reduce the formulae (3.20) in view of the con-
dition h$, = 0. We get w§ = 2w}, w; = 0 and wj = 0. Taking also into
account (3.19), we find the differential equations of the parallel symplectic
surface to be

42 = W' + ey, dé = wlel +wid; + ew'es,

(3.24)
déy = —wieh, des = 2wles.
The equation dey = —ew'ey + wf?g - 'Zw%a is superfluous because the

symplectic surface is located in a three-dimensional subspace of Sp4, as can
be seen from the equations (3.24). Its direction space is L(?l,?z ¢3). In this
subspace there are two one-dimensional fixed subspaces L@) and L(—eZ).
Consequently at each point X of the parallel symplectic surface there are
determined a pair of straight lines X + L(EZ) and X + L(?g). If the point
X is now allowed to vary on the parallel symplectic surface, we get two
families {X + L(?g) | X € My} and {X + L(%) | X € M} of parallel
straight lines. Every straight line X + L(EZ) belongs to the tangent plane
Tx(M>) and, furthermore, also to the symplectic surface for every X € M.
Hence a parallel symplectic surface is in this case a cylindrical synﬂ})lectic
surface the direction of whose generators is determined by the vector €3. The
expression for d_e-)l shows that the cylinder is parabolic.
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In the second case we have the condition A% = 0. The equations (3.1) then

give A, = 0. So there exist parallel symplectic surfaces. The differential
equations of symplectic surfaces

dd=w'e, de=w,

show that that each symplectic surface is a plane.
We sum up these results in the following theorem.

Theorem 2. A parallel symplectic surface M, in the symplectic space
Spa is an elliptic paraboloid, a hyperbolic paraboloid or a parabolic cylinder
of a three-dimensional space or else a symplectic plane.

Finally it is natural to investigate whether the classes A4 and A of semi-
parallel symplectic surfaces include some non-parallel symplectic surfaces.

A semi-parallel symplectic surface is not parallel if in the equations (3.12)
the functions hiyy, hly,, hiy, and iy, are not simultaneously zero. It will
be demonstrated that this is possible and hence a non-parallel symplectic
surface exists. For this purpose we use the notation and methods presented
in book [3].

We have to find the Cartan number @, which is expressed in terms of
"characters” as

Q=s514+28+...+ns,,

where n is the dimension of the manifold sought for; in our case it equals
two. Thus

Q = s1 + 2s,.

As the characters satisfy the inequality s, < s,_; < ... < s;, we have
83 < s1. It is known that ¢ = s; + s, where ¢ is the number of independent
exterior differentials dw® of the left sides of the equations w® = 0 of a
symplectic surface M,

dw® = Wi A dw' = W AW F LI AWE WAL FwiAWE (3.25)

We see that ¢ = 2, and so s; + s, = 2. The character s; is the rank of the
new system of forms {w?,w},w{,w}} in equation (3.25); consequently (3.12)
yields sy =2, s =0 and the Cartan number Q = 2.

In the end, we need the number of nonzero coefficients N in the expres-
sions of the forms {w},w§,w, wi}. From the equations (3.12) we conclude
that these coefficients are 1 and €, hence N = 2. In the case where N and
Q) are equal (here N = @ = 2), a semi-parallel symplectic surface exists
for arbitrary choise of any pair of the functions hf;;, his, hisy and hly,.
Hence in the case of symplectic surface M, € A4 a semi-parallel symplectic
surface exists which is not parallel.
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Let us consider the analogous problem of a semi-parallel symplectic sur-
face My € As. This surface may be non-parallel if dimNx(M;) = 1. Again
the existence of a symplectic surface does not depend on the choice of the
functions h3;; and h3;, in the equations (3.20). As here also n = 2, we have
two characters s; and s;. The relations (3.25) contain only a single signifi-
cant equation (g = 1), seeing that for this class h‘}j = 0, that is w} = 0 and

wi = 0. From the equations (3.10) we get s; = 1, consequently s; = 0. In
this case V = @ = 1 and semi-parallel symplectic surfaces exist. Therefore
a semi-parallel symplectic surface exists which is not parallel.

Theorem 3. In the symplectic space Spy semi-parallel symplectic sur-
faces exist which are not parallel.
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