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Empty-cored sequences in Banach spaces

|
|

AIN IrRO AND LEIKI LOONE

ABsTRACT. The purpose of the present paper is to describe sequences in
Banach spaces in terms of Knopp core. For matrix summability methods,
the conditions for core-shrinkingness are also given. In investigations of core
inclusions and several other summability problems in Banach spaces it is
vital to be aware of elements with empty cores. Empty-cored sequences that
remain empty-cored under transformation by an arbitrary regular matrix
method are described.

1. Preliminaries

Let X be a Banach space and let X* be its topological dual. Let w(X)
denote the set of all sequences z = (§,) with &, € X, n=1,2,....
Let E,(z) = {£n,&n41, .-}, where z = (£,) € w(X), and let R,(z) be the

closure of the convex hull of F,(z) in E, i.e.
R..(z) = clconv E,(z).

The intersection

Hia] =[] Buls)

is called Knopp core of the sequence z (see [2]; cf. also [1], Chpt. VI). If
K(z) = 0, then we say that z is empty-cored.
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In the sequel we consider in particular the following subsets of w(X):

m(X) = {z = (&) | sup{|léal: n € N} < oo},
m!(X) = {z = (&) | sup{|l¢]|: € € K(2)} < o0, K () # 0},
ew(X) = {z = (£,) |  is a weakly Cauchy sequence in X},
cw(X) = {2 = (&) | zis a weakly convergent sequence in X },
e(X) = {z = (£&,)] = is a convergent sequence in X }.
HMX) = {2 = ()] K(z) is a singleton}.

The sets m(X), ¢u(X), cuw(X) and c(X) are linear subspaces of w(X). In
the general case the sets m*(z) and c*(X) are not linear subspaces of w(X).

It is shown in [5] that for any Banach space X
cu(X) € H(X) o
and if X is reflexive, then

m(X) C m*(X). (2)

Proposition 1. Let X be a compler Banach space and let © = (£,,) C X,
then

K(z)y={e€ X| Ref(§) < lim'sup Re f(€,) Vfe X"}
={e X| limninf Re f(£,) < Re f(&) <limsupRe f(§,) Vfe X"}

Proof. This proposition was proved in [5] for the real Banach spaces.

Let us consider now X as a real Banach space and let X be its topological
dual. Knopp core of the sequence & does not change if we change the field
of scalars from C to R. Let

fr(z)

Since, for every g € X}, there is an f € X* such that g = fg, the complex
case follows from the real one. O

= Re f(z) Ve € X.

Let X and Y be Banach spaces. Recall, that two sequences (&,)
X and (n,) C Y are equivalent if there exists an isomorphism T from
clspan{&, : n € N} onto clspan{n, : n € N} such that T¢, = 5, for all
n € N.

By Proposition 1 it is easy to see that every sequence which is equivalent
to an empty-cored sequence has empty Knopp core itself.
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Proposition 2. If 2 = (£,) is a weakly Cauchy sequence in X with no
weak limit or a sequence that is equivalent to the unit vector basis (e) of £1,
then it is empty-cored.

Proof. Suppose that & € K(z). If 2 is weakly Cauchy, then by Proposi-
tion 1

f§)=lim f(&) VfeX~.

As z has no weak limit, this is a contradiction. Suppose now that = (e,).
Let fi = (0,...,0,1,0,...), where 1 stands on the kth position. As f; € £]
for all & € N, using Proposition 1 one can see that & = 0. But for the
element f. = (1,1,...) € £}, we have that f.(§) = 1, which is a contradiction,
and therefore K((e,)) = 0. Since equivalent sequences have empty cores
simultaneously, the proposition is proved. |

2. Empty-cored subsequences

The property that z = (£,) C R is convergent if and only if its Knopp
core is a singleton is important for the investigation of Knopp core in w(R).
Using Rosenthal’s #;-theorem we shall describe in terms of Knopp cores the
sequences in a Banach space X. This description provides us with an account

of the set cf(X)\ ¢y (X)-

Theorem 3. Letz = (£,) be a sequence in a Banach space X. Then x has
a subsequence (£, ) satisfying one of the two mutually exclusive conditions:

() (&n,) is empty-cored,

(ii) (&n,) is weakly convergent.

Proof. If @ = (£,) is not bounded, then there exists f € X* and a subse-
quence (£,,) such that

li}rcn Re f(&,,) = —o0,

by Proposition 1 we get that K((£,,)) = 0. If the sequence z = (£,) is
bounded, then by Rosenthal’s £;-theorem (see e.g. [4], p. 43) one can extract
a subsequence that is weakly-Cauchy or a subsequence that is equivalent to
the unit vector basis (eg) of #;. Thus by Proposition 2, if this subsequence
is not weakly convergent, then its Knopp core is empty. O

Corollary 4. Letz € c*(X). If 2 has no empty-cored subsequences, then
it is weakly convergent,.

Proof. Let K(z) = {€}. By Theorem 3 every subsequence of « has a
subsequence that is weakly convergent. As Knopp core contains all weak
cluster points of z, the sequence z is weakly convergent to &. a
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Theorem 5. Let z = (&,) and y = (n,) be sequences in a Banach
space X.
(i) If
limsup Re f(n,) < limsup Re f(£,)  Vf € X", (3)
then
K(y) C K(x). (4)

(ii) If the sequence y has no empty-cored subsequences, then the conditions
(3) and (4) are equivalent.

Proof. (i) is a direct consequence of Proposition 1.
(ii) Let us assume that (4) is true but there exists fy € X* such that

o = limsup Re fo (n,) > lim sup Re fo(&,)- (5)
k13 n
Consequently there exists a subsequence (7, ) such that
Ii}rcn Refo(nn,) = a.

This subsequence possesses no subsequence with empty Knopp core. By
Theorem 3 we can extract a weakly convergent subsequence (7)) C (7, )-
This means that there exists n € X such that

lim f(m) = f(n) Ve X"

Knopp core K(y) contains all weak cluster points of y, therefore n € K (y),
and by (4) and Proposition 1

Ref(n) < limsup Ref(&,) VfieX™

As Re fo(n) = a, this is in contradiction with (5). O

3. Empty-cored sequences on the unit sphere

The property that every bounded sequence in w(R) has the nonempty
Knopp core is yet another important property in the investigation of Knopp
cores. In this section we shall show that this property is true in w(X) if and
only if X is reflexive. On the whole, this fact is well known (see e.g. [3], p.
58). We shall provide here a direct proof, based on the concept of Knopp
core and the James condition for the reflexivity.
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Theorem 6. A Banach space X is reflezive if and only if every sequence
on the unit sphere Sx has nonempty Knopp core.

Proof. Necessity. Assume that X is reflexive. If (€,) C Sx then (&) €
m(X) and by (2) its Knopp core is nonempty.

Sufficiency. We need the following version of the James condition for re-
flexivity (see e.g. [4]; for a short proof see [6]): A Banach space X is reflexive
if and only if there is an € € (0,1) such that if (£,) C Sx, with ||u|| > € for
all u € conv{£y,&s, ...}, then there are ng € N, u € conv{€y, &2, .. ény } and
v € conv{€nyt1,8&ne+2, ---} Such that |lu —v|| <e.

Let ¢ = (£,) C Sx be an arbitrary sequence and let £ € K(z). This
means that there exists a sequence (o,) of convex combinations

Mp 41

on= Y Mk

k=my,+1

such that o,, — &. Note that
oy € conv{€1, &,y Emppr )

and

Ont1 € CONV{Em, 141> Empprt2s e

Since (o,,) is a Cauchy sequence, for arbitrary € € (0, 1) there exists n. such
that

lon, — Tn +1ll <&

We may choose for the James condition ng = My, 41, %4 = On, and v = op 41,
and this finishes the proof of the theorem. O

Corollary 7. A Banach space X is reflezive if and only if

m(X) c m"(X).

Corollary 8. If X is a reflerive Banach space, then

cw(X) = H(X) Nnm(X).

Proof follows from Corollary 7 by using Corollary 4 and inclusion (1).
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4. Regular matrix methods of summability
and empty-cored sequences

Recall that a real or complex matrix A = (ank) is called a regular method

of summability if, given a sequence of scalars (£,) converging to &, the se-
quence (7n,), where

M = Z ankfka (6)
k

also converges to £. Tt is well known (see e.g. [1]) that A is a regular method
if and only if

lima,, =0 VkeN, (7)

Iim Zank =1, (8)
k

supz lank] < 00 (9)
ok

Let A be a matrix method of summability and let z = (é1) be the sequence
in a Banach space X. Let y = Az be the sequence (7.) in X which is given

by the formula (6). If Az € ¢(X) (resp. Az € ¢, (X)), then we say that z is
summable (resp. w-summable) by A.
The set

wa(X) = {z = (&) € w(X)]| series (6) converge in X for all n € N}

is called a domain of matrix method A = (a,;) in w(X). It follows from (9)
that if A is a regular matrix method, then m(X) C wy (X).
Let Z Cwa(X). A matrix method A is called core-shrinking on Z if

K(Az) C K(z) Va e Z.

Note that a core-shrinking method on Z preserves empty cores in Z.
Let

(Z:X") = {(Re F(&:)) € w(R)| (&) € Z, [ € X"},
Observe that if Z C w,(X), then (Z;X*) C w4 (R). Obviously,
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Theorem 9. Let X be a Banach space and let A = (ani) be a matriz
method such that Z C w4(X). If A is a core-shrinking matriz method on
(Z; X*), then it is a core-shrinking matriz method on Z.

Proof. Let ¢ = (§,) € Z and let f € X* be an arbitrary functional.
Therefore, (Ref(£,)) € (Z;X*). Since method A is core-shrinking on
(Z; X™), due to the concept of Knopp core in R, we have '

lim sup Z aniRef(&x) < limsup Ref(&,),
n & n

meaning that

lim sup Ref(z ankér) < limsup Ref(£,).
n k 7T

It is clear from part (i) of Theorem 5 that A is core-shrinking on Z. (W

Corollary 10. Every regular matriz method A = (ank) is core-shrinking
on &, (X).

Proof. Since ¢,,(X) C wa(X), the proof follows from the observations
that a regular method is core-shrinking on ¢(R) and (11) holds. a

Corollary 11. If A = (a,x) is a regular matriz method and if
lim > " Jans| = 1, (12)
k

then A is core-shrinking on m(X).

Proof. 1t is well known that a regular metod A = (a,x) is core-shrinking
on m(R) if and only if (12) holds (see e.g. [1]). The assertion follows now
immediately from Theorem 9 and the inclusion (10). 0

Corollary 12. If A = (a,) is a positive and regular matriz method on
w(R), then it is core-shrinking on w(X).

Proof. A matrix method that has w(R) for its domain is row-finite. It
is obvious that then w4(X) = w(X). As a positive and regular method
is core-shrinking on w(R) (see e.g. [1]), the assertion follows from Theorem 9.

a

Proposition 13. Let z be a weakly Cauchy sequence in X with no weak
limit or a sequence that is equivalent to the unit vector basis (e}) of £;.
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Then for every regular matriz method A, Knopp core K (Az) is empty. Con-

sequently, there exists no reqular matriz method A such that ¢ is w-summable
by A.

Proof. If z is weakly Cauchy with no weak limit then the statement follows
from Corollary 10.

It can be easily verified that if A is regular and if z is equivalent to
& = (ex) then Az is equivalent to A%. As equivalent sequences have empty
cores simultaneously, we have to prove that the statement holds for & = (e,).

Assume that there exist regular A and & € ¢, such that & € K(A%). Now
we can construct a contradiction in the same way as in the proof of Propo-
sition 2. Indeed, by using the fact that (7) holds, we get from Proposition 1
for fi € £f that

fk(f) = lim fk(z anjej) = IIYILII an; =0, Vk € N,
J

Le. £ = 0. But for f. € £} we get from (8) that
Fel&) =tim o) anje;) =lim Y an; =1,
J 3

which is a contradiction, therefore K (A#) = 0. O
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