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Riesz summability with speed of orthogonal series

NATALIA SAEALLE AND HEINO TURNPU

ABsTRACT. Sufficient conditions for summability with speed of orthogonal
series are found.

1. Main result

Let ¢ = {px} be a system of orthogonal functions on [a,b], and let
A = (M) be a sequence with 0 < A; * co. We shall consider the series

of the form
Z ’fk‘Pk (t):

where z = (§,) € £3, Le. €20} < oo,

We shall use the following definitions from [1].

Let A = (ant) be a triangular summability method and let z = (Ck) € ¢
with lim ¢, = (.

The sequence z is said to be convergent with speed A or A-convergent, if
the limit

lim A (G — €)

exists. The set of all A-convergent sequences is denoted by c*.
The sequence z is said to be A-summable with speed X or A*-summable,
if y=(n,) € c*, where

n
T =Y ankC.
k=0

The summability method A is said to be A-convergence preserving if every
element of the set ¢* is A*-summable.
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The series S Exr(t) is said to be A*-summable almost everywhere (a.e.)
on [a,b] if it is A-summable a.e. on [a,b], i.e. the limit

1i715nz ank€rpr(t) = fz(t) (1)
k=0

exists a.e. on [a,b], and the limit

lim §,,(4, z, ) (2)

exists a.e. on [a, b], where
ﬂn(Aaxvt) = )\n (Z ankék‘Pk(t) - fa:(t)>
k=0

and

n
Qnk = Z Gny-
v=k

The series 3 &xpx(t) is said to be mazimally A*-summable if the limits
(1) and (2) exist and

b
/ sup |Bn (A, z,t)|dt < oco.

The starting point of this paper is the following theorem.

Theorem 1 (see [7]). Let A be A*-convergence preserving and let

limo,, =1 for all k€N

The series 3 Exr(t) is A*-summable a.e. on [a,b] for all z € £ if and only
if the following conditions hold:

1° S &pr(t) is A-summable a.e. on [a,b] for every x € £3;

2° For each € > 0 there exist a measurable subset T. C [a,b] satisfying
mesT. > b — a — ¢ and a constant M, > 0 such that, for all mesurable
decompositions

W ={ Mz n=0,1, ... ;m; Mg [ | Mmn=0 if k#n; | Mmn=(a,8]}, (3)

n=0
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one has

m—1

An@ = [ [ Y ) 3 xmelr) 3 u00 (r) D | <
T. JT: v=0

n=0 p=n-+1
where Xmn = Xom,,, and

(

AnA .
(amv - anu)(amu - apu)”':l\_z‘ey fo<v<n<p<m,

AnAp

Dm = am,,(am,,-am,)——)-\—z—, fn<v<p<m,
v

npv

2 Andp

my )\2 ?
v

fn<p<v<m.

In the present paper we shall mainly consider the case, when A is the
Riesz summability method P, i.e.
Pk
—, k<n
Ang = Pn
0,

where py, > 0 and P, = Y 7' px 0.
Note that the Riesz summability method P is A-convergence preserving
if and only if (see [2])
An o Pr

An = O(1).
Po 20 M

If P is A-convergence preserving, then clearly
An Ak

Zn — o)) 2k

Hence, if the method P is A%-convergence preserving, i.e.
P, A2

fork<n, kneN.

=0(1),
k=0
then
Mok
P'n Pk:
Since by the Cauchy inequality
An = Dk A2 N Pr 1/2 A2 Cxpp\ /2
By (BT ES)  (Ry
= ) 3 3
P 2o M Lt R v L B

O(1) fork<n, k,neN

we have that if P is \2-convergence preserving, then P is also A-convergence
preserving.

The main objective of this paper is to prove the following theorem.
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Theorem 2. Let condition (5) hold, and let

A

P \l 0 s Pn = O(Pn—l)’ (7)
n—1
1 1
—A—
pn )\% \ 07 (8)
where
1r_1 1
XN A2
If
b
/ sup L (P, t)dt < oo, 9)
o k
where
b 8 Pu—l
Lu(P,t) :/a ;(1 - 2=t () () dr,

with P_, = 0, are the Lebesgue functions of the method P, then the series
S Exon(t) is mazimally P?-summable a.e. on [a,b] for every z € £3.

Let us remark that, in 1969, G. Kangro proved the following result.

Theorem 3 (cf. [2]). If (1/)\) is a sequence of summability factors of
type (A, A*), i.e. the series
> 5t
T

is A*-summable for every A-summable series Y (i, then the A-summability
a.e. on [a,b] of the series S &3¢k (t), where zg € 2, implies the A

summability of the series %cpk(t) a.e. on [a,bl.

If conditions (5), (7) and (8) are fulfilled, then from Theorem 29.3 of [1],
it follows that (1/\z) is a sequence of summability factors of type (P, P,
Therefore we have that if conditions (5), (7) and (8) hold, then the P-
summability a.e. of the series Y. €,k (t) for every @ € £2 implies the P*-
summability of the series 3 £ (t) for every z € £3. Note that the above ar-
gument does not imply the maximal P*-summability of the series ) &xp(t)
for every z € £2.

2. Main Lemma

The proof of Theorem 2 is based on the following lemma.
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Lemma 4. If conditions (5), (7) and (8) hold, then for each & > 0 there
exists a mesurable subset T, C [a,b] satisfying mesT, > b —a — ¢ such that
for all decompositions (3) one has

An(e) = 0(1) sup Ly (P, t)dt. (10)
T. k<m

Proof. Denote

j
R;(t,7) = ajpn (e (1),
v=0
P,
P;

O{jyzl-—

ov (e (1) = nurRe(t, 7),

k=0

where (1,1,) = P! is the inverse matrix of P.
From [1] (see p. 193) it follows that
m ADm i
vk DI, = P A——2EE
Z n P k i

v=Fk

and therefore

m—2 m—1 m.ov
Ap(e) = Z Xrmn (t) Z Xmp(T) Z Z Mok Bk (t, 7) D7 didr

T: n=0 p=n-+1 v=0 k=0

m—2 m=—1 m AD™
Z Xrmn (1) Z Xmp(T) Z Ry (t, 7) PeA—"2L dtdr
Te p=0 p=ntl k=0 Pk

m—2

m—1 m
Zan(t) Z Xmp(T)AnAp ZRk(taT) Ag(n,p,m)
k=0

T JT, n=0 p=n-+l

+ A (p,m) + AY(p,m)) | dtdr|,

where

A (amk — ank)(amk — apk) b%
P A ps if0<k<n,
k

Propy (amn - C\fpn)
AZPn
0 if k > n,

Ap(n,p,m) =

if k =n,
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.
A [amk (Qmk — apk)xlf]
P.A k ifn<k<np,
5 Pk
Ag(p,m) = Pty tipy HE
)\2p - p?
pPp
L 0 ifk<mnork>p,
and
[ AloZ, ]
P.A k if p<k<m-—1,
Dk
a? a? a?
_J P, BT e i s TR, O] ifk=m—1
Az(p’ m) - ﬁ ! ()‘gn-lpm—l )‘%npm—l )‘%npm) ' " ’
2
«a
j AL if k=m,
A2 o,
L 0 if k<p.
Observe, that
P,
Pk A X2
Al(n,p,m)| < A k for 0 < k < n,
| k(n,p )l_Pan Pr
by (4) , .
Al = — = 01
n(n7p’m) O(]‘) )\%Pp O( ))\nAan’
and "
P
Denote 8 i
M, = =)A=
pn >\'n,
From (7) it follows that M,, <1 for all n € N. Therefore
By B e P 1 1
A3 =ml m,m—1 m_ Mm—"‘— iy
m—l(p7 m) pm.—.l A A,?n_l )\gnP,,% 0(1) 1)\3n—1 + 0( )Agn’
and

1 ‘
A%, (p,m) = O(1) 37 |

m
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Thus

2
m—2 n—1
AL
m(E / /T ZXTH?l(t)P Pn B Z PkA pkk [Rk(t,T)ldth

£ n=0

/ / 3™ (122 S |82 (0, m)]| [ Rt )|
Te p=1 k=0

m—2
+ Z IA’%(p’ m)l | Ry (¢, 7)| | dtdr

k=p

1) / /T E S e ® 3 sy ()| 1Rt )] + 1Ry 1)

n=>0 p=n-+1

+ R a(t, )| + | B (¢, 7)| | dtdT.

Now we have

n-—1
Apn(e) < sup Ly (P, t)dt sup A Z P.A
T, k<m n<m PnPr_1 k=0
p-—-1

sup Ly (P, 7)dr sup A\? Z IA2 (p, m)‘
T: k<m p<mn k=0

m—2

+ [ sup Li(P,7)drsup A} Y |} (p,m)|
T: k<m 4

k=p

+ O(1) sup L (P, t)dt
T. k<m

Therefore, in order to prove (10), it is sufficient to show that

Vi

1 )‘2

— n

e Pnpr ~1

p—1

X 2 18R @ M) Vi = A
k=0
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By [4] (see p. 220) we have that, for any sequence (a,,) C R,

PAA%E’: A A
k Dr ( )\2+

A 1 A
ak ; P.A ag,

Pk )‘k+2 Dk (11)

+Pkak+1A(E)%A5\1§>.

"

Consider the case when ¢ = 1; then, by (11), we have

A ety P 1 \AP2
Vi (A A ) 2kt
npm - Pn ; )\2 + )‘%—H) Dk

1 AR,

7oA +P,?A(£;A——1—).

A
Since by (7)
n—1

1.1 1.1 = 1 1 P:, 1
> |Pa(—as) =FY A = D AR Ay - =,
= P Ag Po A§ Prti Mgy Pn AR

we have

. Az 1
Vnpm = E;((A)\z +A/\k+1)(Pk—~1 +Pk)

—— (P +Pk+1)>

/\k+2

b A2 1 1 A2 P2
+ 220(1 APE— At |4 2 inmin L
7,0t B, T e T P2 pa AR

Now. by (5) and (6), we have

Pk+1 1
Vipm < Z( MH-)\ = Mk+1+pk+1A)\ )
k+1 k+1

P Z( . Pk+1)+0(1)

A+1

A2 32 py A2 P,
+22n N B A 2 7 /\QM +0(1)

9 n—1
An Pr41

P 32 + O(1)

¥ =0 “k+1
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Analogously we have

)\2 p~1 Aamkpk 1

/\2
| 2T P,A
n,p,m Pp P D

PA
Pk /\k+2 Pk

Z amkPkA< A—s ! )

1 1 1
(55 + 85z gz
k=0 k k+l k+2

A2 2 p—1 1 1

A,
+—£O( + 2 A Otmkp ) —_— A + iy p1 ==
B By 1;) " prs A i

)PkA(amkPk-1)+ 1 Ak Py—1)

22 p—1

=0(1) 2
PP

By

Finally, for i = 3, we have

V3
m—2

1 1 Aa? 1 Aa? 1 1
< 2 A A 3 mk A mk P. A
<A ()\ Rb¥: >P Di +/\k+2p“ P e ( ,\2)

k=p k41
m—2 2 m—2

= O(1)A2 Z(A)\Q +A/\

k=p k+1

P

A
)+ P }; M.

A(amk + am,k—{-l)

m—2 1

+Oém7)+1)‘p A/\z ‘i‘() )\ Z A/\k+1
k=p

o(1).

The proof is complete.

3. Proof of Theorem 2

In the proof of Theorem 2, we shall make use of the following

Lemma 5 (see [5], pp. 142-144). Let (f,) be a sequence of integrable
functions on [a,b]. Then for each mesurable subset T C la,b] and for each
m € N one has

sup !fn(t)ldt < 2sup Z Xmn(t) fn (t)dt
T n<m m T ne0

"
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where M,, ranges over all decompositions defined by (3).

Proof of Theorem 2. By [6] (see p. 201) the condition
L,(P,t) = O:(1) a.e. on [a,b]

implies that the series " &ypr(t) is P-summable a.e. on [a, b] for every
z € 2.

From Theorem 1 and Lemma 4 it follows that the series ) &rox(t) is
P>.summable a.e. on [a,b] for every z € £3.

To show the maximal P*-summability we prove that

[ sw Ipua,0.01d = OGlzlig) +suplAm(@) %, (12)
T. n<m Mim
where T. C [a,b] is a measurable subset with mesT, > b—a —¢ and 9M,,
ranges over all decompositions defined by (3).

If condition (12) holds, then from (9) and (10) it follows that the series
S Exepx (t) is maximally PA-summable a.e. on [a,b] for every = € .

We now prove (12). By Lemma 5

/ Z Xmn (t)ﬂn (A, Z, t)dt 5

e n=0

/ sup |Bn (4, z,t)|dt = O(1) sup
T o

n<m . m

Denote
dpk = OQpk — Op—1,k;

then

o0 P
B4z, t) = O Y Gpkbkpr(t) = Bmn(@,t) + Cmn(2,1),

p=n+1k=0
where o
Bin(z,t) = A Z Z aprlrer(t),
p=n+1k=0
© P
Cran(@:8) =An 3 D Gpréipn(t)
p=m+1k=0
Therefore

/T Z Xmn () Bn (A, T, t)di

e n=0

— o(1) /T S Xoun (8) Boun (2, 8)dt + O(1) /T S Xoun (8)Conn (@, ).

€ n=0 e n=0
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By orthogonality of ¢ we have

/ men(t )Conn (2, )dt

T: n=0

S/ Zan(t Zamkfk%( ) — fa(t)

a n=0

m|m -1 - 1/2 = 1/2
<vb-a supuu——i €232 4 €2x2)77.
/\k k2k k7k
k=0

ksm k=m+1
If A is A-convergence preserving, then by [3] (see Lemma 3)
Amlome — 1 = 0(\;) (k< m)
and therefore

/| menm Conn (&, 8)dt = O((J ).

Denoting

p—1
m(t) = Z Xmn (t))\nv
n=0

we have
> Xran (t) Bona (2, 1) dt
Te p=0

= Z Sk > Gprpn(t) AT (t)dt+ >~ Xmn (£) A (Cmo— im0 )00 (1) dt

Ep k Tep=0
Now by (13)
/ Zan )an(mvt)dt = Z&c Zapksok( )A?(t)dt*{-O(”.’E”eg\)
Te n=0 k=0 Y Tepop
Using the principle of uniform boundedness we get

qu Zapksok( )A (t)
k=0

T p=k

/T Z(p'” tm( )Z A7) D G AR (r)dtar) g

k=0 p=k vk
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Finally

m

t m
/ / ‘p’“( 9"’“ Z Z pA™ (1) dtdT = Ap(€) + Enm,
Te =0 v=k

where

/ / Z ok ) oo L7 )Zm: or(t)pr(T) [;\\—Z(amk - ank)]thdT.

Te n=0 k=0

By (13) and Bessel’s inequality we get

Bn=3 3 (32 @ = )] ([ onlOxmntit) =
n=0 k=0 2
0(1);;(4 %(t)xmn(t)dt)2 =

1)2/ X ()dt =
o | 3 Xm0 = O1).

EnO

Therefore condition (12) holds. a
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