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A pseudo-metric structure on interpolation
functors

STEN KALISER AND KIBRET NEGUSSIE SIGSTAM*

ABSTRACT. We consider topological properties of sets of interpolation
functors. In particular we construct a distance function for describing
nearness of interpolation functors. The idea of this paper is inspired by
the concept of Banach-Mazur distance between Banach spaces.

1. Introduction

It is easy to see that for a given Banach couple the set of all intermediate
norms is a compact set (it is closed for the topology of point-wise convergence
in a compact set of functions) and that the set of all interpolation norms
is a closed subset. If C is a category of Banach couples, then the set of all
interpolation functors can be represented as a projective limit of compact
spaces and may hence in itself be considered as a compact (Hausdorff ) space.
In this paper we shall consider a related problem, namely the problem of
defining a metric structure on the set of interpolation functors. We do this
by considering bounded couples, i.e. couples in which the spaces X, and
X3 (and therefore also all interpolation spaces) are isomorphic. Since e. g.
the lower and the upper complex methods cannot be separated by bounded
couples, this means that the metrics we obtain are only pseudo-metrics on
the set of all interpelation functors. Since there are also other sets of functors
in functional analysis where a metric structure could be useful, we hope and
believe that our method will be of interest, perhaps not only to specialists in
interpolation theory. In the main part of the paper we shall consider what
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we call a distance function, while we shall see at the end how this can be
used to define a (pseudo-)metric.

In the sequel we mostly adopt notation and terminology already used
either by [B-K] or in some cases by [B-L].

2. Distance function

Let ® denote the set of real numbers. We shall write T : A — B to
denote a bounded linear map T from a Banach space A into a Banach space
B. If, in addition, T is an injection satisfying [|T|z(a, p) < 1, then we write
T:A<— B.

To introduce our distance function we need the following definition.

Definition 2.1. For a fixed s > 1, a Banach couple A is said to be
s-bounded if the canonical embedding j : A(A) = Z(A) is invertible and
”.7—”5(v ), A(A)) <s.

We denote the category consisting of all Banach spaces with morphisms
all bounded linear maps between Banach spaces and the category consisting
of all Banach couples with morphisms all bounded linear couple maps (i.e.

all bounded linear maps between Banach couples) by B and B, respectlvely
We also denote the full subcategory of all s-bounded Banach couples of B
by B(s).

Remark 1. Indeed, if A is s-bounded, then
lallg gy <min(llalla,, llalla,) < max(llafla llalla,) = llallacz)
5 3“0'“2(,4’)'

Definition 2.2. For each fixed s > 1, we define the lower s-bounded
couple ffs of a given Banach couple A to be the couple /fs = (A, Asi),
where as vector spaces Ay = A(A) = A,y with norms given by |lalla,; =

st (s q), as i rangs over {0,1}. Slmllarly we define the upper s-
bounded couple A® of A to be the couple A* = (A, Aj), where as vector
spaces A3 = B(A) = A? endowed with norms |lafl4s = s'K (s (1-2)) q), as
i rangs over {0,1}. Here J and K are the Peetre fulnctiona,ls on the spaces
A(A) and T(A), respectively.

Remark 2. For a fixed s > 1, if A is s-bounded and a € Z(ff), then the
K-functional K (-, a) on the intervals (0, 1] and [s, o) is given by

K(ta) = t||a||A ,ifo<t<i
"7 Vlal, - if s <t
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Furthermore, for an arbitrary couple Aandae E(/I), we have

-,

tsK(%,a; A) for O<t§s,
K(t,a;4°) = { K(t,a; A)  for 1<t <s,
a;

K(s,a; A) for s <t,

whereas

J(t,a; As) (,
tJ(s ,a; A) for s<t.

Proposition 2.3. Given s > 1 and a Banach couple /Y, we have the
following:
(i) The Banach couples A, and A® are s-bounded.
i) There are inclusions ijs : As — A and ius 1 A <> A5,
iii) lim llalla,, = llalla, and lim [lalla,, = llall4, for every a € A(A).
)

(i

(iv hm Hal]Ar = |lall4, and hm ||b||Ar = ||bl|4, whenever a € Ay and

b € Al.
Proof. All statements follow from Definition 2.2. O

Proposition 2.4. For each fized s > 1, the inclusion i : B(s) — B
has a left adjoint 1:B < B(s) given by 1(A) = A® and a right adjoint
r:B < B(s) given by r(A) =

Proof. It is enough to show the following two statements:

-,

(i) There is a natural isomorphism between L(X, A) and L(X?, A)
whenever X € B and A = A% € B(s);

(ii) There is a natural isomorphism between L£(A, X) and LA, X,)
whenever X € B and A =4, € B(s).

But it follows from Proposition 2.3 (ii) that there are natural inclusions
ius 1 L(X?, A) = L(X, A) and 45 : L(A, X;) <= L(A, X) with norms less
than one. So to complete the proof it is enough to show

- —

- L(X, A) = £(X?, A)  whenever X € B and A= A% ¢ B(s) (2.1)
for part (i) and
X))o L4, X,;) whenever X € B and A = 4, (2.2)

for part (ii), respectively. To show the inclusion in (2.1) assume that A4 =
A® and S € L(X, A) such that ISlex, 4y < 1. Suppose ||z]lxg < L.
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Then we can find z, € X, and z, € X, such that z = zo + z1 with
lzollx, + sllzillx, < 1. Since Sz = Szy + Sz; we have

[Szlla0 < [ISzollay + [1Sz1lla0 < [1Sz0llag + slIS21lla,

< 1Sl 2(xo, 40) 1ollxo + 1Slle(xy, a1 8 121llx,
< max(||S|l(xo, 40)» 1S 2exy, a1))-Ulzollxo + sllzallx,) < 1.

1. It follows that S € E(X ; ff) implies S € E()Z 4 ff), thus completing the
proof of (i). By a similar argument (2.2) follows, and we are done. O

This shows that ||S||z(xs, 4,) < 1. By the same argument we have [|S]z(x;, 4;) <

Definition 2.5. An exact interpolation functor F' : B — B is called a

normalized interpolation functor if both the inclusions § : A(A) — F(A)
and o : F(A) < Z(A) have norms ||4]] <1 and |lo]| < 1.

For two normalized interpolation functors F' and G and a Banach couple
A, let A(F,G)(A) and X(F,G)(A) be the intersection and sum spaces,

= -

respectively, of the Banach spaces F'(A) and G(A) endowed with the norms
”a“A(Fg)(A') = max ( ”CLHF(A), ”a”G(g))

and

-

Hallg(p,g)(,af) = inf { HGOHF(A') -+ “(11”(;(/() :(a=ag+a1) A (ag € F(A))
A (a1 € G(A)) }.

If, for some s > 1, A is an element of l?(s), then we see that the canon-
ical embedding j : A(F,G)(A) — Z(F,G)(A) also has an inverse j~ with
157 eesirer), areran < &

Definition 2.6. The distance function d(F,G)(s) between two normal-
ized interpolation functors F and G is defined on the half line s > 1 by the

value

d(F, G)(s) = S“P{“j_”ﬁ(E(F,G)(A'),A(F,G)(A‘)) : AeBs) s

Proposition 2.7. Let F and G be two normalized interpolation func-
tors. Then for each fized s > 1, we have

llallp(g) ““”G(g)

d(F, G)(s) = Sup{max( ) : (a € AF,G)(A)\ {0})

l]a|!g(§)’ “a”F(A')

A (A € B(s)) }
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Proof. By symmetry it is enough to prove the norm inequality llal] F( A)

”a”F(A) | L1 .
o, HaHE(F’G)(g). Clearly Hallg(F’G)(f{) < 1 implies that there exist a, €

-,

F(A) and a, € G(A) such that a = ap + a, and ”“p”p(_&) +llagllga < 1.
But then
lag F(A)

lla, + ac”p(ﬁ) < ”ap”F(g) + ”aG”F(E) = “ap“F(JT) + ”a’G”G(A")’”a ”G(E)
G

laglpx
< llaglga, + lollos nax(rg—:}f 1),

By symmetry we also have

laplleq
”‘LHGM") < max(L _ji(ﬁl>

”aF “F(_*T

and this completes the proof. ]

Before going into details, we shall motivate the reader by the following
two simple examples of distance functions.

-,

Example 2.1. For the normalized interpolation functors A s F(A4) =
A(A) and A~ G(A) = (A) and for any s > 1, we obtain

-,

d(F,G)(A)(s) = sup { i Il )ty = A€ Bls)} =

Example 2.2. Likewise, if the normalized interpolation functors F' and
G are such that A F(A) = Ay and A — G(A) = Ay, then for any s > 1,
an easy calculation gives that

d(F,G)(A)(s) = s.

We shall state and prove the following basic properties of the distance
fanction.

Theorem 2.8. For fized normalized interpolation functors F, G and H on
the category B and for any s and t in the open interval (1, o), the distance
function d has the following properties:

(i) d(F, G)(s) = d(G, F)(s) < s;
(i) d(F, G)(s) < max(1, 3)-d(F, G)(t);

(ili) d(F, H)(s) < d(F, G)(s)-d(G, H)(s).

For the proof we need the following

Lemma 2.9. Let 1 <t <s. Then, for any s-bounded Banach couple E,

the contractible isomorphism jt : A — At satisfies ”(jt)-”E(A't Q<
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Proof. Suppose a € A} with ||al| 4y < 1. Then we can find ap € Ap and
a; € A; such that @ = ag+ a1 and |laoll4, + tlla1]la, < 1. Since

“a“Ao < ”aOHAo + Halqu < “aOHAO + S||a1||A1

S S
< 2+ (laollag + tarllay ) < 3

it follows that ||(jt)_||£ i &) < § as required. O

Proof of Theorem 2.8. Part (i) follows from the definition of d(F, G)(s)
and the obvious inclusion maps A(A) < A(F,G)(A) — %(F, G)(/_f)
T(A).

To prove (ii) it is enough to show that

”'Ya“A F,G)(A) = < max(1, ) ”7b”A (F,G)(B)’

where A € B(s), B € B(t), 1< min(s t), and v, and 1 are the inverses
of the canonical inclusions of A(F, G)(A) into ©(F,G)(A 1) and A(F, G)(A)
into $(F, G)(A?), respectively. Recall that (F,G)(-) = L(F(-),G(-)) and
A(F,G)(-) = A(F(-), G(-)). For s < t, the conclusion is trivial. Assume
that t < s. Let A€ B(s) and I: A — A® be the inclusion map. Clearly

“Ia”g(p'g)(,&t) < ”allz(F,G)(/i‘)' (2.3)
Applying Lemma 2.9 to A(F,G)(A) and A(F,G)(A?), we get
s
“a”A(Fg)(A') < Z”I(I’“A(F,G)(A‘t)' (2.4)

Now from (2.3) and (2.4), it easily follows that

tlallagon _ Hellagea
slals@eya ~ MalsEea
Now since
el agreycay = Sup{ %Z%@(ﬁ . a € X(F, G)(J)}
(F,G)(A) ;
and

[ 1all v s
”’YbHA(F,G)(A’t) = SUP{ - AFGE) | g € X(F, G)(At)},

1Zalls, )it

we get

S
“'Ya”A(F,G)(A') < Z“%HA(F,G)(A't) < max(1, )H’Yb“A F,G)(At)’
This settles (ii).




A PSEUDO-METRIC STRUCTURE ON INTERPOLATION FUNCTORS

To prove (iii) we need to show that

Nall sz < d(F,G)(s)-d(G, H)(s)

lalle (g, my )

for any s-bounded couple A and a € A(A). To that end, we shall include
the following notation which slightly ’generalizes’ their counterparts men-
tioned earlier in this paper. Let {F;}, be interpolation functors. Let

A(F,, -+ F )(A) and Y(Fy, -, F )(fT) be the intersection space and the

algebraic sum space of the spaces F,(A) as ¢ varies over the set {0,---,n},
with the respective norms

”a”A( Fy e F ) A) = max { ”a’HFi(A') :1€{0,---,n}}

and
k3

n
lallsgr, ooyt = WEL el gyt (= D2 a) A (a, € Fy(A)) A
=0

=0
A (a, € F,(4)}.
Continuing the proof, we assume that ||a|]2( Femd) <landlet a=a, +

a,+a, bearepresentation of a as asum where a, € F(4), ag € G(A) and
a, € H(A) in such a way that ||a]|v(FGH)(A) < llegpllp A T ||aG||G +
“a‘H”H(A) < 1. Putting 2.5 = a, + a; and z,, = a, + a,, we know
that

”zFG”A(F,G)(A') < d(F,G)(s)- (“apllp + ”a’G“G(A))

“ZGH”A(G,H)(A‘) < d(G, H)(é)( G i H”H(A'))'

Thus we have

”CLHA(F,G)(A) G)(s)- “U’”E(F,G)(A')
G)(s)- (”aF“F(A‘ -+ “zGH”G ")
)

G)(s (“CLF”F (A T [E2 1PN GH)(A))

d(F, G)(s)- ( F”F(A') + d(G,H)(S)'(”GGHG@)

+ llallgs ))
d(F, G)(s)-d(G, H)(s) lallsr.c m) 4)-




22 STEN KAIJSER AND KIBRET NEGUSSIE SIGSTAM

Similarly ||a||A(G md) < < d(F,G)(s)-d(G,H)(s) ||allg (F.G.H)(A) and it fol-
lows that

”a“A(F,H)(A') = max(HaHF(g), ||a”H(,1)>
ol lolagay lolaca

ma.X(“allA(F‘G)(A')’ ”‘”'A(G,H)(A))
d(F,G)(s)-d(G, H)(s) llallgr.c.m4)
d(F,G)(s)-d(G, H)(s)llallgp mz)

The last inequality follows from the property of the norm in the sum space.
Thus we obtain the desired result. a

IA

IA

<
.

We have the following

Theorem 2.10. Let E, F, G and H be fized normalized mterpolatzon
functors such that E(A) — F(A) < H(A) and E(A) < G(A) = H(A)
are sequences of embeddings for each Banach couple A. Then for any s > 1,
we have the following relations:

(i) d(F,G)(s) < d(E,H)(s);
(ii) max(d(E,G)(s), d(E,F)(s), d(F,H)(s), d(G,H)(s))
< d(E,H)(s).

Proof. The proof of (1) is based on the observations that the inclusion
map E(A) — A(F,G)(A 1) together with the inclusion map X(F, G)(A)
< H(A) and E(A) = A(E,H)(A) = A(E,F)(A) = A(E,G)(A) and
H(A) = E(E,H)(A_’) For € > 0, let a € S(A) satisfy the inequal-
ity HC"“A(F,G)(A) > (1- 6)‘d(F,G)(s)-lla“E(F’G)(g). Then since |la|l|l >
||a||A(F’G)(A') and |ja|lg < “"’”E(F,G)(A)’ it follows that
lolarersy . lale  _ lale 4 gry(s).

(1—e€)-d(F,G)(s) < % <
“anz(p,g)(/f) Hang(pﬁg)(j) llall &

Thus we have proved part (i).

For the proof of (ii), it is enough to show that d(E, F)(s) < d(E, H)(s)
and d(F,H)(s) < d(E,H)(s). Suppose that the inequality ||al| 5 (EF)A)
(1 —€)-d(E,F)(s) HaHv(E F)(A) is satisfied for some a € £(A). Again since

lallz > |lallm, we obtain the inequality [lalz > (1 —¢€)- d(E,F)(s)-|lella
which implies d(E, F)(s) < d(E,H)(s). On the other hand. if we let z €

$(A) satisfy the inequality ||| , (F.H)(A) > > (1—¢€)-d(F, H)(s)-lz]lg (F.H)(A)

then since ||zl s g 1) > 12l o2y 4) and |||l p gy 4) 2 Hm“E(E,H)(/Y)’
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we have [[a:HA By > (L—e)d(F, H)(s)-“wHE(E’H)(g). This gives (1 —
€)-d(F, H)(s) < d( E H)( ). Thus (ii) follows and we are done. O

We may somewhat generalize our distance function to normalized regular
interpolation functors from a category of Banach families into the category
B as follows.

Let X be a Banach space and let P({2) denote a probability space consist-
ing of a probability measure P on the Borel subsets of a given topological
set €). Suppose that a measurable function n : Q@ x X — R, U {0} given
by n(w, ) = || -|lu generates a family of complete normed spaces (viz X )
on X for almost every w € Q. We call such a function n an 1ntelpola,t10n
generating function (IG for short).

Let )?(n,]) = {X : w € and X, is a Banach space } be the

w

family of spaces generated by an /G-function n and a dense range contractive
map I of the space

AX) = {a, €EX : HmHA(X) = esssup n(w,z) < oo}
weN

into the space %(X) endowed with the norm
el = nf{ [ nw, f(@)dPw) « f € S(@,AR)
and = = [ fl)dP() }.
Here S(Q, A(X)) is the set of all simple A(X)-valued functions on 2.

Definition 2.11. For a given P(f2), let n and I be as above, then the

family X (n,I) is called a regular interpolation family. Such a family will be
called, for s > 1, a regular s-bounded family, provided that the inequality

< s+
lallaczy < s Jlelg llall
holds for all a in A(X).

For a fixed Borel subset © of Q, we define the corresponding K- and
J-functionals on a regular Banach family X(n, I ) by

K(t,z; X(n,I)) = inf{/QtX@(“’) n(w, f(w)dPw) : f€8(Q,A(X))

and m::/ﬂf(w)dP(w)}
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and
J(t,z; X(n,I)) = esssup {tX@(“’) n(w,z) : weQ and z € A(X) },

respectively. Here x, is the characteristic function for the set ©.

Remark 3. The K- and J-functionals for a family have been defined
somewhat differently by different authors, but we prefer this one because it
preserves the quasi-concavity as a function of t, similarly to the K-functional
on Banach couples.

Definition 2.12. For a fixed s > 1 and a fixed Borel subset © of 1,
we define the lower s-bounded Banach family X’;(n,I ) of a given regular
Banach family X(n, I) by Xy, I) == {Xg : w € Q }, where as vec-
tor spaces Xy, = A(X) for each w € Q with norms given by |lz{/,,, =
s X(Q\G)(W)J( 2x(a\0) () 1) ,z;X(n,I)). Similarly we define the upper -
bounded Banach family X s(n,I) of a given regular Banach family X (n, 1)
by X¢(n,I) :== {X2: w € Q and X isa Banach space}, where as vec-
tor spaces Xf, = E(X ) for every w € Q endowed with norms ||z|xs =
sx(ﬂ\@’)(w)K(s(l—zX(ﬂ\@)( w)) , I X(n7 I)).

To help us define distance between regular interpolation families we need
to characterize the category of regular interpolation families B whose objects
are all interpolation families subject to a predsmgned probability space P,

and whose morphisms are bounded maps T' : X (n,I) — Y(m J) such that
T|x, : X, = Y, with

1T, %7,

L = eSSSUP{HTquWYW) : X, € X(n,I) and Y, Ef/(m,J)}

is finite. We denote the subcategory of all regular s-bounded interpolation
families by B(s).

Definition 2.13. The distance function df(F G)(s) between two inter-

polation functors F' and G from the category B of reqular interpolation fam-
ilies to the category B of all Banach spaces is defined on the half line s > 1
by the value

df(F, G)(s) = sup{ |lI |l o seren %), aFer®) X e B(s) }.

Remark 4. Results similar to Proposition 2.7 and Theorem 2.8 are now
easy to prove for the distance function dy between two normalized interpo-

lation functors on B(s) with the obvious modifications.
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3. Maximal and minimal methods

Suppose that C is a full bubcategory of the category B and let H be
an interpolation functor from C to B. Then we recall that an interpolation
functor F from B to B is called a minimal eztension (or left Kan extension
or at times left adjoint, see [K-P, pp. 93-98]) for H denoted by Lan,, if
F(X) < Q(X) for every X € B and each inter polatlon functor G f10m B
to B satisfying H(A) = F(A) = G(A) for all A € C. The interpolation
functor F' is called a mazimal extension (or right Kan eztension or at times
right adjoint) for H denoted by Ran,  if the inclusion above is reversed.
(Equivalently F from B to B is called a minimal extension for H if for
every G from B to B and for each A € € such that H(A) F(A) = G(/T)
for all 4 € € and G(X) < F(X) forall X € B imply that G =
There is an analogous formulation for mazimal extensions.) Furthermore
when C consists of only one object, the couple 4 with morphisms which are
automorphisms of couple maps, the minimal extensions are called minimal
interpolation functors, while the maximal extensionsﬁare called mazimal in-
terpolation functors. We use the notations F.and F" to denote respectively
the minimal and maximal extensions to the whole category B of the inter-
polation functor F previously defined on the full subcategory with only one
object, the couple A.

In this case the minimal extension functor Fz on the Banach couple X is
the Banach space consisting of all z € £(X) for which

”man()ﬁ) = inf{ngNHSn”g(j;X»)I|anHA rr= n;&NSnan and a, € F(A)}

is finite. Similarly the maximal extension is the Banach space consisting of
all z € £(X) such that

”:EHF’{(X‘) = sup{ HS((E)“F(A’) : (Se L(X, E)) A (”S”L(X',g) =1)

A (S(z) € D(A)) }
is finite.

Suppose that F denotes a family of interpolation functors from C to B.
We also recall that F is said to be an interpolation method (or 1ne1ely method
if C = B) on C if for any | functors F, G and H in F and every Ae C, the
condition that A(G, H)(4) — F(G(A), (A)) < (G, H)(A) implies the
existence of an interpolation functor R in F such that F(G(A), H(A)) =
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R(A). Accordingly, the mazimal and the minimal methods are the fami-
lies of maximal interpolation functors and minimal interpolation functors,
respectively, each one of them satisfying the property of being a method.

We have the following description of distance between two minimal in-
terpolation functors and two maximal interpolation functors, respectively.

Theorem 3.1. Suppose that F, G, ® and ¥ are normalized interpolation
functors defined on a full subcategory consisting of a single object, the s-
bounded couple A, where s > 1.

(i) If A= F(A) = F (&) and B = G(A) = G (), then we have

d(F.,G)(s) = sup{max (HZH’;, uzuj ) : 0#a€ANB }

-, -, —,

(ii) Again if A = ®(A) = & (&) and B = U(A) = ¥ (A) instead, then
d((I)/T, \PJ)(S) = s 1p{max <||CLHA lalls ) :0#a€ANB }

lallz” llalla

Proof. (i) For a given € > 0, let X be an s-bounded couple and = € 5(X)
such that

HxHFA(g) Hwilcg(m
iy @00 e <max (R, e

Without loss of generality assume

”*'L’HF, X ”fI'HG~ X H'E“F_ X
nl&x( () il )> (XD

7 ’ & - X o
Hmncj(x) HZHFJ(,\) I G (%)

Since

Ha:lle(X) = illf{n);N”Snuﬁ(ﬁ,X)“annA x= ngJNS”an and a, € F(A)}

||a"l’LHA E Snan

=inf X || v g Se—— D=
m {nEN“ "L||£(A,X)“a’n“B “aﬂn”B neN

and ay, € F([f)}

lanlla
< : ANB} -z =
< sup{ loals . o€ 40 B} - ell i)

lalla llalls )
Ssup{ma.x< , = |t 0#a€ ANB ;-lzlls (%)

lallz™ llalla @5
we settle the proof of the first part of the theorem.
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To prove (ii) let s > 1 be fixed and let € > 0. Choose X in g(s) and let
., el i i
xz € Y(X) satisfy WJ—Z‘—) > (1 —€)-d(¥ 1,®A)(s). Since by Aronszajn-
v (%)
Gagliardo theorem every maximal interpolation functor is a Coorbit functor,

see [B-K, Theorem 2.3.17, pp. 153 |, so are both ®" and U”. Thus we have
Izl & 5, = p{ IT@ g : (T €LX, A) A (ITllgz, 5 =1)
N (Ta) € () |

1Tl N
_sup{ p{m , OsﬁyEZ(X)} I7(z)

(Tlege, 5= 1) A (@ € 200

AL el s
sup A 02T € ANB b,

Likewise, should we assume =—"—%1 > (1 —¢)- d(\I//T, @x)(s), then we

can similarly show that

oz, < s ([TAEE < 0# 70 €40 B ) ol

Thus part (ii) and hence Theorem 3.1 is proved. .

o (%)

We have the following description of distance between two minimal exten-
sion functors and two maximal extension functors, respectively.

Theorem 3.2. Let C be a full subcateqory of B whose objects are all
reqular couples. Let F:C — B and G : C — B be umformly regular (i. e.
A(f—f) is dense in both F(A) and G(A) for every A € C), normalized functors

on C. Suppose that (F(A),G(A)) is a non-trival and s-bounded couple for
each A € C. Then for each s > 1, we have

(i) d(Lan,,, Lan, )(s) = sup {d(FW, G,)s): WecC N B(s) };

(ii) d(Ran,,, Ran, )(s) = sup {d(FW, GW)(S) : W e CnB(s) }

Proof. The proof follows from Theorem 3.1.
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Given an intermediate space A of a Banach couple A = (Ay, 4;), we define
its dual A’ (in the sense of interpolation theory unlike the duality A* in the
sense of Banach), to be A’ = {a* € A(A)* : |la*||la = sup{|{a*.a)| : a €
A(A) and |alla < 1} < oo} (i.e. the subspace of A(A)* containing only
those functionals that are bounded for the norm of A). One can easily see
that A’ is a Banach space. Regarding both Ay and A, as intermediate space%
of A, we also define the dual Banach couple to be the couple A’ = (A! 0, AY)-
Moreover for an operator T € L(A, X), if we put its adjoint operator to be
T = (T|A(g> )”, then it is clear that T" € L(X!, A).

Definition 3.3. i) Let A be an interpolation space of the Banach couple
A. Then A is called a weak compliant Banach couple, if A is an interpolation
space of the couple A'.

ii) Let A be a weak compliant Banach couple. Then for any interpolation
functor F : A — B we define its dual mterpolatzon functor DF to be the max-
imal interpolation functor DFA such that DF(A') = DFA (A" = F(A)".

We have the following corollary to Theorem 3.1.

Corollary 3.4. Let a weak compliant Banach couple A be s-bounded and
let two normalized dual interpolation functors DF and DG of the regular
interpolation functors F:A~ BandG: Aw— B, respectively, be given.
Putting DF(A') = F(A) = A’ and DG(A") = G(AY = B', for each s > 1,

we have

d(DF, DG)(s) = sup{max (”“”A, lalls ) .0#ac ANB }

llallz”™ llalla

Proof. The proof is similar to the proof of Theorem 3.1 and is omitted. [

4. Relative distance

In this section we restrict the definition of our distance to some subcate-
gories C and C of the categories B and B, respectively. But first we introduce
the following terms:

Definition 4.1. For each fixed s > 1, the lower s-closure lc(@), the upper
s-closure uc(C) and the s-closure sc(C) of a subcategory C, and the lower
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o~ —~

s-closure l~c(C~), the upper s-closure uc(C)) and the s-closure sc(C) of a sub-
category C are defined by the identities

1c(C) ={X,eB : XeC}UC,
uc(C) ={X*eB : X eCyuc,

sc(C) = uc(le(C)) U le(ue()),

1e(C)={X,eB: Xe C}uU C,

ue(C) ={X*eB : XecCiuc,

s¢(C) = uc(le(C)) U le(uc(C)),
respectively A subcategory C is said to be s-closed if C = (5), i.e. if
Xel imply that both X and X, belong to C. Similarly C is said to be
s-closed if C = (C).

We can now make the following definitions.

Definition 4.2. The lower relative distance function, the upper relative
distance function and the relative distance function between two normal-
ized interpolation functors F' and G, denoted accordingly by dlc(c”)(F’ G)(s),

duc(c) (F, G)(s) and d, (€ )(F, G)(s), on the half line s > 1 are defined by the
values:

dN’(F G)(s) = bup{“’)’“c(z(pg(A)’A(FG)(A')) : Ae ﬂg(s) }1

where N varies over the set {lc(C), uc(C), sc c(O)}.

Proposition 4.3. Using the above notation, for each s > 1, we have the
following inequalities:

max{dlc(g)(F, G)(s), duc(c")(Fv G)(s)} < dsc(g)(F, G)(s) < d(F, G)(s).
Proof. The easy proof is omitted. 0

Proposition 4.4. Let F and G be two normalized interpolation func-
tors. Then, for each s > 1,

4g(P. G)(s) = sup{ maax

lallm ) “““G@) : a € A(F,G)(4)\ {0}

Ha'Hg(A’)? ”a“F(A')

and A e NnB(s) },

- -

where N is varying over the set {B, 1c(C), uc(C), sc(C)} and C is a full
subcategory of B.
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Proof. The result follows by repeating the same line of argument as in the
proof of Proposition 2.7 and is omitted. W]

Remark 5. Once again, results similar to Proposition 2.7 and Theorem
2.8 are now easy to prove for the relative distance functions between two

normalized interpolation functors on le(C), uc(C) and sc(C), respectively,
with the obvious modifications.

5. Relatively easy examples of a distance function between
two functors in the classical K, ,-method

In this section we compute the exact distance functions for some classical
functors of the real K4 ,)-method by giving both upper and lower estimates.
For simplicity in presenting the computation we choose to proceed as follows.

Given s > 1, let K denote the Banach space consisting of all continuous
functions defined on the closed interval [1, s] and endowed with the supre-
mum norm. We let Ky be the same linear space but equipped with the

norm || f||lx, = Hﬁ}l” K, and consider the Banach couple K = (Ky, Ky). For
f € A(K), we have

£(0)
)

1l acizy = max([lfllxor [1fll,) = max( sup |f(£)], sup
L<t<s 1<i<s

From the inequalities

sup |f(t)] <infs sup fo(t) + sup (IfF(@)]— fo(®)) : |fI=Fot fu

1<t<s 1<i<s Let<s

and min(fo(t), f1(¢)) 2 0

|£ ()] = fo(?)

; S fl=fo+ f1

<infq sup fo(t) + s sup
1<i<s 1<i<s

and min(fo(2), f1(£)) > 0

< sllfllyczy
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and

sup sup 188 4 gup LISl g
L<t<s 1<i<s L<t<s

IO {50 (O] = folt

and min(fo(t), f1(8)) > o}

)} —
ginf{s sup fo(t) + sup M A
1<i<s L<i<s t

and min(fo(¢), f1(t)) > 0}
< Sllf“g([(')z
we conclude that K is an s-bounded Banach couple.

We compute the following distances.

Example 5.1. The distance function between Kig,00) and K(g, ) satisfies
the following equality:
d(K(g,00) » K(g,00))(5) = s!?L.
It should be noted that we can find non-decreasing concave functions
f € X(K) which do not coincide with the restictions of their K-functionals

on the interval [, s].
Verification. By the definition of the K(g o)-norm (see [B-L] or [B-K]),

for any f € K, oo)(ﬁ), since

“f“]\"(g,oo) = Ssup tmel((t:f;lz)v
L<i<s

5=

we have

1 llk0,0y < 877 sup t7PK (2, f; ) = s £ .-
L<i<s

Similarly we easily see that
155,000 < 8PNl o,
and by Proposition 2.7 and Theorem 3.1(ii) we conclude that
d(K(G,oo) ) K(ﬂ.oo))('s) < slo~m7

giving the upper bound. To finish the verification we must be able to show
that sl is also a lower bound. To that end we consider the function
m(t) = min(1, st) defined on the interval [1, 5] which is clearly in B(K).

We see then that
(“TU”I((E’OO) ”Tn”[\'(g‘oo) )
max

“ln?'”1<(9Y o) ’ “Tn”K’(ﬁ,w)
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gives a lower bound, and since ||m|lke ) = s? and {mllxy .
conclude that

MK, m
de(ll ”I\(ﬂ' =) | HK(G’“’)) = max(sﬁ_e, 39“ﬁ> = gl?=Bl,
Hm'“K(e, o) Hm”K(ﬁ,oo)

thus verifying that the lower bound and the upper bound coincide. Hence
we have

A(K(p.00) » K000 () = 5"\
a
Example 5.2. The distance function between K, 1 and Ky, ) satisfies
the following equality:
d(K(g’l) s K(G,oo))(s) =1 4+ 29(1 —_ 9) lOgS.

Verification. Let f € Kg,1) (I?) N K(g,oo)(f{'). Using Remark 2 and the
definition of a K-functional we can easily obtain the following three inequal-

ities
1
s dt SKE
—8 y 9 59

S
t -
/. K@) D < (logs) sup UK (L f5K),
L t %Stfs

[’s} —8
/ tﬂeK(t,f)El; — S I(e(‘g)f)

Consequently, since the normalized K g 1)-norm by definition is given by

®© —6 d’f‘
iy =00 =0) [ 1K G0 T
it follows that

1l = 01— ) / K (¢, f)

dt
0 1

1

=6(1—6) (/0 K, f) 5? + / t"”K(zt,f)%1E

+ /oot”eK(t, ) ?)

(9 + 20(1 —f)logs + (1——9)> sup 0K (¢, f; K)

Llogcs
S<t<

(1 T 20(1—0) 1ogs) T,
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On the other hand, for each fixed t > 0, we have
o0
0Kt f1 ) = 0(1 - 0) / o min(1, K1, f) ar
Jo r
o0
<6(1-0) / vk (r, f) I
J0 T

The last inequality follows from the fact that min(1, 7)K (¢, f) < K(r, f) for
all quasi concave functions (in particular, for the K-functional see [B-L, p.
38] or [B-K, p. 290]). It follows that

”f”I‘:(ﬁ,oo) - SUP t—-gK(tv f’ I-(‘)
L<i<s

sup (9(1 —0) /oo r~% min(1, g)K(t,f) %?)
0

L<t<s

O A d
< 61— 9)/( 7'_01:((73 f) —7'7: = ”f“h'(e,l)

)

and thus
Hf“K(H,oc) < ”fHK(g,U‘
Hence by Proposition 2.7 and Theorem 3.1(ii), we conclude that

d(Kg,1)s Kio,ee))(s) < 1 + 26(1 —0)logs,

giving the required upper bound. To show that 1 + 26(1 — 6) log s is also a
lower bound we consider the function g(t) = Y defined on the interval [, s]

which is clearly in (). Since by definition

max ( “g”K(e, ) HgHK((), 1) )

”g”K(e, 1) ’ ”gHK((,, )

gives a lower bound, we see that lollxe,, =1 + 20(1 — 0)logs and
91159, 00y = 1, and we conclude that

) ( Hg”l&’(g’l) ”g”K(e,oo)
d 1
]]g“K(ng) ”g“I\/((-}, 1)

) =1+ 20(1—-6)logs,

thus verifying that the lower bound and the upper bound coincide. Hence

d(K(g’l) R K(()goo))(s) =1 + 29(1 —-9) lOgS.
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6. Pseudo-metric

We shall conclude by indicating how our distance function can be used to
define a (pseudo-) metric on the set of interpolation functors.

Proposition 6.1. The set F of all interpolation functors becomes a pseudo-
metric space if we define (for interpolation functors F.G)

170 = [ HEUED

s
Furthermore we have §(F,G) <1 for all F and G in F.

Proof. Since we obviously have 6(F, F) = 0 and §(F,G) =0 (G, F) we shall
only prove the triangle inequality. We observe therefore that it follows from
Theorem 2.8 that for every s > 1 we have log d(F, H)(s) < logd(F,G)(s) +
log d(G, H)(s) and integrating this the triangle inequality for ¢ follows. It
also follows from Theorem 2.8 that d(F,G)(s) < s and therefore

> logs

O

Problem. It would be interesting to know if the topology on F induced
by this metric is the compact topology referred to in the Introduction.
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