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Some dual Tauberian embeddings

OLAV NYGAARD

ABsTrACT. We show that if the famous construction of Davis, Figiel,
Johnson and Pelczyniski [1] is worked out on a weak-star compact set in
a dual Banach space, then the resulting Banach space is a dual space.
Next, we apply this result to show that either a set is weak-star thick or it
is contained in the operator range of a weak-star continuous Tauberian
cmbedding. This result improves and, in some sense, completes the
theory of thin sets and surjectivity described in [8].

1. Introduction

It was a longstanding problem whether every weakly compact operator
T:X — Y from a Banach space X into a Banach space Y factors through
a reflexive Banach space. More precisely, the problem was to find a reflexive
space Z and (weakly compact) operators S1: X — Z, So: Z — Y such that
T = SQSl.

Suppose K is a closed, bounded and symmetric subset of a Banach space.
The Banach disc on K, BD(K), is the normed linear space span K with K
as the unit ball. It is well-known and easy to show that BD(K) is complete.
A natural way of solving the factorization problem is to build a reflexive
Banach space Z "inside” Y and put T = j o T, where T is T viewed as an
operator into Z and j is the embedding of Z into Y.

Note that the Banach disc with the unit ball TBx does not solve the
factorization problem. This is easily seen by taking X non-reflexive and T
weakly compact and 1-1. Then, by construction and by a classical lemma
due to Banach, T is onto the Banach disc BD(T By). Hence, by the Open
Mapping Theorem, BD(T By) is isomorphic to the non-reflexive space X.

In the important paper [1], Davis, Figiel, Johnson and Pelczyniski solved
the factorization problem by introducing a general technique (below called
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the DFJP-technique) to transform a given relatively weakly compact, convex
and symmetric set K in a Banach space X into a weakly compact, convex
and symmetric set K C X such that’ BD(K) is reflexive. Many additional
properties come along for free: the most basic of them are listed below.
Recall that an operator T : Z — X is called Tauberian if T 4X) C Z,
that is, a Tauberian operator is "opposite” to a weakly compact operator.
The theory of Tauberian operators is summarized very clearly in (3], while

the use of Tauberian operators in the DFJP-technique was investigated in
[6].

Theorem 1.1. Let K be a convex, symmetric and bounded subset of a
Banach space X. Let K be the result after using the DFJP-technique on K.
Let Z = BD(K) and let j : Z — X be the natural embedding. Then

(a) K is closed in X, thus BD(K) is a complete normed space.

b) 4. i**. ... are all Tauberian embeddings, so 7%, 7***, ... all have norm-
5 s g5, J ]
dense ranges.

(c) K is weakly compact in X exactly when K is relatively weakly com-
pact in X.

(d) The weak topologies in X and Z coincide on K. hence by (a), Z is
reflexive exactly when K is relatively weakly compact.

The solution of the factorization problem now easily follows by taking
K = TBy. It is an important observation that the DFJP-technique uses no
results beyond a first year graduate course in functional analysis. The DFJP-
technique was re-examined in [5]; the main conclusions can be summarized
as follows:

Theorem 1.2. Let the assumptions be as in the theorem above but now
assume that K C Bx.

(a) The DFJP-technique can be adjusted so that K C K C Byx.
(b) jlx is a norm-norm homeomorphism.

(¢c) If K is respectively contained in a finite dimensional subspace, s
compact or separable, then j is respectively finite rank, compact or
separably valued.

The factorization of an operator T : X — Y can now be expressed as
T = joT, where ||j|| = 1 and ||T'|| = ||T||. Moreover j and T are finite rank,
compact, weakly compact or separably valued exactly when T has the same
property. In [5] it was also shown that, for weakly compact operators, there
is a factorization with the 1-1 operator first, that is T' = T o4. This is shown
by doing the adjusted DFJP-technique on T™* By~.
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We now address the following problem:

Suppose K is a weak-star compact, conver and symmetric set in o dual
Banach space. Which conclusions can be drawn in addition to the general
conclusions described above?

In [1, Lemma 1 (vi)] it is shown that K is weak-star compact in X*
whenever K is. We will see that BD(K) is a dual space.

2. DFJP-technique on a weak-star compact set

We start by repeating the main steps in the construction of K from K.
Let K C By. First, for every k € N and a > 1, let

By = agK + a_gBX

and note that the gauge (Mipkowski functional) on By, defines an equivalent
norm on X, say | - ||z- Let K be the set

2

o0
def
KE=qzeX ol = Y lalf) <1
k=1

The set K is by definition a countable intersection of X-closed sets and is
thus closed in X. Therefore Z = BD(K) is a Banach space. This is the
DFJP-construction except that Davis, Figiel, Johnson and Pelczynski used

a = 4. A simple calculation given in [5] shows that

},—(%SK C KCByxy where f(a)=

There is a unique a such that f(a) = 1. We choose this a for the future,
and thus obtain K C K C By. In [8] this relation between sets was further
investigated and a convexity argument was given to show that K is not
norming unless K is norming. Recall that a set A C X is called (J-)norming
(for X*) if, for some § > 0, conv (+A) D dBx.

It is immediate from the construction of K that Z = BD(R’ ) is isometri-
cally isomorphic to the "diagonal” subspace D = {d = (z,z,z,...) :z € X}
in the Banach space

S = i BD(By)
k=1

2

The coincidence of the relative weak topologies on K from Z and X can
be shown by considering K in D. We will now show that if K is a weak-
star compact subset of a dual space X*, then S is a dual space and D is a
weak-star closed subspace. Thus we will obtain the following result.
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Proposition 2.1. Suppose K is a weak-star compact, convex and sym-
metric subset of a space Y which is the dual of a Banach space X. Then

Z = BD(K) is the dual of a Banach space and the natural embedding oper-
ator j : Z =Y is weak-star continuous, that is, j is a dual operator.

Proof. Referring to the discussion above, we first show that S is a dual
space. Since By, is weak-star closed in X*, by a well-known result (see e.g.
[2, Fact 5.4]), the spaces BD(By,) are all dual spaces, say X}. Let X be a
pre-dual of X}. Then a standard argument shows that

0
- Z X k )
k=1

Q.
— *
= D_Xi
1) k=1 123 lo

which shows that S is the dual of a Banach space, and we know the form of
a pre-dual of S.

We now prove that D is weak-star closed. To this end, let (d,) C D be a
weak-star convergent net and suppose s is the limit. We know that s € S,
s0 we need to show that s € D. Write

d

do = (z},2),...) and s=(27,23,..).

*

S = iBD(Bk)
k=1

Every element in the pre-dual of S can be written (z1,22,...). The weak-star
convergence d, — s can thus be written

Y ah(w) = Y @i (@)
i=1 k=1

for all (z1,22,...) € (3 pey Xk)e,- In particular, the convergence must hold
for (z,0,0,...), (0,2,0,...),... which shows at once that

T (x) = =i (z)
for all z € X and every 1 =1,2,3,.... Thus 2] =235 = ... and so s € D.

It remains to verify that j is an adjoint operator. Let ¢ : Z — D be the
isometry which identifies Z and D. We have just shown that ¢ is weak-star
continuous. Let m be the projection onto the first coordinate in S. Since
weak-star convergence in S implies coordinatewise convergence, m is weak-
star continuous. Finally, let ¢ be the isomorphism X7 — X*. Then also ¢ is
weak-star continuous. Since j =i o wo ¢, j is weak-star continuous. O

3. An application to the theory of thin and thick sets

The theory of thick and thin sets in Banach spaces was introduced by M.1I.
Kadets and V.P. Fonf in [4]. They studied conditions to be put on a bounded
set A in a Banach space X such that any operator range containing A is X.
Say that such a set A has the surjectivity property. Here "operator range”
means the range of some linear, continuous operator from some Banach
space Y. The difficulty is of course that operators may very well have dense
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ranges without being onto. Easy examples show that we may even have
conv (A) = By and still A does not have the surjectivity property (take, for
instance, A = (£e;) C ¢; and let T' be some compact operator onto A).

The main result in [4] is that A has the surjectivity property if and only if
A can not be written as an increasing, countable union of non-norming sets.
Such a set is called thick. In [7] is was shown that (still on bounded sets)
thickness is equivalent to the following property: every family in X* which
is pointwise bounded on A is uniformly bounded. This property is called the
boundedness property.

In [8] the assumption that A is bounded was removed. Thus it was shown
that a set is thick if and only if it has the surjectivity property if and only
if it has the boundedness property. By classical results of Banach it follows
that every set of the second Baire-category is thick.

It was also sought for a similar result if A is a subset of the dual X*
of a Banach space X and it was shown that the corresponding thickness
condition is weak-star thickness. That is, the set is weak-star thick if and
only if it is not a countable increasing union of sets which are non-norming
for the pre-dual X.

In [8] is was further investigated how restrictive conditions one can put on
the operator whose range is containing A, when A is thin. Using the DFJP-
technique it was shown that if A is thin, then there is a Tauberian embedding
onto A but not onto X. We were not able to show the corresponding result
for weak-star thin sets, since we did not have Proposition 2.1. Now we can
obtain a result to complete the theory in a satisfactory way. In the following
theorem, note that interesting cases are when the set A is norming. We give
a complete proof even though part (a) of the theorem was already proved in

(8]-
Theorem 3.1. Let X be a real Banach space.

(a) Suppose A is a thin subset of X. Then there exist a Banach space
Y and a Tauberian embedding T : Y — X such that TY D A, but T
15 not onto.

(b) Suppose A is a weak-star thin subset of X*. Then there ezist a dual
Banach space Y* and a dual Tauberian embedding T* : Y* — X*
such that T*Y™ D A, but T* is not onto.

Proof. Assume without loss of generality that A is convex and symmetric.

First assume in (a) that 4 is non-norming and bounded. Then, since A
is not norming unless A is, the operator range formed by BD(fl) and the
natural embedding 5 : BD(A) — X does the trick. Next, suppose A is
norming, but thin. We will find a set A such that A is bounded and not
norming but has the same linear span as A, and (a) will be proved.
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Let (A) e an increasing family of non-norming subsets of A such that
A = UR,A;. Since UR A; = UR A;Ni- Bx and A; N1 - By is non-
normmg, we may assume each A; to be contained in 7 - Bx. Put Cy = A
and C; = A; \ Ai—1. Define

R < Ci
A =tonv (+ U zg—)
et

Then A is closed, convex, symmetric and obviously has the same span as A.
We now show that A is non-norming for X*. Since A is closed, convex and
symmetric, we only have to show that A contains no ball at the origin. We
thus show that for every € > 0, there is an f € Sx» such that sup f (A) <e.
To do this, let € > 0 and take j such that 1/j < e. Since A; is not a norming
set, there is a functional f € Sx- such that supgey; |f(z)| < e. By the

definition of 4,

sup| ()| = sup = sup [£(a)] (1)
.LEA

We devide the process of finding this supremum into two parts: ¢ < j or
i>g. Ifi<j, then

1 . 1
sup{ = sup |f(z)] p = max { = sup |f(z } < sup |f < €.
! zQ‘TEQ_I (@)l = max ZZ:UECi‘ )| su ]1 ()]

If i > j, then, since C; Ci- By,

1 1 1 1
bup{—suplf(:cﬂ —sup{———sup]f( |}<bup{zz iy <= <e.

z€C i>j z€C, J

By (1), we are done.

We now prove (b). If A is not weak-star norming, A is of course not
norming and, by Proposition 2.1, the proof is done by taking j : BD(A) =
X*. The problem is when A is weak-star norming. Hovever, the argument
used in (a) to reduce a thin, norming set to a non-norming set also works to
reduce a weak-star thin, weak-star norming set to a non-weak-star norming
one. The proof is complete. 0

Acknowledgement. I am indebted to the referee for pointing out an
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