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Graph operations and categorical constructions

MATI KiLP AND ULRICH KNAUER

ABSTRACT. Most of the usual binary graph operations from disjoint
union up to the complete product are interpreted categorically, using
the categories Gra, CGra and EGra. This way it is proved that these
categories have coproducts, products and tensor products. As a conse-
quence it turns out that the respective categories with strong morphisms
SGra and SEGra do not admit any of these categorial constructions.
It is shown that the functors derived from the respective tensor products
and products in Gra, CGra and EGra have right adjoints.

Here we revisit the topic of graph operations (cf., for example, [5], [9],
[13]) and their interpretations in graph categories (cf. [2], [9] and others).
In considering three different types of morphisms for graphs we obtain three
different categories which admit interpretations of the most common graph
operations as coproducts, tensor products and products in the respective
categories. For the latter two we also consider the associated functors and
their right adjoints. Part of the results is folklore or can be deduced from [10].
But we will be very elementary and give all constructions and prototypes of
the proofs explicitly.

By Set we denote the category of sets with mappings and their CcOmpOosi-
tion as morphisms.

1. Categories of graphs

We consider here finite undirected graphs G without multiple edges and
without loops. The vertex set of G will be denoted by V(G) or just G, the
edge set by E(G). If z,y € G are adjacent, we denote the edge connecting x
and y by {z,y} and write {z,y} € E(G).

Let G and H be graphs, z,y € G. A mapping f : V(G) — V(H) is
called a graph homomorphism if {x,y} € E(G) implies { f(z), f(y)} € E(H).
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A bijective graph homomorphism f such that f ~1 is also a graph homomor-
phism is called a graph isomorphism. A graph homomorphism f is called
a strong homomorphism if {f(z), f(y)} € E(H) implies {z,y} € E(G). A
mapping f : V(G) — V(H) is called a comorphism if { f(z), f(y)} € E(H)
implies {z,y} € E(G). It is clear that comomorphisms which are graph
homomorphisms are exactly the strong homomorphisms.

From theoretical computer science we take another concept of morphisms
which seems especially useful for data compression (compare, for example,
A. Buldas’ dissertation [1]). Namely, we call a mapping f : V(G) — V(H) a
(strong) egamorphism if for z,y € G one has f(z) = f(y) or {z,y} € E(G)
implies {f(z), /(y)} € BE(H) (and {f(2),f(y)} € E(H) implies {z.y} €
E(G)).

As a common term for these different classes of structure preserving
and/or reflecting mappings we use morphism. It is easy to check that the
classes of all 5 types of morphisms are closed with respect to composition.
This gives the following 5 categories of graphs:

Gra graphs with graph homomorphisms,
SGra  graphs with strong homomorphisms [3],
CGra graphs with comorphisms [6].

EGra graphs with egamorphisms [7],

SEGra graphs with strong egamorphisms.

If G and H are two graphs, the set of all morphisms from G into H in the
respective category is denoted by Gra(G, H), SGra(G. H) etc.

We give some examples of the different types of morphisms, encircled
vertices are mapped onto the same image, arrows describe the mapping:

~ strong homomorphism
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~ (not strong) egamorphism, not a graph homomorphism

2. Coproducts, products and tensor products

Coproducts. Recall that the coproduct of objects A; and A in a cat-
egory C is a pair ((u1,usz), A1 ][] A2) where A; [] As is an object of C and
u; + Ai — Ar [ As, i € {1,2}, are morphisms of C such that for any object
B in C and any morphisms f; : A; — B, i = 1,2, in C there exists exactly
one morphism f : A; [[As — B in C so that fu; = f;, i € {1,2}.

If X; and X> are objects in Set then the disjoint unionX; U X» together
with the embeddings u; : X; — X1 U X, ¢ € {1,2}, is the coproduct of
X; and X, in Set. This can be illustrated by the following commutative
diagram

X1

encircled

Xo

Recall now two compositions of graphs G and G2 such that the resulting
graphs have the union V(G1) U V(G2) as vertex sets.

The disjoint union G1 U Gg of G1 and Gy: E(G1 U G3) = E(G1)UE(G2).
Other names: union, sum.

The join G + G2 of G1 and Ga:
E(G1 -+ Gz) = E(Gl) U E(Gg) U {{:1:1,:1}2} l T1 € V(Gl), To € V(Gl)}.

fG)= e——= and Go = then
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° °
° /

G+ Gy
@
° \o

Gi1UGs:

Proposition 2.1. (a) The disjoint union Gy U Go together with the em-
beddings u; : G; — G1 U Ga, i € {1,2}, is the coproduct of G1 and Ga in
Gra.

(b) The disjoint union Gy U Ga together with the embeddings u; : Gy —
G1 U Gs, i € {1,2}, is the coproduct of G1 and G2 in EGra.

(c) The join Gy + G together with the embeddings u; : G; — Gy + G,
i € {1,2}, is the coproduct of Gy and Gs in CGra.

Proof. Define f required in the definition of the coproduct by f(z) = fi(z)
if x € V(G;), 1 € {1,2}, and check that f and wu;, ¢ € {1,2}, belong to the
corresponding category. O

Corollary 2.2 ([4]). In SGra and in SEGra there do not exist coprod-
ucts.

Proof. We present the proof for SGra.

Suppose that ((u},ub), H) is a coproduct of G and G5 in SGra. Since
the embeddings u; : G; — G1 U G2 and w; : G; — G1 + Ga, i € {1,2},
are strong homomorphisms, there exist strong homomorphisms f : H —
G1 UGz and g : H — Gy + G5 such that the following diagram is commu-
tative

G1 UG,
U1 f Us
Gl g% g,
U1 g U2
G+ G,

Take 1 € Gy and z3 € G3. Then, since {u;(z1),u2(z2)} € E(Gy + G2)
and g is a comorphism, one has that {u}(z1),ub(z2)} € E(H). Since f is
a graph homomorphism, the latter implies {u1(z1),u2(z2)} € E(G1 U Ga),
contradicting the definition of the disjoint union. g

Note that the graphtheoretical edge sum can be described as an amalga-
mated coproduct, i.e., as a pushout.
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Products. Recall that the product of objects A; and As in a category
C is a pair (A; [ Az, (m1,72)) where A; []As is an object of C and i
A1 [T A2 — A;, i € {1,2}, are morphisms of C such that for any object B
in C and any morphisms f; : B — A;, i € {1,2}, in C there exists exactly
one morphism f: B — A; [T A in C so that m;f = f;, 5 € {1,2}.

If X; and Xy are objects in Set then the cartesian product X; x Xo
together with the projections p; : X3 x Xy — X;, i € {1, 2}, is the product
of X1 and X, in Set. This can be illustrated by the following commutative
diagram

X1

Xo

Now we recall some compositions of graphs GGy and Ga such that the
resulting graphs have the cartesian product V(Gy) x V(G2) as vertex sets.

The cross product Gy X Gy of Gy and Go:

{(z,1),(2',4")} € E(Gy x Ga) if and only if {z,2'} € E(G1) and {i,'} €
E(G3).

Other names: categorical product, conjunction, tensor product (a mis-
leading name in view of Proposition 2.3).

The boz-cross product G1 ® Gy of Gy and Gia:
{(z,9), («,7)} € B(G1 ® Ga) if z =24 and {i, i'} € B(G,),
or {z,2'} € E(Gy) and i = ¢/,
or {z,z'} € E(Gy) and {i,i'} € E(G,).
The disjunction G1 V Gg of G and Go:
{(z,1),(2',7)} € E(G1 V Gy) if and only if {z,2'} € E(G1) or {i,4'} € E(G»).

fGi= e——= and Go = then

G1><G2: >O< Glegl
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Proposition 2.3. (a) The cross product Gy x G together with the pro-
jections pi : V(G1) x V(G2) — V(Gy), i € {1,2}, is the product of Gy and
G4 in Gra.

(b) The boz-cross product Gh Go together with the projections
p;: G1 ® Ga — Gi, 1 € {1,2}, is the product of G1 and G2 in EGra.

(c) The disjunction G,V Go together with the projections p; : G1V Go —
G;, i € {1,2}, is the product of Gy and G in CGra.

Proof. In all three cases we define f required in the definition of the prod-
uct using the morphisms f; : H — G; by f(z) = (fi(z), fo(2)) forz € V(H)
and check that f and p;, i € {1,2}, belong to the corresponding category.
We demonstrate this in the case of CGra.

If {p1((z1,22)),p1((z1,25))} € E(Gy), ie., {z1,2}} € E(G1), then
{(z1,2), (21, zb)} € E(G1V G2) by the definition of E(Gy V Ga). Hence p1
belongs to CGra. Similarly, p2 belongs to CGra.

If for f : H — G1V G corresponding to morphisms fi + H —
Gi, i = 1,2, one has {f(y),f(y')} € E(GV Gy) for y,y € H, Le,
{(A®), f2(9))> (1), f2()) } € E(G1V Ga), then either { f1(¥), f1(¥)} €
E(G1) or {fa(y), f2(y")} € E(G2), which both imply {y,y'} € E(H) since
f1, fo belong to CGra. Thus, f belongs to CGra. O

By an argument similar to the proof of Corollary 2.2 one obtains the
following

Corollary 2.4. In SGra and SEGgra products do not exist in general.
O

Tensor products. Let X1, Xo and Y be objects of a concrete category
C. A mapping € : X1 x X — Y in Set such that é(z1, ) : X — Y
and &( ,z2) 1 X1 — Y for every z1 € X1, 22 € X5, belong to C is called
a tensorial mapping. An object T € C together with a tensorial mapping
T Xy xXo —Tis called the tensor product of X1 and X2 in C if for
every Y € C and every tensorial mapping & : X1 X X2 — Y there exists a
unique tensor induced morphism £2 : T — Y in C such that £07 = €.

This can be illustrated by the following commutative diagram

5@
Y T

X1XX2.

Note that in this diagram only the upper line is in C, the rest belongs tc
Set.
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Now we consider two more compositions of graphs Gy and G5 such that
the resulting graphs have the cartesian product V(G1) x V(G3) as vertex
sets.

The boz product G110 G5 of G and Gs:

{(z,9).(a',7)} € E(G1OG,) if and only if x = 2’ and {i,i'} € B(Gz), or
{z,2'} € E(G1) and ¢ = 7',

Other names: product, cartesian product, cartesian sum (a misleading
name in view of Proposition 3.1).

HGi= oo and G2 = then

GlmGgi

The complete product Gy * Ga of Gy and Go:

{(a:,z'), (3:’,7)’)} € BE(Gy x Ga) if {z,2'} € E(Gy) and i =7,
or =1 and {i,7} € E(G9),
or z#x' andi#q.

Other name: join product.

G = ¢ b and Go = L————g 3 then

al a2 a3

o

Gl*th
bl b2 b3

Theorem 2.5. (a) The box product G110 Gy together with the mapping
7 =idy(g)xv(ay) : V(G1) x V(G2) — G101 Gy is the tensor product of G
and G2 in Gra.

(b) The box product Gy Gy together with the mapping T = dy(c,)xv(G.) *
V(G1) x V(G2) — G1 0G4, is the tensor product of G and G2 in EGra.

(c) The complete product G1 * Go together with the mapping T =
idv(ayxvias) @ V(G1) x V(Ge) — Gy * Gy is the tensor product of Gy
and Go in CGra.

Proof. (a): It is clear that 7 is tensorial. For any graph H and any
tensorial mapping £ : V(G1) x V(G2) — H it is obvious that the morphism
€9 . G10Gy — H required in the definition of the tensor is given by

€8 ((21.22)) = £ ((w1,22)).
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If {(.Ll,.Lz),(iL’l,ilﬁlz)} € E(G10Gy), then {z1,a1} € E(G1) and 22 = zh,
say. But then, {£(z1,22).£(2}, 2)} € E(H), since £ is tensorial. This means
that ¢® € Gra(G10Gs, H).

(b): Analogous to (a).

(¢): I {7((w1,32)), T((2}.22)) } € E(G1 * Ga),lie, {(m1,22), (2], 72) } €
E(G:1 * Gg), then it follows from the definition of the complete product
that {z1,21} € E(G1). Thus, 7( ,z2) belongs to CGra. Similarly, 7(z;, )
belongs to CGra. Hence 7 is tensorial.

It is clear that €8 = ¢ for any tensorial mapping £ : V(G1)xV (G2) — H,
H € CGra.

Let {§®(($1,{E2)),f® ((37,13 a’,Q))} € E(H)7 Le., {6((rlv :1}2)),5((.’1,'[1, l‘f‘l))} €
E(H). If z; = ) then {z3,25} € E(G2) since £(zy, ) is tensorial, or if
zo = zh then {z1,2]} € E(G1) since &( , x2) is tensorial. Thus in these cases
{(z1,22), (z},75)} € BE(Gy * Ga) by the definition of G1 * Go. Finally, if
71 # ) and zp # 2%, then {(z1,22), (z7,25)} € E(Gy * Ga) again by the
definition of Gy * Ga. O

By an argument similar to the proof of Corollary 2.2 one obtains the

following

Corollary 2.6. In SGra and SEgra tensor products do not exist in
general. ’

It is a straightforward observation that graph products and tensor prod-
ucts give covariant functors. For example, the box product defines for
G € Gra the functor

GO-: Gra — Gra
H, — G O H
(zan)
lga — GUyp:= j' I
(zoplyn))
Hs — G O H»

3. Tensor functors

It is known from other categories that tensor functors are left adjoint to
certain Hom-functors (cf. for example [12]).

We define three graph operations which give functors right adjoint to
the tensor functors (i.e., functors defined by tensor products in categories
Gra, EGra and CGra). Although these constructions are different we
use a common name “diamond product” for all of them and distinguish
them adding words showing for which graph category they generate the
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right adjoint to the tensor functor. The diamond product in Gra has been
investigated in [11].

Construction 3.1. (a) The diamond product G & H of two graphs G
and H in Gra is defined by

V(G ¢ H) = Gra(G, H), the set of graph homomorphisms from G to H,
E(G o H) = {{a, B} | {a(z), B(z)} €E(H) for all z € G}.
(b) The diamond product G & H of two graphs G and H in EGra is
defined by

Finally, if V(G ¢ H) = EGra(G, H), the set of egamorphisms from G to H,

in by the E(G 6 H) = {{a,/}} | {o(), B(z)} € E(H) for all € G}.
tains the ‘ (c) The diamond product G & H of two graphs G and H in CGra is
' defined by
ezxist in
V(G ¢ H) = CGra(G, H), the set of comorphisms from G to H,
“or prod- | E(G 6 H) = {{a, A} | 3z € G such that {a(z), A(z)} eE(H)} .
lefines for ’

For G = e— and H =e—— weget GOH
a p ¢ 1 2

in Gra: in EGra: in CGra:

122 212

121 211

111e—-e222

9
121 211 112e——e221]

Here the vertex ijk denotes the morphism taking « to %, b to j and ¢ to k,
ni, k€ {1,2}.

The diamond products define covariant functors in the respective cate-

erate the  gories. For example, for Gra one has:




52 MATI KILP AND ULRICH KNAUER

Go—-: Gra —> Gra
H; b G & Hy
«
@ — Ge(p::: l I
pa
H2 | S G e HQ.

Recall the definition of a natural transformation of functors and of the
related freeness from [8] or [12] or any other book on categories and functors.
Both definitions are formulated explicitly in the proof of the first part of the

following theorem.

Theorem 3.2. (a) The box functor GO~ is left adjoint to the diamond
functor G & — in Gra,

(GO-)4(Go —) .

(b) The box functor GLI— is left adjoint to the diamond functor G& -
in EGra,
(GO-)4(GEo-) .
(¢) The complete functor G * — is left adjoint to the diamond functor
G 4 — in CGra,
(G* —=)4(Go—) .
Proof. (a): We have to show that
(1) there exists a natural transformation
0 :ldgral—) — (GO —NGO-)=G ¢ (GUO-)
where Idgpa(—) denotes the identity functor on Gra and
(2) for every A € Gra the pair (94,GOA) is (G & —)-free over A.

Proof of (1): 1. Consider the following rectangle which contains the defi

nition of
©4(a) for A € Gra and a € A:
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G o (GOA)

G— GOA
€ — (2, a)

a > Oaa): {

G & (GOyp)

B G 6 (GOB)
Op

This diagram is commutative for any morphism ¢ : A — B in Gra as
the following computation for all « € A and all z € G shows:

(G ¢ (GO¢)(O4(a) @) = (G (ide O9))(O4(a))(z)
((idg Op) 0B a(a))(z)
(ide D) (O a(a)(x)) = (idg Tp)(z, a)
(@, ¢(a)) = (O5(p(a)))(z) .
2. Since
{04(a)(z),04(a)(a")} = {(2,a),(z',a)} € E(GOA),
for {z,2'} € E(G) one has ©4(a) € G & (GO A) = Gra(G,GOA).
If {a,a'} € E(A) then for all z € G we get
{0.4(a)(@). 04(a)(®)} = {(2.a), (5,0)} € BGTIA)
by the definition of GO A and thus
{@A((L),@A(al)} € E(G & (GDA)) .

Thus © 4 belongs to Gra and so we have that © is a natural transformation.

Proofof (2): 1. Take A € Gra. To show that (0.4, GO A) is (G & —)-free
over A, for every B € Gra and every pu: A — G & B in Gra define

s the defi-
, GOA — B
(z,a) = p(a)(z).

Then the following triangle is commutative
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©4
A Gé(GOA)
g Goyu
GéB .

Indeed, for a € A and z € G we have
(G % p*)(©a(@) (@) = (u*00ala)(z)=p*o((04(a))(z))
= (@)= pla)(z) .

2. Assume {(z,a),(z',a'} € E(GOA). If {z,2'} € E(G) and a = o
then {y*((z,a)), p*((2',a))} = {p(a)(z), pla)(2")} € E(B) since p(a) €
Gra(G, B). If {a,a'} € E(A) and = = o' then {u*((2,a)), p*((z.a))} =
{;L(a)(zv),u(a’)(w)} € E(B) since {u(a),p(a")} € E(G ¢ B). Thus pu* €
Gra(GOA, B). So we have proved that the pair (©4,GUOA) is (G 6 —)-
free over A.

(b): Analogous to (a).

(c): We follow the scheme of the proof of (a).

(1): 1. The definition of the mapping ©4 : A — (G & —)(G * —) for
A € CGra and the proof of commutativity of the corresponding diagram
are similar to those of (a).

2. If {@A(a)(x),@_q(a)(a;')} = {(z,a), (z',a)} € E(GOA) then the def-
inition of the complete product implies {z,z’ } € E(G). Thus ©4(a) €
G ¢ (G * A)=CGra(G,G * A).

If {©.4(a),04(a")} € E(G & (G * A)), ie., there exists v € V(G) such
that {©4(a)(z),04(d)(2)} = {(z,0),(z,d)} € E(G * A), then the defini-
tion of the complete product implies {a,a’'} € E(G). Thus ©4 belongs to
CGra, and we have that © is a natural transformation.

(2): 1. The definition of the mapping p* : G ¥ A — B for p: A —
G 6 B in CGra and the proof of commutativity of the corresponding trian-
gle are similar to those of (a).

2. If {p* ((z. ), p*((z', ")) } = {ula)(z),(a’)(z"))} € E(B) thena = o
implies {z,2'} € E(G) since p(a) belongs to CGra, and z = z' implies
{a,d'} € E(A) since in this case {u(a),(d)} € E(G & B) and p belongs
to CGra. Thus in these cases {(z,a), (z',a')} € E(G * A) by the definition
of G % A. Finally, if z # ¢’ and a # o then {(z,a). (z',d')} € E(G * A)
again by the definition of G * A. Thus u* € CGra(G * A, B) and we have
that (©4,G * A) is (G & —)-free over A. O
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4. Right adjoints to product functors

In this section we present three more graph operations which give functors
right adjoint to the product functors (i.e., functors defined by products in
categories Gra, EGra and CGra). Again, although these constructions
are different we use a common name “power product” for all of them and
distinguish them by adding words showing for which graph category they
generate the right adjoint to the product functor.

The power product in Gra has been investigated in [11].

Construction 4.1. (a) The power product G | H of two graphs G and
H in Gra is defined by

V(G | H)=Map(G, H), the set of mappings from G to H ,
E(G H):{{a.ﬂ} | # B.{a(), Ba’)} € E(H) for all {z,5'} € B )} .
(b) The power product G | H of two graphs G and H in EGra is defined
by
V(G | H)=EGra(G, H),
E(G | ,H):.—{ {a, B} {e(z), B(2')} € B(H) for all {z,2"} € E(Q)
and {(z),B(x)} € E(H) for all z: € G} )
(¢) The power product G | H of two graphs G and H in CGra is defined
by

V(G | H)=CGra(G,H),
B(G | H)={{a.B} | Fo.0' € G {a(e), 6s")} € B(H), 2,4/} € BG) }.

For G = a*—-—-;) : and Hzl 2 we get G| H

in Gra: in EGra: in CGra:

212 121
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The power products define covariant functors in the respective categories
by a similar rule as diamond functors.

Theorem 4.2. (a) The cross functor G x — is left adjoint to the power
functor G | — in Gra,
(Gx=)4(Gl-).
(b) The box-cross functor G B — is left adjoint to the power functor G | —
in EGra,
(GO-)4(GL-).
(¢) The disjunction functor GV — is left adjoint to the power functor
G | — in CGra,
(Gv-)4(G1-).

Proof. The proof of the cases (a) and (b) follows the scheme of the proof
of (a) of Theorem 3.2. We present the proof of (c).

(1): 1. The definition of the mapping ©4 : A — (G | =)(G' V —) for
A € CGra and the proof of commutativity of the corresponding diagram
are similar to those of (a) of Theorem 3.2.

It {@A(a)(w).@A(a)(ﬂ;’)} = {(z,a),(z'.a)} € E(GV A) then the
definition of the disjunction implies {a;,:c’ } € E(G). Thus Ou4(a) €
Gl(GV A) = CGra(G, GV A).

If {@A a } € F(G LGV A)ﬁ i.e., there exist 2,2’ € V(G) such
that {OA(a) ), al@) (@)} = {(z,0),(¢).d")} € E(GV A) but {z,2'} &

E(G), then the definition of the (llS]lln(‘tl()ll implies {a a } € E(G). Thus
© 4 belongs to CGra, and we have that © is a natural transformation.

(2): 1. The definition of the mapping * : GVA — Bforu: A— Gl B
in CGra and the proof of commutativity of the corresponding triangle are
similar to those of (a) of Theorem 3.2.

2. If {p*((x,a)),p*((2',d) )} = {pla) a')(z'))} € E(B) then
{m :1,} ¢ E(G) implies {/L a), pla } € E C i B) by the definition of
the power pmduct in CGra Smce 7 belongb to CGra. the latter implies
{a,d'} € E(A). Thus {(z,a),(z",d) )} € E(GV A) by the definition of GV A.
Then p* € CGra(G V A, B) and we have that (©4,G V A) is (G | —)-free
over A. O
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