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Spectral systems with the one-way spectral
mapping property

ARNE KOKK

ABSTRACT. For Banach algebras we characterize spectral systems which
satisfy the one-way spectral mapping property. We show that these spec-
tral systems are determined by projective systems of multiplicative linear
functionals of finitely generated subalgebras and, using this, we derive
several consequences concerning multiplicative extensions of multiplica-
tive linear functionals of subalgebras.

1. Introduction

As defined in [18], a subspectrum on a complex unital Banach algebra A
is a map o which assigns a non-empty compact subset o(a) C C* to every
commuting n-tuple a = (ay.as,...,a,) € A* (n € N) in such a way that

n
(I) o(a) C [] galar) (oalax) stands for the spectrum of ay in A),
k=1

(IT1) p(o(a)) =o(p(a))

for each m-tuple of polynomials p = (p1,pa,... , Pm) in 1 indeterminates.

In [18] W. Zelazko gave a functional representation of subspectra in terms
of maximal ideal spaces of maximal commutative subalgebras. Namely, he
proved that if o is a subspectrum defined on a complex unital Banach algebra
A and B is any maximal commutative subalgebra of A, then there exists a
compact subset A(o, B) in the maximal ideal space of B such that

ola, az,....a,) = {{(Aa1),Alaz), ..., Alayn)) : A € A(o, B)}

for all (a1,as,...,a,) € B™.
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In the present paper we shall consider the spectral systems that possess
the one-way spectral mapping property. In particular, we establish a relation
between the spectral systems with the one-way spectral mapping property
and projective systems of multiplicative linear functionals of finitely gener-
ated subalgebras (Section 3, Theorem 1). Then we derive several corollaries
concerning multiplicative extensions of multiplicative linear functionals of
subalgebras. Finally, in Section 4 we compare our description of spectral
system with different axiomatic approaches developed in [5,7,8,13,16].

2. Preliminaries

Throughout this paper, all algebras are assumed to be associative, unital
and over the complex field C.

Let A be a Banach algebra. The set of all n-tuples a' = (a1,02,...,0a,)
(n = 1,2,...) of elements of A will be denoted by A and Acom will be
the set of all commuting n-tuples in Aw. For any a = (a1,a2,...,a,) €
A", [a] = [a1,a2,...,a,] is the subalgebra of A generated by the elements
a1,as,...,0, and the unit e and, in addition, in what follows we assume that
the set A, is directed by :

a<b < [a] C [b] (a,b € Ax).

Further, if A = (A1, Ag, ..., A,) € C* then by (a—A) we denote the n-tuple
(a1 — Aie,ag — Aze, ..., an — Ape) and by I4(a) (resp. I';(a)) the left (resp.
right) ideal generated in A by the n-tuple a = (a1, a2,...,an). We also set
P(a)=1 [la](a) and if E is any family of subsets of A and a € A then

op(a) ={AeC": Pla—\) CU for some U € E}.

Furthermore, the set of all non-zero multiplicative linear functionals (not
necessarily continuous) on a subalgebra B of A, endowed with the weak™-
topology, will be denoted by Hom B, kerA will stand for the kernel of the
functional A and when a = (a3, a9,...,a,) € A", we shall let & denote the
Gelfand transform of a, i.e.

a(A) = (AMar), Aaz), ..., Aan))
for every A in Hom A. Also, by A we will denote the algebra {a:a€ A}

Finally, by a spectral system we mean in the sequel a mapping o which as-
signs to every n-tuple a = (a1, az, ..., a,) in A™ a subset o(a) of C" (possibly
empty) such that 0(04) = {0} and for each a € A,

(I1I) o(a,e) ={(A\,1): A€ o(a)};

and a spectral system o is said to have the one-way spectral mapping property
on A if

(IV) plo(a)) Co(p(a))
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for every n-tuple a € Ay, and m-tuple of polynomials p = (P1,D2, .., Dm)
in 7 indeterminates.

3. Spectral systems with the one-way spectral mapping
property

In this section we show that if o is a spectral system defined on a Banach
algebra A then o has the one-way spectral mapping property if and only
if it is defined by a projective system of multiplicative linear functionals of
finitely generated subalgebras. So, our main result can be stated as follows:

Theorem 1. Let A be a Banach algebra and let o be a spectral system on
A such that o(a) is non-empty for every a € Ay,. The following assertions
are equivalent:

(a) o possesses the one-way spectral mapping property,
(b) there is a projective system {Aa C Homl[a], #P, A} such that o(a) =
a(Aa) for every a € Ay,
(c) there is a family E of subsets of A such that o(a) = og(a) for every
ain Ax.
Proof. (a)=(b). Take any a € 4., and put
Aa = {A € Hom[a] : 4(A) € o(a)}.
Since ¢ has the one-way spectral mapping property, it is easy to see that
4(Aa) = o(a) (see [2], Theorem 1). Denote now for anya<b (a, beAy)
by wg the restriction map Ay, — Aa. Ifa€ A™, b € A™ are such that a <b
then [a] C [b] and, therefore, a = p(b) + ae for some « = (ay, ay, . .. Q) €

C™ and m-tuple p = (P1,p2s .., Pm) of polynomials in n indeterminates.
Moreover, if A € Ay then m2(A) € A, since

(A) = (A(p1(b)) + 01, A(p2(b)) + 2, .oy Ay (b)) + i)
= (P1(B)(A) + a1, D2 (B)(A) + @z, .o, p (B)(A) + )

~

=p(b(A))+a€a(pd)) +ac o(a).

So, the family {A,, 72, Ao} constitutes a projective system such that
o(a) = &(A,) for any a € A,..

(b)=>(c). Put E = {kerA : A € Aqa,8 € Ay} and let A € o(a) for some
a € Ax. Then thereis A € A, such that \ = a(A), so that P(a — \) C kerA.
We conclude that o(a) or(a). On the other hand, if A is in og(a) then
there are b € A, and A € Ay, such that P(a—)) CkerA C [b]. Now a < b
and m2(A) € A,. Hence \ = a(A) € o(a).

(c)=>(a). Let a = (a1,a9,...,a,) € A" and let )\ = (A1, A2, -y An) be in
o(a) = og(a). Then there is U in E such that P(a—\) C U. Moreover, for
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any polynomial p in n indeterminates there are elements by, bs, ..., b, in [a]
such that

pla) —p(N) = 3 bilax — Mee)
k=1

(see, for example, [1]). Hence p(a) —p(A) € P(a — A) for every polynomial p
in n indeterminates. It readily follows that, if p = (p1,p2,...,Pm) is any m-
tuple of polynomials in n indeterminates then p;(a) —p;(A) € P(a — A) (1=
1,2, ...,n), so that P(p(a)—p()\)) € P(a— A) C U. Thus p(A) € og(p(a)) =
o(p(a)). So, o possesses the one-way spectral mapping property. O

For two spectral systems ¢ and & defined on a Banach algebra A we shall
write ¢ < & if o(a) C &(a) for any a in Ax.

Corollary 1. ([3], Corollary 2.2). The mazimal spectral system ooz 0N @
Banach algebra A possessing the one-way spectral mapping property is given
for every a in Ag by omag(a) = &(Homlal).

Recall now that the joint approzimate point spectrum w(a) for an arbitrary
n-tuple a = (a1, as,...,a,) € A" (not necessarily commuting) is defined to
be the set of all those (a1,qs,...,a,) € C* for which there is a sequence
(zj) € A with ||z;]| = 1 such that either li;nH(ak —ae)zll =0 (b=

1,2,...,n) or lim||zj(ar—age)]l = 0 (k= 1,2,...,n). Following W. Zelazko
J

[19] let us denote for a commutative Banach algebra A by L(A) the set
of all those A €HomA for which kerA is an ideal in A consisting of joint
topological divisors of zero. In other words, if A is a commutative Banach
algebra then A € L(A) if and only if there is a net (z;) C A with llz5ll = 1
such that li}n llaz;|| = 0 for every a € kerA. It is well known that L(A) is a

closed subset of HomA and T'(A) C L(A), where I'(A) stands for the Shilov
boundary of A [17].

Furthermore, following A. McIntosh and A. Pryde [9], let us denote by
~(a) the spectral set

T
v(@) = {(a1,02,...,an) €ER*: 0 € 4D _(a — are)*)}
k=1

of an n-tuple a = (a1,az,...,0,) € A As it is established in [4,15], for
commuting n-tuples a € Ay, the spectral set y(a) is always non-empty. In
addition, for commuting n-tuples of elements with real spectrum some of
the important joint spectra and the spectral set coincide [4,10.14]. Denoting
now by cl[a] (a € Aw) the closure of [a] in A and by & the spectral system
on A defined by é(a) = a(Hom(cl[a])), we easily have from Theorem 1 the
following corollary.
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Corollary 2. Let A be a Banach algebra. The following are equivalent
for an n-tuple a € Apop:

(a) &(a) C R,
(b) 6(a) = n(a) = v(a).

Proof. (a)=>(b). Let a = (ay,as,...,a,) be an n-tuple in A.op such that
6(a) C R™. Then all the elements a, (k= 1,2,...,n) are with real spec-
trum and, by the well-known properties of Banach algebras, a(L(cl[a])) =
a(Hom(cl[a])) C R™. So, &(a) C w(a) C &(a). Besides, if A = (A1, Agy ..., An)
then

n

AEvy(a) = 0¢€ cr‘;;(Z(a,,‘. —Ae)?) &= A= a(A) for some A € L(cl[a)).
k=1
(b)=>(a). Clear. O

We say that a spectral system o on A is bounded if the set o(a) is bounded
for every a € A.

Now we are ready to derive some corollaries concerning the multiplicative
extensions of multiplicative linear functionals of subalgebras.

Corollary 3. Let A be a Banach algebra and let o be a bounded spectral
system on A with the one-way spectral mapping property. The following
assertions are equivalent:

(a) clo(a) is non-empty for any a in A, .
(b) there is A in Hom A such that a(A) € clo(a) for each a € An.

Proof. Since o has the one-way spectral mapping property, there is a
projective system {Aa, 72, Ao} with o(a) = &(A,) for each a € Ay. It
is easy to see that the mapping A — &(A) is a homeomorphism of A, onto
o(a) (a€ Ax) [2]. So. the family {clAq, 72, AL} is a projective system of
non-void compact Hausdorff topological spaces. Hence there is a non-empty
compact subset F' C [TclA,  (a € A) such that a2 (f(b)) = f(a) for each
a < band f € F. It readily follows that there is a multiplicative linear
functional A on A such that &(A) € clo(a) for every a € Ay. O

The left (vesp. right) Harle joint spectrum oly(a) (rvesp. o'4(a)) of an n-
tuple a = (a1, as,...,a,) € A" with respect to A4 is defined to be the set of all
those A € C" such that I4(a — \) # A (vesp. I''(a— \) # A) and the Harte
Jjoint spectrum o 4(a) of a with respect to A4 is the set crfA(a) U o’ (a). Note
that o.4(a) is the usual spectrum of a € A and r4(a) = sup{|\| : A € 54(a)}
is the spectral radius of ¢ in A. In addition, the Harte joint spectrum is
bounded and possesses the one-way spectral mapping property [1].
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Corollary 4. Let B be a commutative Banach algebra, let A be a sub-
algebra of B sharing the identity of B and let A € Hom A. Then A has a
multiplicative linear extension to the algebra B if and only if 4(A) € op(a)
for every a in Ax.

An extension (resp. isomorphic eztension) of a commutative Banach al-
gebra A is a commutative unital Banach algebra B together with a unital
isomorphism (resp. topological isomorphism) of A into B.

As it is shown in [6], isomorphic extensions coincide with isometric exten-
sions. That is if B is an isomorphic extension of A then it can be normed
in a such way that it becomes an isometric extension of A and the norm is
equivalent of the old one.

The cortex corA of A is the set of all functionals in HomA which extend
to members of HomB for each isometric extension B of A. Now, as it is well
known, ['(4) C L(A) = cor(4) [12].

A Banach algebra A is said to have the spectral extension property if
ra(a) = rg(a) for any a in A and extension B of A, and the multiplicative
Hahn-Banach property if every multiplicative linear functional in HomA has
a multiplicative linear extension to every extension B of A [11]. From Corol-
lary 4 one can deduce the following corollaries concerning the multiplicative
Hahn-Banach property.

Corollary 5. ([11], Theorem 1). Let A be a semisimple commutative
Banach algebra. The following are equivalent:

(a) the algebra A has the spectral extension property,

(b) every A € T(A) has a multiplicative linear extension to every com-
mutative extension B of A.

Proof. We only need to prove (a)=-(b). To this end, let B be any com-
mutative extension of A and let A € T'(4). Now, r4 is a norm on A and,
clearly, A € I'(D), where D is the completion of A in the supremum norm.
Hence 4(A) € w(a) for any a € Ay and if a1, a9,...,a, in A then there is
a sequence () in A such that r4((a; — A(aj)e)zy) tends to zero for each
§j=1,2,...,nand 0 < a <ra(z) (k=1,2,...). So,

n n
ra(>_(a; — Aaj)e)zib;) < Y ral(e; — Alaj)e)zy)rp(b) = 0 (k — o0)
j=1 j=1

for any by, bs,...,b, in B. We conclude that &4(A) € op(a) for any a in Ay
and, by Corollary 4, A has a multiplicative linear extension to B. O
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Corollary 6. ([11], Theorem 3). A semisimple commutative Banach alge-
bra A has the multiplicative Hahn-Banach property if and only if it possesses
the spectral extension property and Hom A = T'(A).

4. Regularities and spectral subsets

According to [7] (see also [16]), a generalized joint spectrum & is a spectral
system with the property (I) for all a € A and with the one-way spectral
mapping property (IV) for all commuting n-tuples a € Agom.

Moreover, a linear subspace £ C A of a Banach algebra A is called spectral
if it does not contain invertible elements and P(a) C E for all a € E,p.
The set of all spectral linear subspaces in A is denoted by E(A). Clearly all
ideals in A and subalgebras consisting of noninvertible elements are spectral
subsets. But there exist spectral subspaces that are not subalgebras [7, p.
133].

In [7] A. Martinez and A. W. Wawrzyricayk described generalized joint
spectra which satisfy the one-way spectral mapping property in terms of
spectral linear subspaces and established that there exists a correspondence
between generalized joint spectra and linear spectral subspaces. From The-
orem 1 we directly obtain the following result.

Theorem 2. (cf. [7], Proposition 2.3). A generalized joint spectrum &
satisfies the one-way spectral mapping property for all a € Ay if and only
if there exists a subset U C E(A) consisting of subalgebras of A such that
d(a) =op(a) (a€ Ax)-

In [5] V. Kordula and V. Miiller, in [8] M. Mbektha and V. Miiller and in
[13] V. Miiller described wide classes of spectra and joint spectra using the
concepts of regularities and joint regularities.

A joint regularity R € A is a subset of Ao such that:
(a) if (z1,22,. ., Zn, Y1, 02, -+ Yn) € Acom is such that STy = e
then (z1,29,...,2,) € R (n€N);

(b) (z1,22,...,%n, Zny1) € Acom and (21,...,2,) € R then the (n+1)-
tuple (z1,z2,...,%,,2p+1) € R (n € N);

(c) if (mo—A,21,...,2,) € R for every A € C" then (z1,23,...,2,) € R.

The spectral system associated with the regularity R is defined by & r(a) =
{A € C* :a— X ¢ R} for each commuting n-tuple a € Agyy,. Moreover, a
spectral system o is said to have the spectral mapping property for commuting
n-tuples if it satisfies the property (II) for every a € A.om,.
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The following theorem gives us a correspondence between joint regularities
and spectral systems with spectral mapping property for commuting n-tuples
(see [7,13]).

Theorem 3. Let o be a spectral system with the one-way spectral mapping
property on a Banach algebra A and let o(a) # 0 for every a € Ass . Then
the following are equivalent:

(a) o has the spectral mapping property for commuting n-tuples,

(b) there is a projective system {Aa C Homla], 70, As} with o(a) =
aA(A,) for any a € Ay such that 72 is onto for any a.b € Acom
(a<hb),

(c) there is a joint regularity R in A such that Gr(a) = o(a) for any
a E AC()T”'

Proof. (a)=(b). Clear by Theorem 1.

(b)=(c). Put R = {a € Acom : 0 ¢ o(a)}. Now, as it is easily to be seen.
R is a joint regularity in A and for every a = (a1, az,... Jap) € Acom and
A € C" we have

Meo(a) & 0cc(a—A) < (a— A ¢R < A € ag(a).

(c)=(a). Let a be a commuting n-tuple and p = (p1,p2, .-y Pm) be
an m-tuple of polynomials in n indeterminates. Take any A € o(p(a)) =
a(p1(a),...,pm(a)). Then A € &r(p(a)) and, since (p(a) — A) ¢ R, there i
an n-tuple p € C" such that (a — u,p(a) — A) ¢ R. Now (i, A) € o(a, p(a)
and, by Theorem 1, there is A in Homl[a] with p = &(A) € o(a). Conse

—

quently, p(u) = p(a(A)) = p(a)(A) = A C

Acknowledgement. The author is grateful to the referee for useful re
marks.

References

[1] R. Harte, Spectral mapping theorems, Proc. Roy. Irish Acad. AT2 (1972), 89-107.

[2] A. Kokk, Joint spectrum and eztension of homomorphisms, Tartu Ul. Toimetise
878 (1990), 67-82. (Russian)

[3] A. Kokk, A note on joint spectra; in: Proc. Intern. Workshop on Elem. Oper. an«
Appl., World Scientific Publ. Co., River Edge, 1992, 197-203.

[4] A. Kokk, On bounded spectral systems, Acta Comment. Univ. Tartuensis Math
1 (1996), 13-22.

[5] V. Kordula and V. Miiller, On the aziomatic theory of spectrum, Studia Math. 11!
(1996), 109-128.

[6] J. A. Lindberg, Extensions of algebra norms and applications, Studia Math. 40 (1971)

35-39.




pularities
o n-tuples

ho(a) =
€ Acom

) for any

Eﬁrbe seen,

Conse-
O

iseful re-

sis Math.

ath. 119

40 (1971),

SPECTRAL SYSTEMS 73

[7] A.Martinez Meléndez and A. Wawrzyticzyk, An approach to joint spectra, Ann. Polon.

Math. 72 (1999), 131-144.

[8] M. Mbektha and V. Miiller, On the awiomatic theory of spectrum II, Studia Math.

119 (1996), 129-147.

[9] A. McIntosh and A. Pryde, 4 functional calculus for several commauting operators,

Indiana Univ. Math. J. 36 (1987), 421-439.

[10] A. McIntosh, A. Pryde and W. J. Ricker, Comparison of joint spectra for certain

classes of commuting operators, Studia Math. 88 (1988), 23-36.

[11] M. J. Meyer, The spectral extension property and extension of multiplicative linear

functionals, Proc. Amer. Math. Soc. 112 (1991), 855-861.

[12] V. Miiller, Non-removable ideals in commutative Banach algebras, Studia Math. 74

(1982), 97-104.

[13] V. Miiller, Spectral systems, unpublished notes, 1997.
[14] A. Pryde and A. Soltysiak, On joint spectra of non-commuting normal operators, Bull.

Austral. Math. Soc. 48 (1993), 163-170.

[15] W. J. Ricker and A. R. Schep, The non-emptiness of joint spectral subsets of Euclidean

n-space, J. Austral. Math. Soc. Ser. A 47 (1989), 300-306.

[16] A. Soltysiak, Joint spectra and multiplicative functionals, Colloq. Math. 56 (1988),

357--366.

1 W. Zelazko, On a certain class of non-removable ideals in Bunach algebras, Studia

Math. 44 (1972), 87-92.

[18] W. Zelazko, An aziomatic approach to joint spectra I, Studia Math. 64 (1979),

249-261.

[19] W. Zelazko, On Ideal Theory in Banach and Topological Algebras, UNAM, Mexico,

1984.

INSTITUTE OF PURE MATHEMATICS,

UNIVERSITY OF TARTU,

VANEMUISE 46,

51014 TARrRTU, ESTONIA

E-mail address: arne@math.ut.ee




