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Tauberian theorems for Bonsall
core in sequence spaces

LEIKI LOONE AND ANNE TALI

ABSTRACT. The authors investigate cores K(z) of sequences z that are
defined by different Bonsall functionals 7. Two general Tauberian core
theorems are proved. These are applied to special functionals 7 and matrix
methods A. Some Tauberian conditions are generated with the theorems.

1. Preliminaries

The concept of the core of a sequence 2 = (&) of complex numbers has
been defined by Knopp in 1930 (see [3], chpt. VI). His definition is equivalent
to the following: the core of 2 is the set of all complex numbers  for which

Re(at) < limsup Re(aéy) Ya € C
k

(here Re(t) is the real part of #).

In 1953 Bonsall (see [1]) generalized the concept and defined the core for
an element z of a vector space X over the field K (here K is C or R) as the
set

K(z) := {t € K|Re(at) < m(az) Yo € K}, (1)

where 7 is an arbitrarily fixed functional on X with range [—oo, +0o0] such
that

1) m(z +y) <w(2) +n(y),
2) mlaz) = an(z) Ya > 0.
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This functional is called the Bonsall functional. It follows from (1) that
K(z) = {t e K| — m(—az) < Re(at) < m(azx) Vo € K}

Central problems in core theory deal chiefly with inclusion relations be-
tween different cores. Let K;(z) and Ks(y) be two cores defined by Bonsall
functionals m; and 79, respectively. It follows directly from the definition of
core that if

71 (az) < ma(ay) Va € K,

then
Ki(x) C Ka(y).

Due to the possibility of empty cores it is obvious that the converse implica-
tion is not always true. Therefore, the problems of core inclusions are closely
connected with the investigation of the validity of inequalities of type

m1(Az) < me(Bz) Vo € X,

where A and B are operators in X.
Let

¢r := {x € X| K(z) is a singleton, n(az) € R Vo €'K}
(the set of all m-convergent elements) and let
Cro i= {7 € cg| w(z) = 0}

(the set of all m-null elements). The sets ¢, and co are linear subspaces of
X. The functional 7 is additive and homogeneous over R on ¢, (see [1}).

Proposition 1. For every x € czo and y € X,
m(z +y) =7(y) (2)

and
K(z+y) = K(y) (3)

Proof. Let ¢ € cro and o € K. As ¢ is a vector space, m(ax) = 0. For
any y € X we get that
m(ay) < wlow + ay) + w(—azx) = n(az + ay) < mlaz) + (ay) < (ay),

i.e.,
m(a(z +y)) = 7(ay) YVa €K,

and (2) is true. The equality of cores (3) follows now from (1).
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Corollary 2. If z — y € cro, then n(z) = n(y) and K(z) = K(y).
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Let w be the set of all sequences & = (&), where & € K, k € N and
N = {0,1,2,...}. Each linear subspace of w is called a sequence space. In
the sequel we shall investigate the cores in sequence spaces. The following
subsets of w are obviously sequence spaces:

m = {z € w|sup || < oo}
k

(the set of bounded sequences),

¢ = {z € w| imé&;, = 0}

(the set of null sequences) and

sl

Jo =< zew

lim ——
m om -+ 1

n-m

(the set of alinost null sequences).

What follows are some well-known Bonsall functionals in w.

1) The functional

m(z) = 1imksup Regy,

Z & = 0 (uniformly for n)
k=n

that defines Knopp core K (z) in w (cf. [3]). The set of w1-null elements is

and fo D ep.

Cg, i.e., Cri0 = Cp-

2) The functional

ma{x) := limsup | sup
m™m

It is easy to see that

and therefore

n-4m

1
- Reé..
n m-+1 I; ok

ma(z) < mi(z) Vo € w,

Ky(z) C Ki(z) V2 € w,

that defines the almost convergence core (or Lorentz core) Ks(z) in w
(cf. [7]). The set of mo-null elements is fy, i.e., cr0 = fo.
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3) Let now z = (£;) be a real sequence. Let §(M) be the natural density
of a set M of positive integers, i.e.,

o(M) = lim;ll— card {k € M | k <n},

where card U denotes the cardinality of a set U. A sequence z is statistically
convergent to a, denoted st-limz = q, if for every € > 0,

o({k||¢x —al 2 €}) = 0.
Let M, denote the set
M, = {t € R|0{k| & >t} # 0}

Note that the statement §(M) # 0 means that §(M) > 0 or M does not have
natural density. The notion of the statistical limit superior of z is given by

sup My, if My # 0,

st-limsup z :=
P oo, if M, = 0.

It is easy to check that m3(z) := st-limsup « is a Bonsall functional. The core
that is defined by 73(z) is called the statistical core of z (for the statistical
core see [4]).

Let A\=(\;) €w and Az = (Axék). Denote for X Cw
AX = {Xz|z € X}.
Let A and A)\ be the matrix methods that are determined by matrices
A = (ani) and A\ = (aniAk), respectively (here anr € K). Let wy de-

note the application domain of A. If the inverse operator of A exists, then
it is denoted by A~1. Denote

1Al = sup 3 Jame] < oo.
" k=0

Let > = (onk) be the summation matrix, i.e.,

1, ifk<n,
0, if k >n.
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-1 .
For 7" = (6n) we have

1,if & = n,
-1, ifk=n-1,
0,itk#nk+#n-—1.

Onk =

It means that
Yir = (ka) and 2_1$ = (’s'n, - §n~—1)'
k=1

It is obvious that w = wy = wy-1.
Let A € w, \y >0, k € Nand \71 = ()\;1).
theorem is as follows.
If z is summable by A and if A1z € ¢y then z is summable also by >
(The condition A7z € ¢p is called a Tauberian condition.)
That is why we call a more general theorem which states that

A classical Tauberian

K(Xz) C K(Az) or K(Xz) = K(Az) for every € X C w

a Tauberian core theorem. The condition z € X C w in a Tauberian (core)
theorem is called a Tauberian condition.
2. A Tauberian theorem induced by the sequence \

We will prove a Tauberian core theorem where the Tauberian condition
is determined by a sequence .

Theorem 3. Let the Bonsall functional ™ be such that ¢y C cpo and let
A= (M) € w. Suppose for A = (ayy) that

livlln anr, =1 VkeN. (4)
If
(A= D)A|l < oo, ()
then
m(Az) = n(Zx) VY € Ao
and

K(Az) = K(Zz) Vz € Aeg.

Proof. Let G = (gni) := (A — T)\, ie.,

(e — DAg, if k <mn,

Ok Ak, i k>n.

gnk =
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As for every k € N
lim gpp = lim(ay, — D)Ag =0
TL n

and

Supz 'gnk; <0,
ok

the matrix method G is regular on ¢q (see [2], p. 44). Therefore
(A—2Z)(Ay) € co C cro VY € cp.
By (5) A is defined on Acy and consequently
(A —=3X)z € cro Yz € Aeg.
Due to Corollary 2 the statement of theorem follows. O

Let now A = (R, P,,) = (cn) be a Riesz matrix determined by a sequence
(pr) € w, ie.,

i k<n,
Apfp =
if k>0

T
Here P.y =0and P, = > pp #0,n € N.
k=0
Corollary 4. If the Bonsall functional © is such that co C ¢r and if the
Riesz matriz A = (R, P,,) and the sequence X = (\) satisfy the conditions

lim|P,| = oo, (7)
1 .
sup > [pel < o, ®)
n [Pl k=1
Pk .
Al < MI|ZE| L k=12, 9
Ak < P (9)

then
7(Az) = 7(Zz) and K(Az) = K(Zx)

for every x € Xe,.

Proof. The statement follows from Theorem 3 because in this case
(gnk) = (A= Y)X is defined by

P
gnk = P,

A, if k<n,

0, k>0,
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and therefore

_ | P
”(A—E)A”—Sﬁpkz_% M|

The condidtion (4) is fulfilled due to (7), and (5) is fulfilled due to (8) and
(9). O

Note, for comparison, that a well-known result states as follows.

If pp. >0, P, — oo, and if z is summable by A = (R, P,) to & with
PTL -

,_5"’ <M, n €N, then x is summable to & also by ¥ (see [8], p. 103).

n

3. A Tauberian theorem induced by the matrix method B

We will prove a Tauberian core theorem where the Tauberian condition
is determined by a sequence A\ and a matrix B.

Theorem 5. Let 7 be an arbitrary Bonsall functional and let A be a
matriz method that has the property

AT e 2 erp. (10)

Let X € w and let B be a normal matriz method. FC¢=8B1-35"1
satisfies the condition

C: Crog — /\C,,—() (11)

and
m(Xx) < m(Az) Vo € Aero Nway, (12)

then
K(Xz) C K(Az) Yz € crop Nway (13)

(here crop = {z € w|Bz € i H s

Proof. Suppose that = € c,op Nwy, i.e., there exists an element Y € Cro
such that Bz = y. Consequently,

Az = AB 'y + Ay — ARy,
As (10) holds, we get using Proposition 1 that
m(Az) = 1(AB 1y — Ax " ly) = m(ACy).

It means that
m(Azr) = 7(ACY) Yz € crop Nwa. (14)

21
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As Bx =y, we get

YCy=2(B - y=Sz-y.
By Proposition 1, it follows that

7(ECy) = n(Bz — y) = n(Xx) VT € croB- (15)
Due to (11), Cy € Acro and thus, as (12) holds, we obtain
m(2Cy) < n(ACy) VCy € )\c,r‘o Nwa.

Therefore, by (14) and (15) we have

7m(Zz) < w(Az) Vr € crop Nwa. (16)

If z € crop Nwa, then az € cyop Nwa (for every a € K), and consequently
(16) implies
m(aXz) < m(adz) Ya € K.

Due to (1), the inclusion (13) follows. O

Remark 6. Notice that if é C ¢y is an arbitrary linear subspace of cgq,
then Theorem 5 remains true if one replaces the condition (12) with

m(Zz) < w(Az) Vo € AéNway
and simultaneously (13) with
K(Zz) C K(Az) Vz € ép Nwa,

where ép := {z € w|Bz € ¢&}. Note also that Theorem 5 remains true
if one replaces the relations * < ” and “ C 7 in formulae (12) and (13)
simultaneously with the relations “ >” and “ D7, respectively.

In the sequel suppose that A = () and u = (py;) are sequences of strictly
positive real numbers and let r be a fixed real number.

Let B = (byx) be defined as follows:

T
Hn , if k<n,
bpr = HE (17)

0, if kE>n.

Therefore
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If # = w1, then ¢, o = cop, where

COB:{[CECU

The inverse operator B~! = (b,;) is given by

n

lipuzz (i)rfk = 0} :

ey MYE

1, if k=n,
P,

Hp—1

0, if k#nand k#n—1.

,iftk=n-—1,

A sequence space X is called solid if

{(ne) €w | (&) € X Yk e N: || < ||} C X.
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It is well known that X is solid if and only if mX C X (cf. [2], p. 342),

where

mX = {(x&r) | (ag) € m, (&) € X}

For example, ¢¢ is solid but fy is not. A sequence space X is called shift

invariant if
X ={z=(&)| Sz e X,Sr=((+1)}-

The spaces ¢y and fy are shift invariant.

Lemma 7. Let the Bonsall functional © be such that ¢y C crg C m,
where cro is shift invariant. Let C = B™1— %71 where B = (bpy) is defined

by (17).
1) If C satisfies (11), then
"1
sup 1—( He ) — <
n Hn—1 An
holds.
2) If
. pn | 1
lim |1 — — =0
n (Hn—l) A
or

[1-( £y ) ]izK ¥n e N
Hn—1 A

(where K is a constant), then C has the property (11).
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3) If the space cqo is solid, then (18) is necessary and sufficient for C to
have (11).

Proof. In this case the matrix method C = (e,) is defined by

r

1A ,ifk=n—-1,
Cnk = Pn—1 (21)
0, if k#n-—1.
If y = (n,) = Cz, then
" i M1
Ny = |1— Hn €pe1 =My |1 — _Hn_ —Epi- (22)
Hn—1 Hn—1 An

Now, if (19) holds, then it is evident that z € ¢, C m implies Cx € A¢g C
ACWQ.

As the space crg is shift invariant, the property (11) follows trivially from
(20) due to (22).
If the space ¢ is solid, then it is obvious that (18) is sufficient for (11).

1
Let v = (vg), where v = SR It follows from (21) that the operator

1
C has the property (11) if and oTﬂy if the operator Cv enjoys the property
Cv : crg — ¢ro. Therefore, as ¢y C cro C m, it is necessary for (11) that
ICv|| < oo, ie., (18) is valid (see, e.g., [2], p. 42).

This completes the proof. 0

Examples 8. The condition (18) is satisfied for the following A = (\,)
and p = (un,). Here 7 > 1 is an integer.

a) )\n=un=m;
1
b) )\n—/in-m:
1 1
O =gy A = T

n 1
d) /\n=%: and un:P—n

kL
where Do € ¢y, pp, > 0 and Pn=2pk ¥n € N.
Fr k=0

We will show for the case of d), that A and p enjoy the property (19), if
r > 1, and (20), if r = 1.
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jjn—l "
L= | —=
r < P” >

Indeed, if r > 1, then

fn \'| 1
1-— e
’ <‘Un,,,_1 ) \ /\n

Py,

Pn

. t (Pn~1 +p'n,)r - ])'r?:,.—l & -
o4 Pn
1 “(r

_ a r Pn—l ok Pn
B k P, Fo
k=1

), Y .
As (%) € ¢g we get that lim —"~Y = 1 and therefore (19) is true.
n L

If # = 1, then (20) holds with K = 1.

Let A = (R, P,,) = (ay;) be a Riesz matrix determined by the formula (6).
It is easy to check that in this case the matrix AX ™! is the matrix of Riesz
means (R, p,) = (an;), where

)k
]—]‘—’, if k<n.
Ung = o
0, if k>n.
. [ Pn
If the sequence (p,,) that generates (R, p,) is monotone and if ( jD—n> € ¢y,
n

P, — oo. then (R, p,) transfers regularily every almost convergent sequence
into a convergent sequence. and therefore (R,p,) is of type fo — co (for
Riesz means see [2]. p. 112-126).

We will give some well-known sequences that generate Riesz means (R, pn)
of type fo — co.

1 " .
a) pp = o (this Riesz method is called the logarithmic means),
n

b) p, = (n+a>’ a>—1,
n

c) pn:enﬂ, 0<p<l.

Proposition 9. Let w be the Bonsall functional that determines Lorentz
core, i.e., m = my. Let A = (R,P,) be a Riesz method defined by (6).
Suppose that the sequence (p,) is monotone, P, — oo, pn >0, n €N, and

Pn

— | €co. Let r be an integer, r > 1. Then
B,

Ky(Xz) = Ko(Ax)

22
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for every = from the set

o= (&) |Im o S PL& =0 b (23)

N =1

Proof. Due to AX™! : fo — fo the condition (10) of Theorem 5 is fulfilled.
1
Suppose that A, = %}— and y, = B Then by Lemma 7 and Examples 8, d),
the matrix C deﬁnednby (21) has the property (11). Obviously the set (23)
is the space cop for B = (byy) defined by (17). By Corollary 4
ma(Az) = me(Bx) VI € Ac.

The assertion follows now from Theorem 5 and Remark 6. O

Let L: [0, 00) — (0,00) be a slowly varying function, ie.,

lim Liat)

=1Vt>0.
Jim TS = 19> 0

Let § > —1 be a fixed number and let (p,,) be a sequence of numbers, where
pn > 0, n € N. Moreover, suppose that

(n+1)°L(n) _

lim = 1. (24)
n Dn
In this case ( )6+1 (n)
.o (n+1 Lin
hvrln G+, =1, (25)
and P
lim —= =1 2
1711n Pn ( 6)

(for (25) see [5], Lemma A, and for (26) see [6], Lemma 3).

Proposition 10. Let A = (R, P,) be a Riesz method defined by (6).
Suppose that p, > 0, n € N, and let (24) be satisfied. Let r be an integer,
r > 1. Then

for every x from the set

%)

1 = ., \
=) || Gy kzzo(kﬂ) &) €coyp- (27



filled.
8,d),
f(23)

vhere

(24)

| (6).

teger,

(27)

TAUBERIAN THEOREMS FOR BONSALL CORE IN SEQUENCE SPACES 87

Proof. Denote A\, =y, =

1 and note that c¢ro = ¢ and the set (27)

18 the space ¢op for B = (byy) defined by (17). Due to Examples 8, a), our
A= (A) and g = () enjoy the property (18) and therefore, by Lemma 7,
the operator C' is of type ¢y — Aey.

Note that from (24) and (25) we get that

.8+ 1),
lim

— B, 28
" (n_}_l)pn ' ( )

and evidently there exists K > 0 such that

1
Dp > Kn—~|—1 Vn € N.

Consequently, P, — oo and thus A, "! = (R,py) is of type ¢y — cg, l.e.,
satisfies the condition (10) of Theorem 5 (for (R, py) see [2], p. 113). More-
over, it follows from (26) and (28) that there exists M > 0 such that

1 Pn
<M bl N.
n+17 <P'n——1 e

The assertion follows now immediately from Theorem 5 and Corollary 4. O
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