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On commutativity of rings with conditions
involving nilpotent elements and the Jacobson
radical

MURTAZA A. QUADRI AND MOHD. SHADAB KHAN

ABSTRACT. Let R be an associative ring with unity 1, N the set of
nilpotents, J the Jacobson radical of R and n > 1 be a fixed integer.
We prove that if R is n(n + 1)-torsion free and satisfies the identity
(zy)" =y"z" for all z,y € R\ (N U J), then R is commutative.

1. Introduction

Throughout, R represents an associative ring with centre Z. We denote
the commutator ideal by C' and the Jacobson radical by J. The totality of
all nilpotent elements will be denoted by N and, for any pair of elements
z,y € R, the commutator zy — yz by [z, y].

A well-known result due to Herstein [4] asserts that a ring satisfying the
identity (zy)™ = z"y" for all z,y € R, where n > 1 is a fixed integer, must
have a nil commutator ideal. Later, Awtar [2] proved that any ring with
unity in which there exists a fixed positive integer n > 1 such that no prime
p < nis a zero divisor and (zy)" = z"y" for all z,y € R turns out to be
commutative. Further, Abu-Khuzam [1] proved that if a ring with unity is
n(n — 1)-torsion free and satisfies the identity (zy)" = 2"y" for all z, Yy ER,
then R is necessarily commutative. Motivated by these observations we
prove the following:

Theorem. Let n > 1 be a fized integer and R be an n(n + 1)-torsion
free ring with unity 1. If R satisfies the identity

(zy)" = y"z" for all 3,y € R\ (N UJ), (+)
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then R is commutative.

We begin our discussion with the following known results which are
pertinent for the development of the proof of the above theorem. Lemma
1 and Lemma 2 are proved in [3] and [6] respectively, whereas the proof of
Lemma 3 can be found in [7].

Lemma 1. Let R be a ring satisfying an identity f(X) = 0, where
F(X) is a polynomial in non-commuting indeterminates, its coefficients being
integers with highest common factor one. If there ezists no prime p for which
the ring of 2 x 2 matrices over GF(p) satisfies f(X) = 0, then R has a nil
commutator ideal and the nilpotent elements form an ideal.

Lemma 2. If 2,y € R and [z,[z,y]] = 0, then [2™,y] = mz™ [z,]
for all positive integers m.

Lemma 3. Let R be a ring and f : R —> R be a function such that
flz+1) = f(x) holds for all x € R. If for some positive integer m, z™ f(z) =
0 for all x € R, then necessarily f(z) = 0.

Now, we observe that a ring R satisfying the identity (xy)™ = y"z™ for
a fixed integer n > 1 also satisfies (yz)"*! = y* 1z 1, Indeed,

yn+1$n+1 — y(ynmn)m
(

Thus, in view of [1, Theorem], cited above, we obtain:

Lemma 4. Let R be a ring with unity 1. If R is n(n+1)-torsion free and
satisfies the identity (zy)™ = y™z™ for all z,y € R, then R is commutative.

2. Proof of the Theorem

Let U denote the set of units in R. For any u,v € U, the hypothesis
(x) gives

(wou™1)" = """,
Thus,
[, v™) = 0 for all u,v € U. (1)
This readily yields that [u™™+1) 4"] = 0 and [u™™+1) y™+1] = 0, hence
[u™+1) 4] = 0 for all u,v € U. (2)

Now, suppose z € N U J, so that 1 — 2z € U. Then (2) gives
[u"(”+1),a:] =QforaluelU, z€ NUJ. (3)
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If uxr € NU J, then (3) gives
[P+ g] =0 forallu € U, uz € N U J. (4)

Suppose next that £ ¢ N U J and ur ¢ N U J. Then, using the
hypothesis, we get

[ur™+) 2" =0 forallu € U, z E¢NUJ, uz ¢ NUJ (5)
Combining (3), (4) and (5), we obtain
[t 77 =0 for all u € U, z € R. (6)
Now, let u be an arbitrary unit in U and let
m=n(n+1). (7)
Then, by (6) we get
[u™, 2™ =0forallu € U, = € R.
Next, we shall show that
(z™ Ly Mg) ™ = w g™ for all u € U, z €R.

To this end, we distinguish two cases :

Case 1. 2™ € NU J or ™z € N U J. This implies
1—2™leUorl—umzel.
Comparison of (2) and (7) gives
[1—2™ 1 u™ =0or [l —u™z,u™ =0.

Hence, in either case we get [z™~!,u™] = 0. Combining this fact with (8),
we obtain

m—1, m, . \mn m?n_m2n
u™z)

(z )™ =M g™,
Case 2. 2™ 1 ¢ NUJ and u™z ¢ N U J.

We distinguish two sub-cases:

Case A. r € NUJ. By an application of (3) and (7), we get [u™, z]=0
and hence (z™ 'u™z)® = (z™u™)® = u™g™", Thuys (g™ lymg)mn =

w™* g™ which proves (9).

Case B. z ¢ N UJ. Applying the hypothesis (*) twice together with
(6) and (7) we obtain (z™ 1u™z)™ = u™ g™ which yields

m—lum

x

2 2
)mn — um nxm n.

(z

Thus (9) is proved in all cases. Also for any z € R, u € U,

(z™ M) = gy MMy Mg ™ | My = g

m—l(ummm)nm—-lumx_
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Using (8), we get
(mm~1umm)mn - :Enmz-lunmzx. (10)

Combining (9) and (10), we get

g =Ly nm? g g um? gnm® . gnm?, nm
by (8). Hence,
m”mz“l[u"mz,:v] =0forallz € R, ueU. (11)
Replacing z by 1+ z in (11) and using Lemma 3, we obtain
[u””‘2,m] =0forallze R, ueU. (12)

Let a € N. Then there exists a minimal positive integer py such that
[aP, z] = O for all integers p > po. (13)
We claim that pg = 1. Suppose not; then by (12)
1+ ap"’l)"mz, z]=0for all z € R.

Thus, in view of (13) we obtain nm?2[aP°~!,z] = 0 for all z € R. Hence R is
nm?-torsion free, so we get [aP*~!,z] = 0. This contradicts the minimality
of pg. Hence (13) gives

la,z] = 0 for all z € R.
Therefore,
N CZ. (14)
Next, we show that

zlz" T y" e Zforallz ¢ NUJ, y¢ NUJ (15)

Let z ¢ NUJ and y ¢ N U J, then by the hypothesis (zy)" = y"z". Now
(zy)"z = z(yz)™. This implies that y"z"*! = z"*!y™ and hence

n+1,yn]$ — 0’

zlz
which gives

(z[z"+,y)* = 0.
Hence z[z"*1,y"] € N C Z, by (14), which proves (15). Now, suppose that
z € NUJ. Then 1 —z € U, and (12) implies

[(1—z)" y]=0forallye R, z€ NUJ (16)
Similarly, for y € N U J we have 1 —y € U, and hence by (12) we get
[z, (1—y)" | forallz € R, y € NUJ (17)

Combining (15), (16) and (17), we readily verify that the following holds in
R: .
[lafe™, 9™, (1= 2)"™],(1 —y)"™ ] =0 forall z,y €R.  (18)
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Now (18) is a polynomial identity which is satisfied by all the elements of
R. Further, (18) is not satisfied by any 2 x 2 matrix ring over GF(p) for
any prime p, as a consideration of z = ey and y = es; + egg shows. An
application of Lemma, 1 gives that C is nil, and hence by (14)

CCNCZ. (19)

Recall that [u"™* z] = 0 for all z € R, u € U. Using (19) together with
Lemma 2 gives

nm2u”m2”1[u, zgl=0forallz e R, uel.

Since R is nm?-torsion free and u is a unit, [u,z] = 0 for all u € U and
z € R, which in turn implies that

UcCZ (20)
Suppose z € NUJ. Then1—z € U C Z. Thus,
z€Z, (zy)"=y"z" forallye R, € NUJ
Similarly, if y e NUJ, then 1 —y € U C Z. Thus,
yeZ, (zy)" =y "z " forallz € R, ye NUJ.
Combining (21), (22) and (), we obtain
(zy)" = y"z" for all z,y € R.

Hence, R is commutative by Lemma 4.

3. Corollaries
As a consequence of the above theorem, we can derive the following:

Corollary 1. Let n > 1 be a fized integer and R be an n(n+ 1)-torsion
free ring with unity 1. If R satisfies the identity

(zy)* = y"z" for all z,y € R\ N,
then R is commutative.

Corollary 2. Let n > 1 be a fized integer and R be an n(n+ 1)-torsion
free ring with unity 1. If R satisfies the identity

(zy)® = y"z" for allz,y € R\ J,
then R is commutative.

We provide an example which shows that if we replace the condition
of n(n + 1)-torsion freeness in the hypothesis of our theorem by n-torsion
freeness or (n + 1)-torsion freeness, then R may be badly non-commutative.
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Example. Let

100
,I=|01 0], abecdeGF(3)
00 1

It can easily be vertfied that (zy)? = y?2? and (zy)® = y®z>. So, withn = 2,
R is n-torsion free and (zy)® = y"z™, moreover R is not commutative.
Also with n = 3, R is n + l-torsion free and (zy)" = y"z", but R is not
commutative.

0 b
R={aI+B|B=| 0 0
0 0

O a0
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