On commutativity of rings with conditions involving nilpotent elements and the Jacobson radical

MURTAZA A. QUADRI AND MOHD. SHADAB KHAN

ABSTRACT. Let R be an associative ring with unity 1, N the set of nilpotents, J the Jacobson radical of R and n>1 be a fixed integer. We prove that if R is n(n+1)-torsion free and satisfies the identity $(xy)^n=y^nx^n$ for all $x,y\in R\setminus (N\cup J)$, then R is commutative.

1. Introduction

Throughout, R represents an associative ring with centre Z. We denote the commutator ideal by C and the Jacobson radical by J. The totality of all nilpotent elements will be denoted by N and, for any pair of elements $x, y \in R$, the commutator xy - yx by [x, y].

A well-known result due to Herstein [4] asserts that a ring satisfying the identity $(xy)^n = x^ny^n$ for all $x, y \in R$, where n > 1 is a fixed integer, must have a nil commutator ideal. Later, Awtar [2] proved that any ring with unity in which there exists a fixed positive integer n > 1 such that no prime $p \le n$ is a zero divisor and $(xy)^n = x^ny^n$ for all $x, y \in R$ turns out to be commutative. Further, Abu-Khuzam [1] proved that if a ring with unity is n(n-1)-torsion free and satisfies the identity $(xy)^n = x^ny^n$ for all $x, y \in R$, then R is necessarily commutative. Motivated by these observations we prove the following:

Theorem. Let n > 1 be a fixed integer and R be an n(n + 1)-torsion free ring with unity 1. If R satisfies the identity

$$(xy)^n = y^n x^n \text{ for all } x, y \in R \setminus (N \cup J),$$
 (*)

Received November 11, 2001.

²⁰⁰⁰ Mathematics Subject Classification. 16W25, 16U80.

Key words and phrases. Associative ring, Jacobson radical, nilpotent elements, commutator, centre.

then R is commutative.

We begin our discussion with the following known results which are pertinent for the development of the proof of the above theorem. Lemma 1 and Lemma 2 are proved in [3] and [6] respectively, whereas the proof of Lemma 3 can be found in [7].

Lemma 1. Let R be a ring satisfying an identity f(X) = 0, where f(X) is a polynomial in non-commuting indeterminates, its coefficients being integers with highest common factor one. If there exists no prime p for which the ring of 2×2 matrices over GF(p) satisfies f(X) = 0, then R has a nil commutator ideal and the nilpotent elements form an ideal.

Lemma 2. If $x, y \in R$ and [x, [x, y]] = 0, then $[x^m, y] = mx^{m-1}[x, y]$ for all positive integers m.

Lemma 3. Let R be a ring and $f: R \longrightarrow R$ be a function such that f(x+1) = f(x) holds for all $x \in R$. If for some positive integer m, $x^m f(x) = 0$ for all $x \in R$, then necessarily f(x) = 0.

Now, we observe that a ring R satisfying the identity $(xy)^n = y^n x^n$ for a fixed integer n > 1 also satisfies $(yx)^{n+1} = y^{n+1} x^{n+1}$. Indeed,

$$y^{n+1}x^{n+1} = y(y^nx^n)x$$

$$= y(xy)^nx$$

$$= y(xy xy \dots xy)x$$

$$= (yx)^{n+1}$$

Thus, in view of [1, Theorem], cited above, we obtain:

Lemma 4. Let R be a ring with unity 1. If R is n(n+1)-torsion free and satisfies the identity $(xy)^n = y^n x^n$ for all $x, y \in R$, then R is commutative.

2. Proof of the Theorem

Let U denote the set of units in R. For any $u, v \in U$, the hypothesis (*) gives

$$(uvu^{-1})^n = u^{-n}v^nu^n.$$

Thus,

$$[u^{n+1}, v^n] = 0 \text{ for all } u, v \in U.$$

$$\tag{1}$$

This readily yields that $[u^{n(n+1)}, v^n] = 0$ and $[u^{n(n+1)}, v^{n+1}] = 0$, hence

$$[u^{n(n+1)}, v] = 0 \text{ for all } u, v \in U.$$
 (2)

Now, suppose $x \in N \cup J$, so that $1 - x \in U$. Then (2) gives

$$[u^{n(n+1)}, x] = 0 \text{ for all } u \in U, \ x \in N \cup J.$$
 (3)

If $ux \in N \cup J$, then (3) gives

$$[u^{n(n+1)}, x] = 0 \text{ for all } u \in U, \ ux \in N \cup J.$$

$$\tag{4}$$

Suppose next that $x \notin N \cup J$ and $ux \notin N \cup J$. Then, using the hypothesis, we get

$$[u^{n(n+1)}, x^n] = 0 \text{ for all } u \in U, \ x \notin N \cup J, \ ux \notin N \cup J.$$
 (5)

Combining (3), (4) and (5), we obtain

$$[u^{n(n+1)}, x^n] = 0 \text{ for all } u \in U, \ x \in R.$$
 (6)

Now, let u be an arbitrary unit in U and let

$$m = n(n+1). (7)$$

Then, by (6) we get

$$[u^m, x^m] = 0 \text{ for all } u \in U, \ x \in R.$$
(8)

Next, we shall show that

$$(x^{m-1}u^m x)^{mn} = u^{m^2 n} x^{m^2 n} \text{ for all } u \in U, \ x \in R.$$
 (9)

To this end, we distinguish two cases:

Case 1. $x^{m-1} \in N \cup J$ or $u^m x \in N \cup J$. This implies

$$1 - x^{m-1} \in U \text{ or } 1 - u^m x \in U.$$

Comparison of (2) and (7) gives

$$[1 - x^{m-1}, u^m] = 0$$
 or $[1 - u^m x, u^m] = 0$.

Hence, in either case we get $[x^{m-1}, u^m] = 0$. Combining this fact with (8), we obtain

$$(x^{m-1}u^m x)^{mn} = u^{m^2n} x^{m^2n}.$$

Case 2. $x^{m-1} \notin N \cup J$ and $u^m x \notin N \cup J$.

We distinguish two sub-cases:

Case A. $x \in N \cup J$. By an application of (3) and (7), we get $[u^m, x] = 0$ and hence $(x^{m-1}u^mx)^n = (x^mu^m)^n = u^{mn}x^{mn}$. Thus $(x^{m-1}u^mx)^{mn} = u^{m^2n}x^{m^2n}$, which proves (9).

Case B. $x \notin N \cup J$. Applying the hypothesis (*) twice together with (6) and (7) we obtain $(x^{m-1}u^mx)^n = u^{mn}x^{mn}$ which yields

$$(x^{m-1}u^m x)^{mn} = u^{m^2n} x^{m^2n}.$$

Thus (9) is proved in all cases. Also for any $x \in R$, $u \in U$,

$$(x^{m-1}u^mx)^{mn} = x^{m-1}u^mx^mu^mx^m \dots u^mx = x^{m-1}(u^mx^m)^{nm-1}u^mx.$$

2

roof of where

ch are emma

s being which s a nil

 $^{-1}[x, y]$

 $_{f(x)}^{ch\ that}$

 $^{n}x^{n}$ for

ree and stative.

othesis

(1) ice

(2)

(3)

Using (8), we get

$$(x^{m-1}u^mx)^{mn} = x^{nm^2-1}u^{nm^2}x. (10)$$

Combining (9) and (10), we get

$$x^{nm^2 - 1}u^{nm^2}x = u^{nm^2}x^{nm^2} = x^{nm^2}u^{nm^2}$$

by (8). Hence,

$$x^{nm^2-1}[u^{nm^2}, x] = 0 \text{ for all } x \in R, \ u \in U.$$
 (11)

Replacing x by 1 + x in (11) and using Lemma 3, we obtain

$$[u^{nm^2}, x] = 0 \text{ for all } x \in R, \ u \in U.$$

$$(12)$$

Let $a \in N$. Then there exists a minimal positive integer p_0 such that

$$[a^p, x] = 0$$
 for all integers $p \ge p_0$. (13)

We claim that $p_0 = 1$. Suppose not; then by (12)

$$[(1+a^{p_0-1})^{nm^2}, x] = 0$$
 for all $x \in R$.

Thus, in view of (13) we obtain $nm^2[a^{p_0-1}, x] = 0$ for all $x \in R$. Hence R is nm^2 -torsion free, so we get $[a^{p_0-1}, x] = 0$. This contradicts the minimality of p_0 . Hence (13) gives

$$[a, x] = 0$$
 for all $x \in R$.

Therefore,

$$N \subseteq Z$$
. (14)

Next, we show that

$$x[x^{n+1}, y^n] \in Z \text{ for all } x \notin N \cup J, \ y \notin N \cup J.$$
 (15)

Let $x \notin N \cup J$ and $y \notin N \cup J$, then by the hypothesis $(xy)^n = y^n x^n$. Now $(xy)^n x = x(yx)^n$. This implies that $y^n x^{n+1} = x^{n+1} y^n$ and hence

$$x[x^{n+1}, y^n]x = 0,$$

which gives

$$(x[x^{n+1}, y^n])^2 = 0.$$

Hence $x[x^{n+1}, y^n] \in N \subseteq Z$, by (14), which proves (15). Now, suppose that $x \in N \cup J$. Then $1 - x \in U$, and (12) implies

$$[(1-x)^{nm^2}, y] = 0 \text{ for all } y \in R, \ x \in N \cup J.$$
 (16)

Similarly, for $y \in N \cup J$ we have $1 - y \in U$, and hence by (12) we get

$$[x, (1-y)^{nm^2}] \text{ for all } x \in R, \ y \in N \cup J.$$

$$(17)$$

Combining (15), (16) and (17), we readily verify that the following holds in R:

$$[[x[x^{n+1}, y^n], (1-x)^{nm^2}], (1-y)^{nm^2}] = 0 \text{ for all } x, y \in R.$$
 (18)

(10)

(11)

(12)

(13)

nce R is nimality

(14)

 x^n . Now

oose that

(16)

get (17)

holds in

(18)

Now (18) is a polynomial identity which is satisfied by all the elements of R. Further, (18) is not satisfied by any 2×2 matrix ring over GF(p) for any prime p, as a consideration of $x = e_{22}$ and $y = e_{21} + e_{22}$ shows. An application of Lemma 1 gives that C is nil, and hence by (14)

$$C \subseteq N \subseteq Z. \tag{19}$$

Recall that $[u^{nm^2}, x] = 0$ for all $x \in R$, $u \in U$. Using (19) together with Lemma 2 gives

$$nm^2u^{nm^2-1}[u,x]=0 \text{ for all } x\in R,\ u\in U.$$

Since R is nm^2 -torsion free and u is a unit, [u,x]=0 for all $u\in U$ and $x\in R$, which in turn implies that

$$U \subseteq Z. \tag{20}$$

Suppose $x \in N \cup J$. Then $1 - x \in U \subseteq Z$. Thus,

$$x \in \mathbb{Z}, (xy)^n = y^n x^n \text{ for all } y \in \mathbb{R}, x \in \mathbb{N} \cup \mathbb{J}.$$
 (21)

Similarly, if $y \in N \cup J$, then $1 - y \in U \subseteq Z$. Thus,

$$y \in Z$$
, $(xy)^n = y^n x^n$ for all $x \in R$, $y \in N \cup J$. (22)

Combining (21), (22) and (*), we obtain

$$(xy)^n = y^n x^n \text{ for all } x, y \in R.$$
 (23)

Hence, R is commutative by Lemma 4.

3. Corollaries

As a consequence of the above theorem, we can derive the following:

Corollary 1. Let n > 1 be a fixed integer and R be an n(n+1)-torsion free ring with unity 1. If R satisfies the identity

$$(xy)^n = y^n x^n \text{ for all } x, y \in R \setminus N,$$

then R is commutative.

Corollary 2. Let n > 1 be a fixed integer and R be an n(n+1)-torsion free ring with unity 1. If R satisfies the identity

$$(xy)^n = y^n x^n \text{ for all } x, y \in R \setminus J,$$

then R is commutative.

We provide an example which shows that if we replace the condition of n(n+1)-torsion freeness in the hypothesis of our theorem by n-torsion freeness or (n+1)-torsion freeness, then R may be badly non-commutative.

Example. Let

$$R = \left\{ aI + B \mid B = \left(\begin{array}{ccc} 0 & b & c \\ 0 & 0 & d \\ 0 & 0 & 0 \end{array} \right), \ I = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right), \ a,b,c,d \in \mathrm{GF}(3) \right\}.$$

It can easily be verified that $(xy)^2 = y^2x^2$ and $(xy)^3 = y^3x^3$. So, with n = 2, R is n-torsion free and $(xy)^n = y^nx^n$, moreover R is not commutative. Also with n = 3, R is n + 1-torsion free and $(xy)^n = y^nx^n$, but R is not commutative.

References

- H. Abu-Khuzam, A commutativity theorem for rings, Math. Japon. 25(1980), 593– 595.
- [2] R. Awtar, On commutativity of non-associative rings, Publ. Math. (Debrecen), 22(1975), 177-188.
- [3] H. E. Bell, On some commutativity theorems of Herstein, Arch. Math. (Basel) 24(1973), 34-38.
- [4] I. N. Herstein, Power maps in rings, Michigan Math. J. 8(1961), 29-32.
- [5] I. N. Herstein, A commutativity theorem, J. Algebra 38(1976), 112-118.
- [6] N. Jacobson, Structure of Rings, American Mathematical Society Colloquium Publications, Vol. 37, Revised edition, American Mathematical Society, Providence, R.I., 1964.
- [7] W. K. Nicholson and Adil Yaqub, A commutativity theorem for rings and groups, Canad. Math. Bull. 22(1979), 419-423.

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India

E-mail address: km_shadab@hotmail.com