On transitivity of $M(r, s)$-inequalities and geometry of higher duals of Banach spaces

Rainis Haller

ABSTRACT. In this note we study transitivity of $M(r, s)$-inequalities and geometry of higher duals of Banach spaces. Our main theorem shows that if X and Y are closed subspaces of a Banach space Z such that X is an ideal satisfying the $M(r, s)$-inequality in Y and Y is an ideal satisfying the $M(r, s)$-inequality in Z, then X is an ideal satisfying the $M(r, s)$-inequality in Z. This extends the corresponding result for M-ideals. As an application we show that if a Banach space X is an ideal satisfying the $M(r, s)$-inequality in its bidual, then X is an ideal satisfying the $M(r, s)$-inequality in its dual space of order $2n$ for every $n \in \mathbb{N}$. It follows that if X is an ideal satisfying the $M(1, s)$-inequality in its bidual, then X has the strong uniqueness property SU in all its duals of even order. These results generalize the corresponding results for M-ideals established by Rao [R].

1. Introduction

Let Y be a (real or complex) Banach space, and let X be a closed subspace of Y. The subspace X is called an ideal (cf. [GKS]) if there exists a norm one projection P (an ideal projection) on the dual space Y^* with $\ker P = X^\perp = \{ y^* \in Y^* : y^*(x) = 0 \ \forall x \in X \}$ (the annihilator of X in Y^*). Given $r, s \in (0, 1]$, the subspace X is said to be an ideal satisfying the $M(r, s)$-inequality in Y (cf. [CNO]) if X is an ideal in Y and a corresponding ideal projection P satisfies

$$\|y^*\| \geq r \|Py^*\| + s \|y^* - Py^*\| \ \forall y^* \in Y^*.$$

If

$$\|y^*\| = \|Py^*\| + \|y^* - Py^*\| \ \forall y^* \in Y^*,$$

then X is said to be an M-ideal in Y (cf. [AE] or e.g. [HWW]).

Clearly, the class of ideals satisfying the $M(r, s)$-inequality is more general than the class of M-ideals. In fact, X is an ideal satisfying the $M(1, 1)$-inequality in Y if and only if X is an M-ideal in Y. In this case the projection P is unique, and in the case $Y = X^{**}$, it is the canonical projection $\pi_X =$
where $j_X : X \to X^{**}$ denotes the canonical embedding) from X^{***} onto X^*. According to the terminology in [CN1] (cf. also [CNO] and [HO]), we say that X satisfies the $M(r,s)$-inequality if

$$
\|x^{***}\| \geq r \|\pi_X x^{***}\| + s \|x^{***} - \pi_X x^{***}\| \quad \forall x^{***} \in X^{***}.
$$

In [CN1] and [CNO] examples of spaces satisfying $M(r,s)$-inequality for some $r,s \in (0,1]$ that are not M-ideals are given, among them there are also spaces satisfying $M(1,s)$- or $M(r,1)$-inequalities.

The ideal projections are closely related to the Hahn-Banach extension operators. Recall that a Hahn-Banach extension operator is a linear operator $\varphi : X^* \to Y^*$ such that φx^* is a norm-preserving extension of x^* for all $x^* \in X^*$. In this case note that $P = \varphi i_Y^* X^*$, where $i_Y^* X^*$ is denoting the inclusion map of X into Y, is an ideal projection on Y^* with $\ker P = X^1$. Also note that $i_Y^* X^*$ denotes the identity map on X^*. On the other hand, if P is an ideal projection on Y with $\ker P = X^1$, then $\varphi : X^* \to Y^*$ defined by $\varphi x^* = Py^*$, where $y^* \in Y^*$ is a norm-preserving extension of $x^* \in X^*$, is a Hahn-Banach extension operator.

In Section 2, we study transitivity of $M(r,s)$-inequalities. It is well known (see e.g. [HWW, Proposition 1.17 (b)]) that if X and Y are closed subspaces of a Banach space Z such that X is an M-ideal in Y and Y is an M-ideal in Z, then X is an M-ideal in Z. Our main theorem (see Theorem 1) generalizes this result to $M(r,s)$-inequalities, thereby the connection between ideal projections and Hahn-Banach extension operators is used.

If X is an M-ideal in Y, then the projection $I_Y - P$ has norm one, where P is a corresponding ideal projection on Y^*. In general, this is not true for ideals satisfying the $M(r,s)$-inequality (see [CN1, Example 4.3] and [JW]). The above-mentioned property of M-ideals is used in the recent paper by Rao [R], where it is proved (see [R, Theorem 1]) that any Banach space which is an M-ideal in its bidual is an M-ideal in its duals of even order. In Section 3, as an application of our main theorem, a corresponding extended result for $M(r,s)$-inequalities is established (see Theorem 6). It contains the Rao's result as a particular case.

Let us fix some more notation. In a Banach space X, we denote the closed unit ball by B_X. For $n \in \mathbb{N}$, the dual space of X of order n is denoted by $X^{(n)}$. As usual, we identify Banach space X and its canonical image $j_X : (n-1) \to j_X(X)$ in $X^{(2n)}$.

2. Transitivity of $M(r,s)$-inequalities

The following is our main result.

Theorem 1. Let X and Y be closed subspaces of a Banach space Z. Let X be an ideal satisfying the $M(r,s)$-inequality in Y and let Y be an ideal satisfying the $M(u,v)$-inequality in Z for some $r,s,u,v \in (0,1]$. If $su \leq v$, then X is an ideal satisfying the $M(\frac{ru}{1-u} v, \frac{su}{1-u} v)$-inequality in Z. If $su \geq v$, then X is an ideal satisfying the $M(\frac{ru}{s}, v)$-inequality in Z.

Proof. Let P and Q be corresponding ideal projections on Y^* and Z^*, respectively. Let $P = \varphi i_{XY}^*$ and $Q = \psi i_{YZ}^*$, where $\varphi: X^* \to Y^*$ and $\psi: Y^* \to Z^*$ are the Hahn-Banach extension operators (cf. the Introduction). Then $\psi\varphi: X^* \to Z^*$ is also a Hahn-Banach extension operator and hence $R = \psi \varphi i_{XZ}^*$ is an ideal projection on Z^* with $\ker R = X^\perp$. We also note that $R = \psi P i_{YZ}^*$. For every $z^* \in Z^*$ we have

$$rv\|Rz^*\| + su\|z^* - Rz^*\|$$

$$= rv\|\psi P i_{YZ}^* z^*\| + su\|z^* - \psi P i_{YZ}^* z^*\| + \psi i_{YZ}^* z^* - \psi i_{YZ}^* z^*\|$$

$$\leq rv\|\psi P i_{YZ}^* z^*\| + su\|\psi (i_{YZ}^* z^* - P i_{YZ}^* z^*)\| + su\|z^* - \psi i_{YZ}^* z^*\|$$

$$= v(r\|P i_{YZ}^* z^*\| + s\|i_{YZ}^* z^* - P i_{YZ}^* z^*\|) + su\|z^* - Q z^*\|$$

$$\leq (v\|s\| i_{YZ}^* z^*\| + s\|z^* - Q z^*\|)$$

$$= (v - su\|i_{YZ}^* z^*\| + s\|z^*\|)$$

If $su \leq v$, then

$$rv\|Rz^*\| + su\|z^* - Rz^*\|$$

$$\leq (v - su\|i_{YZ}^* z^*\| + s\|z^*\|)$$

$$\leq (s(1 - u) + v\|z^*\|.$$

Hence X is an ideal satisfying the $M(\frac{rv}{s(1-u)+v}, \frac{su}{s(1-u)+v})$-inequality in Z.

If $su \geq v$, then

$$rv\|Rz^*\| + su\|z^* - Rz^*\|$$

$$\leq (v - su\|i_{YZ}^* z^*\| + s\|z^*\|)$$

$$\leq s\|z^*\|.$$

Hence X is an ideal satisfying the $M(\frac{rv}{s}, v)$-inequality in Z.

One immediately obtains the following two corollaries.

Corollary 2. If X is an ideal satisfying the $M(r, s)$-inequality in Y and Y is an ideal satisfying the $M(r, s)$-inequality in Z, then X is an ideal satisfying the $M(\frac{rv}{s}, \frac{rv}{s})$-inequality in Z.

Corollary 3 (see e.g. [HWW, Proposition 1.17 (b)]). If X is an M-ideal in Y and if Y is an M-ideal in Z, then X is an M-ideal in Z.

The next lemma leads us to a more general version of our main theorem.

Lemma 4. Let X be an ideal satisfying the $M(r, s)$-inequality in a Banach space Y. Let T be a linear isometry from Y onto a Banach space W. Then $T(X)$ is an ideal satisfying the $M(r, s)$-inequality in W.

Proof. Let P be a corresponding ideal projection on Y^* with ker $P = X^\perp$. Let $P = \varphi i_{XY}^*$, where $\varphi: X^* \to Y^*$ is the Hahn-Banach extension operator. Take $R = (T^{-1})^* \varphi S^* i_{T(X)^*}^*$, where $S: X \to T(X)$ is defined by $Sx = Tx$ for every $x \in X$. Note that $(T^{-1})^* \varphi S^*: T(X)^* \to W^*$ is a
Hahn-Banach extension operator and $i^*_{T(X)W} = (S^{-1})^*i^*_{XY}T^*$. It follows that $R = (T^{-1})^*PT^*$ and for every $w^* \in W^*$ we have

$$r\|R w^*\| + s\|w^* - Rw^*\| \\
\quad = r\|(T^{-1})^*\phi S^*i^*_{S_{T(X)W} w^*} + s\|w^* - (T^{-1})^*\phi S^*i^*_{S_{T(X)W} w^*}\|
\quad \leq r\|(T^{-1})^*\| \|\phi S^*i^*_{S_{T(X)W} w^*}\| + s\|(T^{-1})^*\| \|T w^* - \phi S^*i^*_{S_{T(X)W} w^*}\|
\quad = r\|PT^*w^*\| + s\|T^*w^* - PT^*w^*\|
\quad \leq \|T^*w^*\|
\quad \leq \|T\| \|w^*\|
\quad = \|w^*\|.$$

Hence, $T(X)$ is an ideal satisfying the $M(r, s)$-inequality in W. \qed

Remark. If $r = s = 1$ in Lemma 4 and we consider all the pertinent spaces as subspaces of a certain Banach space, then we get exactly Lemma 2.1 in [R] without the assumption $Tx = x$, for all $x \in X$. Thus this assumption is superfluous.

Combining Theorem 1 and Lemma 4 we immediately get the following result.

Theorem 5. Let X be an ideal satisfying the $M(r, s)$-inequality in a Banach space Y and let W be an ideal satisfying the $M(u, v)$-inequality in a Banach space Z for some $r, s, u, v \in (0, 1]$. Assume further that there exists a linear isometry T from Y onto W. If $su \leq v$, then $T(X)$ is an ideal satisfying the $M\left(\frac{ru}{s(1-u)+v}, \frac{sv}{s(1-u)+v}\right)$-inequality in Z. If $su \geq v$, then $T(X)$ is an ideal satisfying the $M\left(\frac{ru}{s}, v\right)$-inequality in Z.

3. Applications

Our main result in this section is the following.

Theorem 6. Let X be a Banach space and let $r, s \in (0, 1]$. If X is an ideal satisfying the $M(r, s)$-inequality in its bidual, then X is an ideal satisfying the $M\left(\frac{r}{r+n(1-r)}, \frac{s}{r+n(1-r)}\right)$-inequality in its dual space $X^{(2n)}$ for every $n \in \mathbb{N}$.

To prove this theorem we need the following lemmas. The first one gives us a sufficient condition for a subspace to be an ideal satisfying the $M(r, s)$-inequality.

Lemma 7. Let Y be a Banach space and let X be a closed subspace of Y. Let $r, s \in (0, 1]$. If there exists a norm one projection Q on Y with $\text{ran} Q = X$ and

$$\|rQy + s(I-Q)z\| \leq \max\{\|y\|, \|z\|\} \quad \forall y, z \in Y,$$

then X is an ideal satisfying the $M(r, s)$-inequality in Y.
It follows that

\[\| \phi \| \leq \| \psi \| \]

and

\[\| \psi \| \geq \| \phi \| \frac{r}{s} \]

since \(\phi \) and \(\psi \) are defined on the same subspace of \(X \) with \(\| \phi \| \leq \| \psi \| \).
Therefore the astriction T of A^{**} is a linear isometry from X^{**} onto $(\text{ran } A)^{\perp}$ satisfying

$$T(j_X(X)) = (j_{X^{(2n)}} A)(X) = (j_{X^{(2n)}} \ldots j_X)(X)$$

as desired.

By Theorem 5, $T(j_X(X)) = (j_X^{(2n)} \ldots j_X)(X)$ is an ideal satisfying the $M(u, v)$-inequality in $X^{(2n+2)}$, where

$$u = \frac{r_{r+n(1-r)}^s}{s(1 - \frac{s}{r+n(1-r)}) + \frac{s}{r+n(1-r)}} = \frac{r}{r + n(1-r) - r + 1}$$

and, similarly,

$$v = \frac{s}{r + (n+1)(1-r)}.$$

The next results are immediate from Theorem 6.

Corollary 9. If X satisfies the $M(1, s)$-inequality for some $s \in (0, 1]$, then X is an ideal satisfying the $M(1, s)$-inequality in all its duals of even order.

Corollary 10 (see [R, Theorem 2.2]). If X is an M-ideal in its bidual, then X is an M-ideal in all its duals of even order.

A subspace X of a Banach space Y is said to have property SU (the strong uniqueness property) in Y (cf. [O]) if there exists a linear projection P on the dual space Y^* with $\ker P = X^{\perp}$ such that for each $y^* \in Y^*$ with $y^* \neq Py^*$, one has $\|Py^*\| < \|y^*\|$. Let us remark (cf. [O]) that X has property SU in Y if and only if X is an ideal in Y and X has Phelps’ property U (the uniqueness property) in Y (cf. [Ph]) meaning that every functional $x^* \in X^*$ has a unique norm-preserving extension $y^* \in Y^*$. Subspaces having property U or SU have been studied e.g. in [O], [OP$_1$], [OP$_2$].

It is clear that if a subspace X is an ideal satisfying the $M(1, s)$-inequality in a Banach space Y for some $s \in (0, 1]$, then X has property SU in Y. Therefore the next result is immediate from Corollary 9.

Corollary 11. If X satisfies the $M(1, s)$-inequality for some $s \in (0, 1]$, then X has property SU in all its duals of even order.

Remark. In [R] it is shown (see [R, Remark 2.3]) that if X is an M-ideal in its bidual then all unit vectors of X^* are points of weak*-weak continuity for the identity map on all the unit balls of duals of odd order, whereas only the fact that the unit vectors of X^* have unique norm-preserving extensions to $X^{(4)}$ is used. Hence, the same conclusion holds if X is an ideal satisfying the $M(1, s)$-inequality in its bidual.
Acknowledgement

This article is a part of my Ph.D. thesis, written under the direction of Eve Oja at Tartu University. I am very grateful to her valuable help.

References

INSTITUTE OF PURE MATHEMATICS, UNIVERSITY OF TARTU, J. LIIVI 2-619, 50409 TARTU, ESTONIA
E-mail address: rainis@math.ut.ee