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Metric locally constant functions

MARIAN VAJAITU AND ALEXANDRU ZAHARESCU

ABSTRACT. Given an ultrametric space E, a function F:E-{0,00]is
said to be metric locally constant (m.l.c.) provided that for anyz € B
and any y in the open ball B(z, f(z)) one has f(z) = f(y). Given two
ultrametric spaces F and F, we investigate the maps w: E — F, for
which f oy ismlc. for any m.lc. function f: F — [0, o0].

1. Introduction

Let E be an ultrametric space, that is a metric space on which the distance
dp satisfies the triangle inequality in the strong form

dE((L',Z) < ma'x{dE(may)v dE(ya Z)} (l)

for any z, y, 2 € E. We denote by Fg the set of maps f : E — [0, o0].
A function f € Fg is said to be metric locally constant (m.l.c. for short)
provided that for any z € E and for any y in the open ball B(z, f (z)) one
has f(z) = f(y). We denote by Fg the set of m.Lc. functions. Metric
locally constant functions often appear in practice. For instance, it is easy
to see that for any ultrametric space £ and any isometry 1 : E — E, the
distance function between an element and its image, that is the function
J+ E = [0,00) given by f(z) = dg(z,v¥(z)), is an m.l.c. function. The
notion of metric locally constant function has been introduced in [14] in
order to study certain groups of isometries on a given ultrametric space.
In particular, various Galois groups over local fields can be described in
this way. Let p be a prime number, Qp the field of p-adic numbers, @p an
algebraic closure of @, and C, the completion of @p with respect to the
p-adic absolute value |- |. If f € F¢,, then

Gal(f) := {0 € Galeons (Cp/Qp) : |o(z) — 2| < f(z), z € Cp}

is a subgroup of the Galois group Galeont(Cp/Q,) =~ Gal(Q,/Qp). Some
important groups are given by such metric constraints. For example, if L is
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a finite Galois extension of @, and 7, is a uniformising element of L, then
the ramification groups (see [12])

n = {0 € Gal(L/Qp) : o(nL) = 7w (mod n7)}
are of this type. To be precise, if f, € F¢, is given by

|7|®, ifz=myg,

fulz) =

00, if x £ 7p,

then the restrictions to L of the automorphisms o € Gal(f,) produce the
above group G,. For another example, recall that by Galois theory in C,
(see [3], [11], [13]), each closed subgroup H of Galcont (Cp/Qp) corresponds
to a closed subfield F of C,. We may write 7 in the form H = Gal(f), with

0, ifzePF,

1@ =), itzec,\F.

If we now choose a generating element T of F' (see [1], [2], [7]), that is, an
element T' € F for which Q,[T] is dense in F, then one also has H = Gal(g),
where

0, ifz=T,
oo, fx#T.
The nature of the above equality Gal(f) = Gal(g) has both an algebraic
aspect and a metric one. The m.l.c. functions on C, play an important role

in the metric aspect of the theory. In particular, as shown in [14] and [15],
there is a canonical way to associate to any f € F¢, an m.l.c. function

g(z) =

f € .’}'-:Cp, and this process leaves the Galois group unchanged, i.e., one has
Gal(f) = Gal(f).

There are various natural maps between local fields, such as the trace or
the norm, and it would be interesting to study the effect of these maps on
m.l.c. functions.

In the present paper we take a general point of view. Given an ultrametric
space E, together with the associated set of functions Fg and the canonical
map f f from Fg to .7-"13, we look for natural ways to transport this metric
structure from F to another ultrametric space F. The main questions and
results are presented in Section 2 below,

2. Statement of results

Let E and F' be two ultrametric spaces. Any map ¢ : E — F gives rise
to a map ¢* : Fr — Fg given by ¢*(f) = f o ¢. We are interested to find
circumstances under which ¢* sends m.l.c. functions to m.l.c. functions, and
moreover to describe the image of Fp through ¢*. A partial answer to the
problem is provided by the following result. First recall that given a positive
real number A and two metric spaces F and F', amap ¢ : £ — F is said to be
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A-Lipschitzian provided that dr(p(z),o(y)) < Adg(z,y) for any z,y € E.
A map ¢ : E — E is called a contraction if dg(p(z), o(y)) < dg(z,y).

Proposition 1. Let E and F be two ultrametric spaces, and let ¢ : E —
F. If ¢ is 1-Lipschitzian then ¢ (.7-'F) C Fg.

Corollary 1. Let E be an ultrametric space, and let o : E — E. If ¢ is
a contraction then ¢*(Fg) C Fg.

We say that a map ¢ : E — F is a quasi-isometry provided that for any
z,y € E one has

dr(p(z), p(y)) = dr(z, 9™ (¢(y))). (2)

Here the right hand side of (2) is defined as usual as a distance between a
point and a set:
dp(z, 0" (pW))) = inf dp(z,z)= inf dg(s,2).
zep~o(y) p(2)=¢(y)

Note that if ¢ is injective then ¢~!(¢(y)) consists of y alone, thus an in-
Jective quasi-isometry is an isometry. Note also that any quasi-isometry is
1-Lipschitzian. A suggestlve example is the following. Let ¢ : Q, — Q, be
given by o(z) = zP~!, where Qp is the field of p-adic numbers. Observe that
©(Zp) C Zp, p(U) C U, o(Uy) C Uy where Zy, U and U; denote respectively
the ring of p-adic integers, the group of units in Z, and the group of prin-
cipal units (i.e. those which are = 1 (mod p)). Now on Q, the map p is
continuous but it is not 1-Lipschitzian. On Zy, ¢ is 1-Lipschitzian but it is
not a quasi-isometry. On U, ¢ is a quasi-isometry but it is not an isometry.
On U, ¢ is an isometry. A less trivial example of a quasi-isometry is the
following. Let C, denote the topological closure of an algebraic closure (@p
of Qp. Let B+ be Fontaine’s ring (see [4], [5]) and let B,, = B r/1", where
I denotes the maximal ideal of B,. As was shown in [6], the canonical
projections B, — C, are quasi-isometries.

The notion of quasi-isometry is useful in our present investigation. It is
proved in [14] that for any ultrametric space E and any function f € Fg
there is a largest m.Lc. function g satisfying g < f. Moreover, this function
g is denoted by f and it is given by

f(z) = inf max{ds(z,v), f»)}

for any z € E. In the terminology from [15], the map (~) : Fg = Fg, f — f
is an inferior regularization on the set Fg. The set of f regular elements, i.e.,

elements f for which f = f, coincides with the set FE of m.l.c. functlons
Now let E, F be two ultrametric spaces and ¢ : E — F. If we take a

function f € Fp, send it via * to ©*(f) and take the regularization ¢* ( 1),
this element of Fp is an m.l.c. function. If we first take the regularization
of f in Fr and then send it via ¢* we obtain the element *(f) of Fg.
Under the assumption that ¢ is 1-Lipschitzian we know from Proposition
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1 that ¢*(f) is m.l.c., but it might not coincide with *(f). We do have

©*(f) = ¢*(f) under the stronger assumption that ¢ is a surjective quasi-
isometry.

Proposition 2. Let E, F be ultrametric spaces and let ¢ : E — F be a
surjective quasi-isometry. Then the diagram

Frp —>— Fg

)| I8

Fr --———>* FE
@

is commautative.

We want to describe the image of F  through ¢*. In order to do this, we
introduce the following subset Fr of Fg,

Fg={f € Fg: f(z) = f(y) for any z, y € E with p(z) = ¢(y)}.

Proposition 3. Let E, F' be ultrametric spaces and let p : E — F be a
surjective quasi-isometry. Then ¢*(Fr) = Fr N FE.

3. Proof of the results

We start with the proof of Proposition 1. Let E, F' be ultrametric spaces
and let ¢ : £ — F be 1-Lipschitzian. Choose an m.l.c. function f € Fp.
We need to show that ¢*(f) is m.Lc.. For, let z,y € F such that dg(z,y) <

@*(f)(z). Note that ©*(f)(z) = f(e(z)) and dr(p(z), p(y)) < dr(z,y) <

@*(f)(z) = f(p(z)). Since f is m.lc. it follows that f(p(z)) = f(e(y)),
i.e., o*(f)(z) = ¢*(f)(y). This shows that ©*(f) is m.l.c. and Proposition

1 is proved.
Next we turn to the proof of Proposition 2. Because ¢ is a surjective
quasi-isometry we have for any z € E that

o (F)(@) = Inf max{dp(z,y), f(p(y))} = zigg( )maX{dE(w,y),f(Z)}
yep~ (2
:zlgg max{ye;i)r—lg(z) dE(m’ y)> f(z)} :;g}; ma‘x{dE(l" (P-l (z))7 f(Z)}

= inf max{dr(p(2), 2), f (2)} = f(p(2)) = ¢"()(2)-

It follows that the diagram from the statement of Proposition 2 is commu-
tative, and this completes the proof of Proposition 2.

We now turn to the proof of Proposition 3. Before we start the proof, let
us recall the notion of regularization from [15].

Let (M, <) be a partially ordered set. A map a: M — M is called an
inferior regularization on M if

a(z) < ofy)

3)

for any z,y € M withz <y,
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a(a(z)) = a(z) for any z € M, (4)

a(z) <=z for any z € M. (5)

If instead of (5) above the map « satisfies
a(z) >z  foranyz € M (6)

then we call @ a superior reqularization on M.
Theorem 2.4 of [14] shows that for any ultrametric space E, the map
f + f is an inferior regularization on Fr. We need the following result.

Lemma 1. Let A, B be two partially ordered sets, let f : A — B and
g: B — A be increasing (i.e., f(z) < f(y) for any z,y € A with z < y,
and similarly for g), and let as and ap be inferior regularizations on A,
respectively B, such that: (i) fog = Idp, (ii) go ap = aa o g and (iii)
h(z) > z for any z € A, where h =go f. Then:

(a) h is a superior reqularization on A.

(b) Im g = Im h.

(c) If z € A is h-regular (i.e. h(z) = z) then aa(x) is also h-regular.

(d) Im (g o @) = Im ey NIm h.

Proof. (a) From (iii) and the fact that f and g are increasing it follows
that h satisfies properties (3) and (6) of a superior regularization on A. The
equality (i) gives (g0 fogo f)(z) = (g0 f)(z), ic., h(h(z)) = h(z) for any
x € A and this implies that h is a superior regularization on A.

(b) Let b be an arbitrary element of B. Since f o g = Idp it follows that
[ is surjective and hence there exists a € A such that f(a) = b. We have
h(a) = g(f(a)) = g(b) and this implies Im g C Im h. The reverse inclusion
is an immediate consequence of the definition of h.

(c) Using (ii) in the equality fogoap = ap it follows that foasog = ag.
Since z is h-regular we have (foo)(z) = (foas)(h(z)) = (foasogof)(z) =
(ap o f)(z). Now it is easy to see that h(aa(z)) = (go f o as)(z) =
(goapof)(z) = (aaogo f)(z) = (aaoh)(z) = as(z) so as() is h-regular.

(d) Using again (ii) and (b), it is enough to prove that Im (a4 o h) =
Im ag N Im h. Clearly Im (x4 o h) C Im . Also, we observe that
Im(@goh)=Im (agogof)=Im(goagof)CImg=1Imh. Therefore
Im (@g o h) CIm ayg NIm h.

For the reverse inclusion let a4 (u) = h(v) € Im a4NIm h, where u,v € A.
Because a4 is an inferior regularization we have a4(u) = aas(aa(u)) =
aa(h(v)) € Im (a4 o h) and the proof is complete. O

We now prove Proposition 3 in the following more precise form. Let E,
F be two ultrametric spaces and ¢ : E — F be a surjective quasi-isometry.
Consider the map ¢, : Fg — Fr defined by

ee(f)(z) = sup f(y).

y€p~1(z)
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For any f € Fg, denote f=0*(w(f)) and note that f > f. Note also that
the set Fg defined in the statement of Proposition 3 can be described as

Fe={f€Fe: [ =T}
Recall that the maps (~) : Fg — Fg and (~) : Fp — Fp are inferior regu-
larizations, and moreover, (~)oyp* = p*o(~) by Proposition 2. Observe also

that ¢* and o, are increasing and moreover ¢, 0¢p* = Idz,. Then by Lemma
1 we obtain the following result, which proves in particular Proposition 3.

Theorem 1. Let E, F be ultrametric spaces and let ¢ : E — F be a
surjective quasi-isometry. Then
1) The map (V): Fg— Fg, f f is a superior regularization on Fg.
2) Im ¢* = Fg.
3) IffEfE thenfEfE
4) o (]:F) fE N fE

4. An example

We end the paper with an example.

Let p be a prime number, Q, the field of p-adic numbers, K a finite
extension of Qp, K a fixed algebraic closure of K and C, the completion of
K with respect to the p-adic absolute value. For any a € K we denote by
degy a the degree of a over K. A pair (a,b) of elements from K is called a
distinguished pair if the following conditions hold:

degy a > degy b, (7)

if c€ K and degg c < degg a then |a—c| > |a — b, (8)
and

if c€ K and degyc < degy b then |a—c| > |a —b. 9)
Let now (a,b) be a distinguished pair and consider the K-linear map ¢ :
K(a) — K (b) which sends a™ to b™ for any n € {0,1,. .., (degg a)—1}. Thus
@(P(a)) = P(b) for any polynomial P(X) € K[X] of degree deg P(X) <
degg a. Note that the map ¢ is surjective, since degy a > degy b. Moreover,
for any element z € K(a) we have

lo(2)] < |- (10)
Indeed, choose P(X) € K[X] with deg P(X) < degy a such that P(a) =
Then ¢(z) = P(b). Next, decompose the polynomial P(X) over K, say

P(X) = (X — 01) -+ (X — 6,), (11)

with ¢ € K and 6y,...,0, € K. Here degy 0; < degga for any j €
{1,...,7}, hence |a — 8;| > |a — b| by (8), and since we are in an ultra-
metric space it follows that |a — 6;] > |b — 0;]. Therefore

|2| = ICIHIG—9|>|CIHIb 0il = le(2); (12)
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which proves (10). Using (10) and the fact that the map ¢ is linear, it
follows immediately that ¢ is 1-Lipschitzian. Next, take any two elements
z,y € K(a). There exists a polynomial G(X) € K[X] with deg G(X) <
degg b such that G(b) = ¢(z) — ¢(y). Denote y;, = £ — G(a). Let us note
that o(y1) = ¢(z) — ¢(G(a)) = ¢(z) — G(b) = ¢(y), thus y1 € ¢~ 1(p(y)).
Now decompose G(X) over K, say

G(X) = (X —m)-- (X —m), (13)

with ¢ € K and #y,...,m € K. For any j € {1,...,(} one has deggn; <
degg b, and from (9) we find that |a — 7;| > |a — b|, which further implies
la —n;] = |b —n;]. We deduce that

{ l
lola) =W =GO =1 [T -ml =l [[la—nl
j=1 j=1

=|G(a)| = |z —yul.

Combining (14) with the fact that y1 € ¢~ 1(¢(y)), and recalling that ¢
is 1-Lipschitzian, we conclude that ¢ satisfies the equality (2), so ¢ is a
quasi-isometry.

If we start with a given element a € K, we may construct chains of
elements from K such that any two consecutive elements in the chain form
a distinguished pair. An (s + 1)-tuple (ag,...,as) of elements from K such
that ap = a, (aj_1,a;) is a distinguished pair for any j & {1,...,s} and
as € K, is said to be a saturated distinguished chain for a over K. Saturated
distinguished chains have been introduced in [10] in order to investigate the
structure of irreducible polynomials in one variable over a local field, and
were also studied in [1], [8] and [9]. From the above discussion we know
that for any a € K, any saturated distinguished chain (ag,...,as) for a
over K and any j € {l,...,s}, the linear map ¢; : K(aj_1) — K(a;)
given by ¢;(P(a;j—1)) = P(a;) for any polynomial in one variable over K of
degree deg P < degg a;_; is a surjective quasi-isometry. The chain of maps
¥1,...,ps produces a chain ¢f,..., @}, with go;f  Fr(a;) = Fr(aj_y)- I
particular, at each step j € {1,..., s}, the metric locally constant functions
defined on the field K (a;) are sent via (5 to metric locally constant functions

defined on K(a;_1), and the image of fK(aj) in Fr(q;_,) is described by
Theorem 1.
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