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Stability of the spline collocation method for
Volterra integro-differential equations

PEETER OJA AND MARE TARANG

ABSTRACT. Numerical stability of the spline collocation method for
Volterra integro-differential equation is investigated and the connection
between this theory and corresponding theory for Volterra integral equa-
tion is explored. A series of numerical tests is presented.

1. Introduction

One of the most natural methods for solving Volterra integral and integro-
differential equations is the standard step-by-step collocation method with
polynomial splines. An important property of this method is the numerical
stability which means the boundedness of approximate solutions in uniform
LINOIS AT , norm when the number of knots increases. From general considerations it
801, USA turns out that it is relevant to find out stability conditions for certain test
equations. While for Volterra integral equations such conditions are estab-
lished in [6], similar results for Volterra integro-differential equations were
missing. We show the connection between stability conditions for integral
and integro-differential equations when the splines to be used are at least
continuous. In some cases we get explicit formulae showing the dependence
of the stability on collocation parameters. A series of numerical tests is given
to support the theoretical results.

2. The spline collocation method

Consider the Volterra integro-differential equation (VIDE)
¢
V(O = FEy®) + [ Kyl e, @
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with the initial condition y(0) = yo. Here functions f: [0,7] x R = R and
K:SxIR — R (where S = {(t,5): 0 < s <t < T}) with number yo are
supposed to be given. In order to describe this method, let 0 = 5 < t; <
... <ty =T (with %, depending on N) be a mesh on the interval [0, T)].

Denote hy, = t, — th—1, on = (ta-1,tn), 7 = 1,...,N, and Ay =
{t1,...,tn-1}. Let Px denote the space of polynomials of degree not exceed-
ing k. Then, for given integers m > 1 and d > —1, we define

Sf,hLd(AN) ={u: uls, € Ppyd, n=1,...,N, ugll(tn) = ug)(tn),
ta € An, 5=0,1,...,d}

to be the space of polynomial splines of degree m + d which are d-times
continuously differentiable on [0, 7.

An element u € S¢ +4(An) as a polynomial spline of degree not greater
than m+d forallt € oy, n =1,..., N, can be represented in the form

m-+d
'U'n(t) = Z bnk(t - tn-—l)k- (2'2)
k=0

The smoothness conditions impose certain linear restrictions on the coeffi-
cients b, and we will present them in the next section.

Suppose that there is a given fixed selection of collocation parameters
0<ec <...<cp < 1. Then we define collocation points £,; = t,_1 + cjhn,
j=1,...,m,n=1,..., N, forming a set X(N). In order to determine the
approximate solution u € S¢, +a(AN) of the equation (2.1) we impose the
following collocation conditions

' (t) = f(t,u(t)) + /OtIC(t,s,u(s))ds, te X(N). (2.3)

Starting the calculations by this method we assume also that we can use the
initial values u{’ (0) = y()(0), =0, ..., d, which is justified by the require-
ment u € C%0,T]. Another possible approach is to use only u1(0) = y(0)
and more collocation points (if d > 1) to determine u;. Thus, on every inter-
val o, we have d + 1 conditions of smoothness and m collocation conditions
to determine m + d + 1 parameters b,,. This allows us to implement the
method step-by-step going from an interval o, to the next one.

In this paper we will analyze the stability of the collocation method where
the splines are at least continuous. Thus, we suppose in the sequel that d > 0.

3. The method in the case of a test equation

Consider the well-known test equation

t
() = ey(t) + A /0 y(s)ds + f(t),  te[0,T), (3.1)
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where, in general, A and « may be any complex numbers. Assume that the
mesh sequence {Ay} is uniform, i.e., h, = h = T/N for all n. Representing
t€opast=1ty_1+7h, 7€ (0,1], we have on o,

Per Yo are

0 <11 <

m-+d
Un(tn-1+Th) = D am7*, 7€ (0,1], (3.2)
k=0

where we passed to the parameters a,j = bpih®.
The smoothness conditions (for any u € S9, +a(AN))

u(nj)(tn_o):ugll(tn'*“o)’ J=0,...,d, n=1,...,N -1,

can be expressed in the form

m+d Kl
arameters Gni1y = ) F= it e j=0,...,dyn=1,...,N - 1. (3.3)
|+ i, po 15

The collocation conditions (2.3), applied to the test equation (3.1), give

U (tnj) = f(tng) + ou(tn;)

tn;
+A/ “w(s)ds, j=1,...,myn=1,...,N.  (3.4)
0

From (3.2) we get

m+-d
'U'n(tnj) = Z ankc;'c
k=0

1 m-d

Uy, (tnj) = 7 Z ankkcf_l.
k=1
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Now the equation (3.4) becomes

m+d

Z ankkck 1

m—+d

tnj
=a Z ankc + Z )\/ s)ds+ A vn(s)ds + f(tn;)
tr 1

th—1

m-+d m-td

=aZankc +Z)\h (Zark'r )d

m+d

+ Ah /:j ( kZ:O ankrk)dT + f(tns)

m+d m-td

—aZankc +Z)\h (Z k—l—lark)

m+d k+1
+ Ah Z ank g + 1 (tng)- (3.5)

Using the notation a, = (ank)zn___ﬁ)d, we write (3.5) as follows:

m+d m+d m+d Ck—H

Z ankkc’C L _ah Z ankc — A2 Z ankk 1
n—1

= (g, Y o) + hf (tnj), (3.6)
r=1

where ¢ = (1,1/2,...,1/(m +d + 1)) and (-,-) denotes the usual scalar

product in R™*4*1. The difference of the equations (3.6) with n and n + 1
yields

m+d m-+d m-+d k+1
k—1
E anyikkc;” —ah E Ant1kCh — AR? E ant1, kk 1

m+d m-+d m+d k+1
= Z ankkck L ah Z ankc — AR? Z Ok ) + )xh2<q, o)

+ hf (tn—}—l,j)

—hf(tn;), j=1,...,myn=1,...,.N—1 (3.7
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Now we may write together the equations (3.3) and (3.7) in matrix form

(V — ahVi — AR*V) o1
= (Vo — ahVi — AR*(Va — V3))an +hgn, n=1,...,N—1,  (3.8)
with (m +d+ 1) x (m +d + 1) matrices V, V;, V1, Va, V3 as follows:

I being the (d + 1) x (d + 1) identity matrix,

...............................

...............................

Esual scalar
and n+1

em €%/2 ... cHTL/(m4d+1)

V3 having first d 4 1 rows 0 and last m rows the vector g, and, finally, the
m+d-+1 dimensional vector gn, = (0,...,0, f{tpy1,1)—F(tn1), ..., F(Ent1,m)—
J(tnm)). Thus g, = O(h) for f € C.

Proposition 1. The matriz V —ahV) — Ah2V3 is invertible for sufficiently
small h.
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Proof. Since

(d+1)c¢ (m + d)crHet
detV=det | ......c.ooiiiiiiiii
(d+1)c ... (m+d)cpte-t
1 ¢ ... c’ln_1
=(d+1)ct-...-(m+d)ct -det | ................. #0,
1 & cm-t
and d > 0, the matrix V is invertible. Such is also V — ahV; — AR2V; for
small h, which completes the proof. O

Therefore, the equation (3.8) can be written in the form
ont1 = (VI + W)ap + o,

where W = O(h) and r, = O(h?) for f € C. Note that W =0 if o = 0
and A =0. Set M = V-1V

4. Stability of the method

We have seen that the spline collocation method (2.3) for the test equation
(3.1) leads to the iteration process

onp1 =V Wo+W)ap+r, n=1,...,N—1, (4.1)
with W = O(h) and r,, = O(h?).

We distinguish the method with initial values u{’(0) = y()(0), j =
0,...,d, and another method which uses only u1(0) = y(0) and additional
collocation points to; = o + cjh, j = 1,...,d, with fixed co; € (0,1]\
{c1,...,cm} on the first interval oy. Denote, in addition, dy = max{d—1,0}

for the method with initial values and dy = 0 for the method with additional
initial collocation.

Definition 2. We say that the spline collocation method is stable if for
any o, A € € and any f € C%[0,T] the approximate solution v remains
uniformly bounded in C[0,7] as h — 0.

Let us notice that the boundedness of |Jul|cjr) is equivalent to the
boundedness of ||ay|| in n and A in any fixed norm of R™H4+1,

The principle of uniform boundedness allows to establish

Proposition 3. The spline collocation method is stable if and only if

llullcpo,r) < const||fllgapr VS € C®0,T], (4.2)

where the constant may depend only on T, a, A and on the parameters cj
and Coj-
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In order to formulate and prove the results concerning the numerical sta-
bility properties of the polynomial spline collocation method, we need the
following results for Volterra integral equations (VIE) (see [6]). The step-by-
step collocation method for VIE is supposed to determine the approximate

solution in 9 +a(AN) by the collocation conditions similarly to (2.3) at the
points #,;.

(1) The stability for VIE depends on the matrix M = Uy U, where Uy
and U are (m +d + 1) X (m + d + 1) matrices as follows:

I and A being defined as in V and Vj,

(2) If all eigenvalues of M are in the closed unit disk and if those which lie
on the unit circle have equal algebraic and geometric multiplicities,
then the spline collocation method is stable.

(3) If M has an eigenvalue outside of the closed unit disk, then the
method is unstable (u has exponential growth: || u ||oo> consteX ™,
K >0).

(4) If all eigenvalues of M are in the closed unit disk and there is an
eigenvalue on the unit circle with different algebraic and geomet-
ric multiplicities, then the method is weakly unstable (u may have
polynomial growth: || u ||~ const N* k € N).

le if for
remains

Theorem 4. For fized c; the eigenvalues of M for VIDE in the case m
and d + 1 and eigenvalues of M for VIE in the case m and d coincide and
have the same algebraic and geometric multiplicities, ezcept u = 1 whose
algebraic multiplicity for VIDE is greater by one than for VIE.

it to the

Proof. The eigenvalue problem for M is equivalent to the generalized
eigenvalue problem for Vo and V, ie., (M — pl)v = 0 for v # 0 if and
only if (Vo —uV)v = 0, and (M — p)w = v takes place if and only if
(Vo — pV)w = Vv. Denote v = 1 — p. Then for VIDE with the parameters
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m and d + 1 we have

0

Let I; ; be the diagonal matrix obtained from an identity matrix, replacing
the i-th diagonal element by the number p. Thus, the products I; A and
Al ; mean the multiplication of i-th row and i-th column of A, respectively,
by p. Consider also the matrices Uy and U arising in the study of VIE
with the parameters m and d. A direct calculation and the observation that

-1
Pyg_ (P , allows us to get from (4.3)

q)p qg—1

Tovo,a41 - I32(Vo — uV) 319 - Iapma2,1 /(m+d+1)

v 1 1/2 ... 1/(m+d+1)
0 Up — pU

1 1/2 ... 1/m+d+1
S(Vo—pV)S™ =R Y / /(m ) (4.4)
0 Uo—y,U

v;fhere S = Id+2,d+1 N I3,2 and R = Id-l—m+2,d+m+1 PPN Id.*.g,d_*_g. Now (4.4)
gives
det(Vo —uV) = (d+2)...(d +m+ Vv det(Uy — uU)

which permits to get the assertion about algebraic multiplicities of eigen-
values of M and M. The eigenvalue p = 1 of M and M has geometric
multiplicity m (this is proved for M in [6], but the proof for M is identical).

It remains to consider the geometric multiplicity of eigenvalues p # 1.
Thus, suppose v # 0. Using (4.4), the equation (Vy — uV)v = 0 can be
written as
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or, denoting w = Sv, equivalently
vwy +we + ... +wWntare/(m+d+1) =0, (4.5)

(Up—pU)w =0 (4.6)
with @ = (ws, ..., Wnidia).

Let w!,...,w" be linearly independent solutions of (4.6). Extending
these vectors with the first components defined by (4.5), we get vectors
w!,...,w* and then S~1w!,..., S w* as linearly independent solutions of
(Vo —pV)v=0.

Conversely, consider v!,...,v* as linearly independent solutions of (Vy —
pV)v = 0. Dropping the first components of the vecters w? = Svt we get the
solutions !, . .., W" of (4.6). Suppose y,W"+...+7,W* = 0 with at least one
7; # 0. Then, (4.5) allows to get y1w!+. . .+ypw® = 0 or yyvl+. . .4+y0* = 0.
This contradiction shows that the geometric multiplicities of p # 1 as an
eigenvalue of M and M coincide. The proof is complete. ad

Proposition 5. If M has an eigenvalue outside of the closed unit disk,
then the spline collocation method is not stable with possible exponential
growth of the approximate solution.

Proof. The structure of the proof is similar to that of Proposition 5 in [6]
and we will deal only with the main ingredients. Consider an eigenvalue u
of M 4+ W such that |p| > 1+ § with some fixed § > 0 for any sufficiently
small k. For ay # 0, being an eigenvector of M + W, we have here

(V — ahVi — Ah*Va)on = hgo, (4.7)

where go = (alo,...,ald,f(tu),...,f(tlm)) and ay; = hj’y(])(())/j',
j=0,...,d. Because of

y'(0) = ay(0) + £(0),

y9(0) = ey (0) + AyU=2(0) + FU-1(0),5 = 2,...,4, (4.8)

the vector o; determines via (4.7) and (4.8) the values fU)(0),
J=0,...,d~1, f(t11),..., f(tim). We take f on [0,h] as the polynomial
interpolating the values fU)(0), § = 0,...,d — 1, F(ti5),
j=1,...,m,and fO(h) =0, §=0,...,dy (if ¢y = 1, then fO () =0,
J =1,...,do). In the case of the method of additional knots let f be on
[0,h] the interpolating polynomial for the data f(0), f(ty;), j = 0,...,d,
f(t;), 3 =1,...,m, and fO(h) = 0, (here dy = 0 and if ¢, = 1, then
f(tim) = f(h) is already given and we drop the requirement f(h) = 0). In
both cases we ask f to be on [nh,(n + 1)Ah], n > 1, the interpolating poly-
nomial for the values f()(nh) = 0 and f((n +1)h) =0, =0,...,dp (if
¢m =1, then for j = 1,...,dp), and also f(tn41,;) = f(t1), 7 =1,...,m.

12
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This guarantees that f € C%[0,7T) and r, = 0, n > 1. The interpolant f
can be represented on [ty,¢y+41] by the formula

K ki i—1
ﬂﬂ:f@n+ﬂn=§:(§:mmm*W&OIlh—ag (4.9)

i=0 =0 =0

with b, being c; or cgj, & being t,; or t;, 0 < s; < dy, k; < 1, constants p;
depending on c¢; and cpj. In the case of initial conditions £ = m +d + d
(k = m+d+dp—1if ¢y, = 1) and in the case of additional knots K = m+d+1
(k = m+d, if ¢, = 1) on the interval [0, k] and £ = m+2dy+1 (k = m+2dy
if ¢;p = 1) on the interval [nh, (n + 1)A], n > 1.

Replacing h by h/k, k = 1,2,..., and keeping ||os|| = h/k, we have
ligolleo bounded which means that f(ti;), j = 1,...,m, and hiy()(0)/k7,
i=0,...,d,or K f(0)/ki, j =0,...,dy, are bounded, too, in the process
k — oo. Thus, (4.9) gives

|1fllcdogo,r) < const k%, (4.10)

On the other hand, ||ap1|] > (1 4 8)™||c1]|| yields

h _
|mmuz%u+®ml (4.11)

and (4.2) cannot be satisfied. The inequalities (4.10) and (4.11) mean also
the exponential growth of the approximate solution if we keep the norm of
f bounded in C%. The proof is complete. a

The case where all eigenvalues of M are in the closed unit disk and there is
at least one of them on the unit circle having different algebraic and geomet-
ric multiplicities can be treated as for VIE. In fact, for VIDE the eigenvalue
p =1 has always different algebraic and geometric multiplicities. Thus, the
collocation method is always at least weakly unstable. This weak instabil-
ity, however, cannot be observed for low order splines which we confirm with
numerical examples. In practice, the method is stable if and only if all eigen-
values of M are in the closed unit disk which we keep in mind describing the
examples.
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5. Examples

Let us consider some special cases of d and m.
Case d = 0, m > 1 being arbitrary. We have

10...0 11...1
(20, we(ts)

and det(Vp —pV) = (1 — u)™*! det Cy where Cj is obtained from ¢ omitting
the first column. This means that the method is always stable.

Case d =1, m = 1 (quadratic splines). The equation det(Vy — pV) =0
besides 4 = 1 has the solution p = 1 — 1/¢;. The method is stable if and
only if 1/2 <¢3 <1.

Case d = 1, m = 2 (Hermite cubic splines). Now the equation
det(Vo — uV) =0 has a root p = 1 with geometric multiplicity 2 and al-
gebraic multiplicity at least 3. The solution p(cy,e2) = 1— (¢1 +co — 1) /ercz
yields (see [6]) that the method is stable if and only if ¢; + ¢5 > 1.

Case d = 2, m = 1 (cubic splines). Here the geometric multiplicity of
= 1 as solution of det(Vp — uV) = 0 is 1 and its algebraic multiplicity is 2.
Two other solutions p = 1 — (1 + 2¢; + (1 + 4e1(1 — ¢1))1/?)/2¢? show (see
[6]) that the method is stable if and only if ¢; = 1.

6. Numerical tests

We chose the initial function f(¢) = (cost — 3sint — e!)/2 and o = 1,
A =1 in the equation (3.1) on the interval [0,1]. This equation has the
exact solution y(t) = (sint+cost+e')/2. As an approximate value of ||u||o

we actually calculated mMax]<n<N MAX<k<10 Iun (tn—1+kh/10) | The results
are presented in following tables.

Case d =0, m =1 (linear splines).

N | 4 | 16 | 64 | 256 | 409
c1 = 1.0 | 2.105018 | 2.059782 | 2.052299 | 2.050586 | 2.050062
¢ = 0.5 | 2.049933 | 2.050022 | 2.050027 | 2.050028 | 2.050028

Cased =0, m =2
N 4 16 64 256 4096

22(1)(7) 2.042611 | 2.049641 | 2.050004 | 2.050026 | 2.050028
Cl=0.4

05 = 0.6 2.047681 | 2.049882 | 2.050018 | 2.050027 | 2.050028
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Case d =1, m = 1 (quadratic splines)
N | 4 | 16 | 64 | 256 | 4096
cy = 1.0 | 2.065503 | 2.050359 | 2.050048 | 2.050029 | 2.050028

cy = 0.5 | 2.047524 | 2.049863 | 2.050017 | 2.050027 | 2.050028
c1 = 0.4 | 2.047418 | 2.049880 | 8.962233 | 2.69 - 1032 | 1.83 - 10165

Case d =1, m = 2 (Hermite cubic splines)
N 4 16 64 256
z; z ?8 2.050006 | 2.050027 | 2.050028 2.050028
Cc1 = 0.3
Cy = 0.7
Ci = 0.2
Cy = 0.5

2.049615 | 2.050001 | 2.050026 | 2.050027

2.043332 [ 3.21-10%2 | 9.21-10%8 | 1.39 - 1042

Case d =2, m =1 (cubic splines)
N | 4 | 16 | 64 | 256
¢y = 1.0 | 2.050148 | 2.050028 | 2.050028 | 2.050028

c1 = 0.9 | 2.049806 | 2.049999 | 5.773942 | 1.60 - 10%°
c1 = 0.5 | 2.054945 | 3.30- 10* | 7.30 - 1038 | 2.77 - 10183

7. Notes

The numerical solution of VIEs and VIDEs by collocation methods in
certain piecewise polynomial spaces is discussed in detail in [1]. The methods
which use polynomial splines as approximate solutions are considered in [4].
The most systematic attempt to study the numerical stability for Volterra
integro-differential equations seems to be [3]. It should be remarked that
the proof of the main result of [3] (Theorem 2.3) is not correct. In [3] this
Theorem 2.3 is also applied to the particular cases and there are obtained
stability conditions which are disproved by our results.

The test equation (3.1) in the case f(t) = 0 can be found in [2], see also
[1].

Our technique was applied to VIE of the second kind in [6] in general
setting. Additional information about the behaviour of the method with
smooth polynomial splines is presented in [7]. We studied the numerical
stability of the collocation method for VIDE in the case d = ~1, m > 1
in [8]. It turns out that the stability depends essentially on the collocation
parameters ¢; and the numbers o, A in connection with m.

The collocation with multiple collocation nodes (if m > 2) coinciding with
spline knots for the Cauchy problem ¢ = f(z,v), y(0) = o, is studied in
[6]. In particular, it is proved that such a method is divergent for d > m + 2
and convergent for d < m + 1.
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The case m = 1 in [5] coincides with our setting for ¢; = 1. Taking into
account Theorem 4 of the current paper and the results of [7] for smooth
splines (m =1, ¢; = 1) we can find the complete consistence of the results,
i.e., the method for VIDE with m = 1 and ¢; = 1 is stable if and only if
d < 2 (until cubic splines).
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