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Reparameterization of second-order interaction
effects through the covariance matrix

TATIJANA NAHTMAN

ABSTRACT. It is demonstrated that the reparameterization of second-
order interaction terms in ANOVA can be achieved by means of con-
straints on the covariance matrix. In particular, classical reparameter-
ization conditions for fixed factors can be formulated in this way. The
approach stresses the common nature of fixed and random factors in
mixed linear analysis.

1. Introduction

Mixed linear statistical models contain both fixed and random factors.
During the history of the Analysis of Variance, various mixed model for-
mulations have been proposed and the discussion around this topic is still
continuing (Scheffe 1959 (7], Searle 1971 [5], Harville 1978 [1], Seely and El-
Houssainy 1988 [6], Khuri et al. 1998 [3]). In models of this type fixed and
random factors are clearly distinguishable and the interactions between fixed
and random factors are considered as independent random effects. Fixed fac-
tors are treated as constants while levels of random factors are represented
as random variables, possibly with a restricted covariance structure.

In the present paper we consider an approach to imposing constraints on
the second-order interaction effects through the covariance matrix of sam-
pled levels. In this context, the goal is to find out conditions under which
the covariance matrix would provide a reparameterization of the correspond-
ing factor. This approach is advantageous, for instance, from the point of
view of simulation studies where levels of fixed factors must be generated
randomly so that classical reparameterization conditions hold.
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2. Results

Let £ be an m X 1 vector of sampled levels of a factor o, n beann x 1
vector of sampled levels of a factor 8. Let v be an mn x 1 vector of sampled
levels of the factor that represents second-order interaction effects of ¢ and
n and let 3, be the covariance matrix of . Introduce a permutation matrix
P that interchanges levels of factor {. A matrix P, is defined analogously.
The permutation matrix P, = P ® P, interchanges levels of v with respect
to the changes in £ and 7.

Definition 1. The covariance matrix ¥, is called invariant with respect
to the permutation P, of the factor y (further simply P,-invariant) if

Zy = D(v) = D(Pyy).

Obviously, the P,-invariance can be considered as a property of the co-
variance matrix X, i.e., &, is P,-invariant if and only if P,YZ,,P; = 3.

The invariance has strong implications for the covariance matrix.

Lemma 1. If the matriz ¥y is invariant with respect to all permutations
Py, then it has the following structure:

XXy ... X

o X ... 3o
2’7 = . . .. . = m®21+'—7m®227 (1)

¥ X9 ... X
where I, is the identity matriz of order m and J,, = 1-1', where 1 is an
m X 1 vector of ones. The matrices &, ¥1 and X9 are here defined as

(7‘ T ... T
mn 7T ... Ti

\7‘1 Ti oo T

(7’ - Tl)In + 110,

™ T3 ... T3

3 T2 ... T3
= (19— T3)In + 73J0,

73 T3 ... 7’2)

2—22 = (7’—7’1 -"7'2+7'3)In+(7'1 —-’Tg)Jn

Cov(7ij, Vij)s

Cov(vij,vij), J#7,
Covl(vij,vj), 1#7,
OOU(7ij)7i’j')a i 76 ilaj # j’7
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whereti=1,...,mand j=1,...n

Proof. The proof follows by applying P, to v. This corresponds to inter-
changing some elements of v, what implies permutations of certain elements
in ¥,. As a result of the rearrangement, the structure of £, must not be
changed. O

The proof of the following lemma is straightforward.

Lemma 2. If the matriz ¥, has the structure (1), then its spectrum of
eigenvalues and corresponding eigenvectors is the following:

eigenvalue multiplicity structure of
eigenvectors
A= T—T1—To+T3 (m-1)(n-1) w=u®uv
Ao= T=mp+4(n~—1)(11 —73) (m—1) wr=u®ly
A3= T—T11+(m—1)(rp —13) (n—1) w3 = 1m @
M= T4+ (n—1)(n —m)+ 1 Wy =1 ® 1

+ (m—1)(1g — 73) + (mn — 1)7s
where u and v are vectors satisfying 35;% 1 ui =0 and 3°7_; v; = 0.

Next we show that the classical reparameterization conditions imply a
specific form for the P,-invariant covariance matrix %.,.

Lemma 3. If the covariance matriz %, of v is Py-invariant, then the
reparameterization of -y leads to the following structure of % :

(a') 27;1 %;=0,Vj = E’y = Hyz—l(fm - ‘TlﬁJm) ® ((7— T1)In + 11dn),

(b) Z;'l:1 Yi; = 0, Vi = E'y = ‘ﬁl}f(("' - 7'2)Im + T2Jm) ® (In - %Jn):

Proof. First, using the condition Y 1" v;; = 0 for all 5, we have

D(Z Yij) =mT+m(m—1)r, =0

+m(m — 1)nrg +m(m — 1)n(n -~ )13 =0.  (6)
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Hence,
71
m—1 m—1

Substituting these expressions for 7 and 73 into (1)—(4), we get

Ty = — and T3 =—

Zy In ® (7 =11 + 757 — 72y + (11 + 525)Jn)
+Im ® (— 755 + 5y )M n — 245)J0)
2 (1 = )T — 5 Im) © In + 72571 (I, — 2Jm) ® Jn
= 2 m — mJm) ® (1 — 1) Iy + 11 J).

Next, because of 37, 7i; = 0 for all 4,

n
D(Z Yi5) =nT +nn —1)m =0.
J=1

Therefore, using this result and (6), we get,

T d P
Tl = — an T3 = ———.
n—1 n—1

In this case the matrix X, is rewritten as
Yy = In®@((r+;5 -1 - n—T_ZT)In + (=5 + 220 )
+Jm ® (72 + 37%) In — %) Jn)
i (T = 1) I ® (In — 2Jn) + 29720 ® (In — L)
= %((T - 7'2)Im +72Jm) ® (In - %Jn)
Finally, applying the conditions ) y;; = 0, for all ¢ and j, and (6), the
parameters 71, 7o and 73 are expressed as

T p=_T P — (9)
n—1 2" m=1 2T (m-Dn-1

Substituting expressions (9) for the parameters 71, 79, 73 into (1)~(4),
the covariance matrix ¥, becomes

Ty = y(Im - LIm) ® (In — 17,).

Ty = —

d

As a consequence of Lemma 3, if the factor +y of second-order interaction
effects is reparameterized according to the conditions in (a), (b) or (c), then
its covariance matrix is singular.

In case when only one factor £ is considered, the singularity of the -
invariant covariance matrix of this factor would be a necessary and suffi-
cient condition for £ to be reparameterized (see [4]). The situation with the
second-order interaction effects is more complicated. The singularity of the




REPARAMETERIZATION OF SECOND-ORDER INTERACTION EFFECTS 55

P,-invariant covariance matrix of  that represents the second-order inter-
action effects does not, in general, imply the classical reparameterization
of 7. The next result provides conditions under which eigenvalues of the
P,-invariant covariance matrix lead to the classical reparameterization for
the vector of second-order interaction effects.

Theorem. Let v = (7i1,...,7mn) represent the interaction effects of
factors & and n. Assume ;5 # yij for all j and vij # vis for all ¢ a.s. Let
E(v) = 0 and let &, be Py-invariant. Let N\, (k=1,...,4) be an eigenvalue
of £y as defined by Lemma 2. Then the following conditions hold:

(1) 227 =0,V & A3=Xx=0,
(ii) Zj %i; =0, Vi & da=A =0,
(iii) Ez Yij = g, Vj, and Zj Yij = 0, Vi &= Az = Ag = 0.

Proof. We first show that condition (i) holds. Since Y, v;; = 0 for all 4,

=— and 73 = ——

[ ST Tm o1
(see the proof of Lemma 3, (7)). Then
A3 = T—11+(m—1)(1p —73)

= r—7+(m=-1)(——— 4+ —L ) =0,

m—-1 m-1
A = T+ (-1)(1n—1)+ (m—-1)(r2—73) + (mn—1)73
- _ IS S U _ 71
= 7+ (n 1)(7‘1+m_1) (r—11) — (mn 1)m~1
In case A3 = Ay = 0, the set of n linearly independent eigenvectors that

correspond to zero eigenvalues can be given by columns of the matrix U =
1, ® I,. Since E(y) =0,

= 0.

E(U'y) =0, D(U"y) =U'D(v)U =0.

Thus, U'y = 0 a.s. what implies the classical reparameterization of the
factor ~:

m
> 7 =0, Vi.
i=1

Next we prove condition (ii). Suppose Ej 7i; = 0 for all 2. Then, from
the proof of Lemma 3, we find

72

T =— and 73 = —

n—1 n—1"
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According to Lemma, 2,
A2 T~72+(n"1)(71~7'3)=T—TZ+(n—1)(—nzl+ ?1)20-

Aq 7+ (n—1)(n —73) + (m — 1) (2 — 73) + (mn — 1)73

7'~(T——7'2)+(m-—1)(’f2+n—7-_2‘I)“(mn—l) T_Q =0.

1

If A2 = Ay = 0, then according to the specific form of ¥, (see Lemma
3), the set of m linearly independent eigenvectors that correspond to zero
eigenvalues can be given by columns of the matrix V = I, ® 1,,. Since
E() =0,

n

E(V'y) =0, D(V'y) =V'D(y)V =0.
Thus, V' = 0 a.s. what implies the reparameterization of v with

n
Z’)’i]‘ = O, Vi.
j=1

The proof of (iii) goes similarly. Conditions 2% = 0, for all 4, and
Yo% =0, for all 7, lead to
T T T

ey L B g | )

T = —
(see the proof of Lemma 3). Therefore,
Ay = T-——Tz-l—(’l’b—-l)(’l’l —Tg)

T—‘rm—’i—I-i—(n—l)(—-

T

n—1
A3 = T—m+(m—=1)(r2 —713)
T4 —— + (m— 1)(—— T
n—1 m—1 (m-1)(n-1)
M = 7+ (n=-1)(11—73)+(m—1) (12 —73) + (Mmn — )73
T—(T—7)—(r—=m)+(mn—1)13=—7+7 + 79+ (mn - 1)1
L 1) — =0
— — - mn — = 0.
n—1 m-—1 (m—=1)(n-1)
Results from the proofs of conditions (i) and (ii) in case Ay = A3 = Ay = 0
lead to the reparameterization 2% =0, for all 4, and 37, v; = 0, for all
j, for the factor +. ]

) =0,

3. Discussion

Advanced linear statistical analysis offers extremely wide possibilities for
choosing underlying models and types of analysis. However, the increasing
complexity and possibility to choose models make it necessary to even more
precisely tune the model and hypotheses under testing. In the most difficult
cases, the appropriateness of the whole statistical analysis must be tested
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by statistical modelling. This activity needs generation of various factor
levels and their interactions with specific probability distributions including
various reparameterizations. Hence it arises a motivation for searching new
ways of characterizations of factors in mixed linear models. In the present
paper we have proposed an approach that enables to consider reparameter-
ization of second-order interaction effects in a common framework in mixed
linear models. We have demonstrated that reparameterization of the fac-
tor under invariance is equivalent to imposing constraints on the covariance
matrix of this factor.

Acknowledgements. This article is a part of my PhD thesis, written
under the direction of Tonu Mols at Tartu University. I am thankful to Ténu
Méls and Dietrich von Rosen for their helpful remarks and suggestions.

References

[1] D. A. Harville, Alternative formulations and procedures for the two-way mized model,
Biometrics, 34 (1978), 441-453.

[2] D. A. Harville, Matriz Algebra from a Statistician’s Perspective, Springer-Verlag, New
York, 2000.

[3] A. Khuri, T. Mathew and B. K. Sinha, Statistical Tests for Mized Linear Models,
Wiley, New York, 1998.

[4] T. Nahtman and T. Méls, Characterization of fized effects as special cases of gener-
alized random factors, Tatra Mt. Math. Publ. (2002) (to appear).

[5] S. R. Searle, Linear Models, Wiley, New York, 1971.

[6] J. F. Seely and R. El-Houssainy, When can random effects be treated as fized effects for

compuling a test statistic for o linear hypothesis?, Comm. Statist. Theory Methods
17 (1988), 1089-1109.

[7] H. Scheffe, The Analysis of Variance, Wiley, New York, 1959.

INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITY OF Tarru, J. Livi 2, 50409
TARTU, ESTONIA

E-mail address: tnahtman@ut.ee




