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Weakly regular topological algebras and spectral
extension property

ARNE KOKk

ABSTRACT. Properties of weakly regular topological algebras are exam-
ined. Necessary and sufficient conditions for a commutative semisimple
spectral algebra to have the spectral extension property for semisimple
algebras are given. Some applications are also considered concerning
the automatic continuity, unique uniform norm property and existence
of algebra norms on topological algebras with functional spectrum.

1. Introduction

As it is well known in the Banach algebra theory, the algebra C(X) of all
continuous functions on a compact Hausdorff space has a unique complete
algebra norm in the sense that any complete algebra norm on C (X) induces
the same topology that is induced by the sup-norm [16]. Even more, as it
was proved in 1949 by I. Kaplansky [18], any algebra norm (not necessarily
complete) on C(X) is at least as large as the sup-norm, so that C(X) has
the so called spectral extension property, i.e. rox)(f) = r(f) for every
f € C(X) and Banach algebras B in which C(X) is (not necessarily contin-
uously) embedded (here r¢(x) stands for the spectral radius in C(X)).

From then on lots of papers have been devoted to the investigation of
algebra norms and the spectral extension property of semisimple Banach

algebras (as well as of other classes of topological algebras) (see, for example,
(8,11-13,26,27]).

In Section 3 of the present paper we examine the spectral extension prop-
erty for semisimple algebras and prove several necessary and sufficient con-
ditions for a commutative semisimple spectral algebra to have the spec-
tral extension property, as well as the strong spectral extension property,
in semisimple extensions (Theorem 1 — Theorem 3). These conditions are
given by means of certain subsets of the character space of the algebra under
consideration.
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In conclusion, in Section 4, we apply the results obtained in proving some
theorems concerning the automatic continuity, unique uniform norm prop-
erty and existence of algebra norms on topological algebras with functional
spectrum (Theorem 4 — Theorem 6).

Finally, it should be pointed out that our theorems cover many of the
related results proved for semisimple Banach algebras in [4,6,7,9,19,25].

2. Preliminaries

Throughout this paper, all algebras are assumed to be associative, unital
and over the complex field C.

Let A be an algebra with the identity ea. A wunital subalgebra B of A
is a subalgebra of A such that e4 € B, o4(a) is the spectrum of an el-
ement a in an algebra A and r4(a) is the spectral radius of a € A, i.e.
ra(a) = sup{|a| : @ € ga(a)}. In case oa(a) is empty (respectively un-
bounded) then r4(a) is defined to be - oo (respectively + oo); and an
algebra A is said to be spectrally bounded if c4(a) is bounded for every
a € A or, equivalently [32], if 04(a) is compact for every a € A.

In what follows, Rad A will be the Jacobson radical of an algebra A and A
is said to be almost commutative if A/RadA is commutative. Also, Hom A
will be the character space of A, i.e. the set of all non-zero multiplicative
linear functionals on A, endowed with the topology of pointwise conver-
gence. Note that Hom A is compact if A is spectrally bounded. For an
algebra A with nonempty character space put A = {& : a € A}, where &
is the Gelfand transform of a € A, i.e. a(A) = A(a) for every A € Hom A.
Moreover, if B is any unital subalgebra of A then 7r’§ is the restriction map
74 : Hom A — Hom B.

The union over all n = 1,2, ... of the sets A™ of all n-tuples a = (ay, ..., a,)
of elements of A will be denoted by Ay and a(A) = (A(a1), ..., Alas)) for
every n-tuple a = (ay,...,an) € Ax and A € HomA. The Harte joint
spectrum af{ (a) of an n-tuple a = (ay,...,an) € A is defined to be the set
of all those (ay, ..., ay) € C™ for which the n-tuple (a1 — a1ea, ..., Gy — nea)
generates a proper left or right ideal in A; and the Harte joint spectrum af{

is said to have the projection property if
(X) 7(cf(a)) = 0¥ (n(a)) for each a € A,
where (21, ..., Tn) = (Tiy, .oy Tiyy) for 1 < iy < <ipy <.

If A is an algebra such that o4(a) = a(HomA) for every a € A then it
is said that A is an algebra with functional spectrum [2]. An algebra with
functional spectrum is always almost commutative. In addition, a spectrally
bounded algebra A is an algebra with functional spectrum if and only if the
Harte joint spectrum o] of A admits the projection property® [21].

If X is a topological space then C(X) is the algebra of all continuous
complex-valued functions on X equipped with the compact-open topology

1Note that this may not be true for algebras having elements with unbounded spectra.
Namely, there exist commutative algebras with empty character space but with Harte
joint spectrum possessing the projection property [22].
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and if A is an algebra with nonempty character space, we shall let G A denote
the Gelfand map of A, i.e. G4: A— A C C(HomA), G4(a) = é (a € A).

Recall that a topological algebra is an algebra which is also a topological
vector space in such a way that the ring multiplication is separately con-
tinuous; and a locally convez algebra is a topological algebra topology of
which is defined by a family {p; : i € I'} of seminorms. In particular, when
every seminorm p; (i € I) is submultiplicative (i.e. pi(ab) < p;i(a)pi(b) for
every a,b € A and i € I) then a locally convex algebra A is called a locally
m-convez algebra. Note that every locally m-convex algebra is a topological
algebra with jointly continuous ring multiplication. Moreover, a uniform
topological algebra is a locally m-convex algebra topology of which is defined
by a family of uniform seminorms (i.e. seminorms p satisfying p(a?) = p(a)?
for all @ € A).

A topological algebra A is called a Q-algebra if the set InvA of its invertible
elements is open in the topology of A. Also, A is said to be functionally con-
tinuous if homA = HomA, where homA stands for the space of continuous
characters of A. Every Q-algebra is functionally continuous and spectrally
bounded (see, for instance, [23, p. 60])%. In addition, {a € 4 : ra(a) < a}
(&> 0) is a neighbourhood of zero in every Q-algebra A [15,34].

An algebra seminorm (i.e. submultiplicative seminorm) ¢ on an algebra
A is called spectral if r4(a) < g(a) for all a € A; and if A can be equipped
with a spectral seminorm then A is called a spectral algebra [30]. So, if A is
a spectral algebra and q is a spectral seminorm on A then (4, q) is a locally
m-convex Q-algebra. Moreover, an algebra norm || || on A is said to be a
Q-norm if (4,[] ||) is a Q-algebra [27,33]. An easy calculation shows that
an algebra norm on a commutative algebra is a Q-norm if and only if it is
spectral®.

Now, a Gelfand-Mazur algebra is a topological algebra A such that for
every proper closed two-sided maximal modular ideal M of A the quotient
algebra A/M is topologically isomorphic to C; and if 7 is a topology on A
such that (A,7) is a Gelfand-Mazur Q-algebra then we will say that T is
a Gelfand-Mazur Q-topology on A. For different classes of Gelfand-Mazur
algebras see, for example, [1,23]. In particular, every commutative locally
m-convex algebra is a Gelfand-Mazur algebra. Furthermore, one can eas-
ily check that an almost commutative Gelfand-Mazur Q-algebra is always
spectral. In fact, it is well known that the following takes place (see [5,21]).

Proposition 1. Let A be a spectrally bounded algebra. The following
statements are equivalent:

(a) A is almost commutative and spectral,
) A is almost commutative and there is a uniform Q-norm on A/RadA,

) ofl(a) = a(HomA) for any a € Ay,

(b
(c) A is an algebra with functional spectrum,
(d
(e) T4 is submultiplicative on A.

2There exist spectrally bounded topological algebras, as well as functionally continuous
topological algebras, which are not Q-algebras [10,14,29].
3Concerning this and several other equivalent conditions see, for instance, [3,15,19,24].
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Let A be an algebra. A compact set K C HomA is called a set of unique-
ness for A if for any non-zero a in A there exists A € K such that A(a) # 0.
Clearly, if there is a set of uniqueness for A then A is commutative and
semisimple. A topological algebra A is said to be weakly regular [4] if given
a closed subset F' C homA, F 3 homA, there exists an element a # 0 in 4
such that a(A) = 0 for every A € F. Weak regularity arises naturally in the
study of uniqueness of the uniform norm in commutative Banach algebras
[4,7] and, in general, is weaker than regularity® [25].

A closed set F C homA is called a boundary set (or else a mazimizing
set) for a topological algebra A if for every a € A, there exists an element
Ao € F such that |a(Ao)| = sup{|a(A)| : A € homA}. The minimal (with
respect to inclusion) boundary set for A is called the Shilov boundary of A.
It is well known that every commutative Banach algebra A has a unique
Shilov boundary I'(A). In fact, this is true for all commutative Gelfand-
Mazur Q-algebras (see [23, pp. 189-193]). If A is a semisimple commutative
Gelfand-Mazur Q-algebra then every compact K C HomA containing the
Shilov boundary I'(A) is a set of uniqueness for 4, but there may be sets of
uniqueness for A that do not contain the Shilov boundary [25].

Following [36], we call a compact set K C HomA a spectral set for A if
oa(a) = a(K) for each a € A. A standard calculation shows that every
commutative Gelfand-Mazur Q-algebra possesses a minimal spectral set.
However, in general such a set is not determined in a unique way [36]. In
addition, any spectral set K for a commutative Gelfand-Mazur Q-algebra A
contains its Shilov boundary I'(A4), so that I'(A4) is contained in any minimal
spectral set for A.

Let now A be an algebra with functional spectrum. An eztension of
A is an algebra B with functional spectrum such that there is a one-to
one algebra homomorphism T of A into B with T'(e4) = ep. If B is an
extension of A then we shall view A as a unital subalgebra of B. Finally,
analogously to [25,7], we say that A has the spectral eztension property
for semisimple algebras (respectively strong spectral extension property for
semisimple algebras) if for any a € A and spectrally bounded semisimple
extension B of A one has r4(a) = rp(a) (respectively o4(a) = og(a)).

In the sequel we shall need the following easy lemmas.

Lemma 1. Let A be an algebra with functional spectrum and let B be
a specirally bounded extension of A such that AN RadB = {0}. Then
78 (HomB) is a set of uniqueness for A.

Proof. Note that, by definition, B is an algebra with functional spectrum.
In addition, HomB is compact, so that K = WE (HomB) is compact as well.
Now a(K) = 0 implies a € ANRadB = {0}, so that K is a set of uniqueness
for A. 0

4A commutative topological algebra A is said to be regular if for any closed set
F C homA and continuous character Ag ¢ F there exists an element a € A such that
4(Ao) =1 and a(A) = 0 for every A € F.
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Lemma 2. Let A be an algebra with functional spectrum and suppose that
K is a set of uniqueness for A. Then there ezists a commutative semisimple
Gelfand-Mazur Q-algebra B which is an extension of A such that a character
A € HomA has a multiplicative linear extension to B if and only if A € K.

Proof. Let K be a set of uniqueness for A and put B = C(K). Then B
is a semisimple Banach algebra, hence a commutative semisimple Gelfand-
Mazur Q-algebra, and because K is a set of uniqueness for A, the map
a = a4, (a € A) is a one-to-one homomorphism of A4 into B. So, B is
a semisimple spectrally bounded extension of A. Now, A € HomA has a
multiplicative linear extension to B if and only if there is A € K such that
A(a) = a(X) = Aa) for all a € A. Hence A € HomA has a multiplicative
linear extension to B if and only if A € K. O

Lemma 3. Let A be an algebra with functional spectrum and let X €
HomA. The following statements are equivalent:

(a) A is contained in any set of uniqueness for A,

(b) X has a multiplicative linear eztension to any spectrally bounded ez-
tension B of A such that ANRadB = {0}.

Proof. (a) = (b). Let B be any spectrally bounded extension of A such
that AN RadB = {0}. Then, by Lemma 1, 75 (HomB) is a set of unique-
ness for A, so that A € WE (HomB) or, equivalently, A has a multiplicative
linear extension to B.

(b) = (a). Clear by Lemma 2. O

3. Weak regularity and spectral extension property for
semisimple algebras

In this section we characterize weakly regular algebras and give, among
others, several necessary and sufficient conditions for a commutative semisim-
ple spectral algebra to have the spectral extension property for semisimple
algebras.

Theorem 1. Let A be a commutative unital semisimple spectral algebra.
The following are equivalent:

(a) A has the spectral extension property for semisimple algebras,

(b) every set of uniqueness for A is a boundary set for A,

(c) T(4) c N{K C HomA : K is asetof uniqueness for A},

(d) every character A € T'(A) has a multiplicative linear extension to any
semisimple spectrally bounded extension B of A,

(e) if B is any commutative semisimple Gelfand-Mazur Q-algebra and
T : A — B is one-to-one homomorphism then G 4 0 T~ is continuous on

T(A).
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Proof. (a) = (b). Suppose on the contrary that there exists a set of
uniqueness K for A that is not a boundary set for A. Then there is an
element ap € A such that |dy(A)| < ra(ap) for every A € K. By Lemma 2,
there is now an extension B of A such that

ra(ag) = rp(ap) = sup{|do(A)| : A € K} < ra(ao).
This contradiction proves that K is a boundary set for A.

(b) = (c). By Proposition 1, A has a unique Shilov boundary. The rest
is clear.

(c) = (d). Use Lemma. 3.

(d) = (e). Let B be a commutative semisimple Gelfand-Mazur
Q-algebra and let T : A — B be a one-to-one homomorphism. If U is
any neighbourhood of zero in C(HomA) then there is ¢ > 0 such that
U= {a € A: rala) < ¢ ¢ U. Now, as it was mentioned above,
Ve = {b € T(A) : rp(b) < €} is a neighbourhood of zero in T(4), and
an easy calculation shows that (G4 o T7!)(V.) C U.. We conclude that
G 40T ! is continuous on T'(4).

(e) = (a). Let B be any semisimple spectrally bounded extension of
A. Since B is a semisimple spectrally bounded algebra with functional
spectrum, rp is a Q-norm on B (see Proposition 1). Consider now A as a
unital subalgebra of a semisimple Gelfand-Mazur Q-algebra (B,rg). Then,
by condition (e), the Gelfand map G4 is continuous, so that 74(a) < rp(a)
for any o € A. |

By means of Theorem 1, we prove now the following characterization of
commutative semisimple weakly regular Gelfand-Mazur Q-algebras.

Theorem 2 (cf. [25, Theorem 1]). Let A be a commutative unital semi-
simple Gelfand-Mazur Q-algebra. The following are equivalent:

(a) A is weakly regular,

(b) T'(A) =homA and A has the spectral extension property for semisim-
ple algebras,

(c) I'(A) = homA is a minimal set of unigqueness for A,

(d) every character A € homA has a multiplicative linear extension to any
spectrally bounded extension B of A satisfying AN RadB = {0},

(e) o (a) = oE(a) for any semisimple spectrally bounded estension B of
Aandace A

Proof. (a) = (b). If A is semisimple then I'(A) is the set of uniqueness
for A. So, I'(A) = homA and, by Theorem 1, A has the spectral extension
property for semisimple algebras.

(b) = (c). Clear by Theorem 1 because I'(4) = homA is a set of unique-
ness for A.

(c) = (d) and (d) = (e) are clear by Lemma 3 and Proposition 1.

(e) = (a). If B is any semisimple spectrally bounded extension of A
then ol possesses the projection property and, since ol (a) = &(HomA),
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every character in HomA has a multiplicative linear extension to B [20]. So,
by Lemma 2, HomA is the only set of uniqueness for A, i.e. A is weakly
regular. |

So, the weak regularity is equivalent to the “permanence” of the Harte
joint spectrum in semisimple spectrally bounded extensions. This clearly
implies the strong spectral extension property for A.

Theorem 3 (cf. [25, Theorem 2|). Let A be a commutative semisimple
Gelfand-Mazur Q-algebra. The following are equivalent:

(a) A has the strong spectral extension property for semisimple algebras,
(b) every set of uniqueness for A is a spectral set for A,

(c) I'(A) = ({K C HomA : K is a set of uniqueness for A} is the unique
minimal spectral set for A,

(d) every character A € HomA belonging to the minimal spectral set for
A has a multiplicative linear extension to any semisimple spectrally bounded
extension B of A.

Proof. (a) = (b). Suppose on the contrary that there exists a set of
uniqueness K for A that is not a spectral set for A. Then there is an
element ap € A such that do(K) # oa(ap). By Lemma 2, there is now a
semisimple Gelfand-Mazur Q-algebra extension B of A such that o4(ag) =
op(ag) = do(K). This contradiction proves that K is a spectral set for A.

(b) = (c). Since A is semisimple, every boundary set for A is a set of
uniqueness for A. Thus I'(A) is a spectral set for A and, moreover, I'(4) C
N{K C HomA : K isaset of uniquenessfor A} C I'(A). On the other hand,
since every spectral set for A is a boundary set for A, I'(A) is contained in

any spectral set for A, so that I'(A) is the unique minimal spectral set for
A.

(c) = (d). Clear by Lemma 3.

(d) = (a). Since A is a commutative Gelfand-Mazur Q-algebra, there is
a minimal spectral set for A. The rest is clear. |

4. Applications

In conclusion, we would like to apply the theorems proved in the previous
section to obtain some results concerning the automatic continuity, unique
uniform norm property and existence of algebra norms on topological alge-
bras with functional spectrum.

We begin with the following automatic continuity theorem.

Theorem 4 (cf. [4, Theorem 1], [19, Theorem 8}). Let A be a uniform
weakly reqular Q-algebra, let B be a commutative semisimple Gelfand-Mazur
Q-algebra and suppose that T : A — B is a continuous one-to-one homo-

morphism. Then T is a topological isomorphism of A into B.
17
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Proof. Note that a uniform commutative weakly regular Q-algebra A is a
commutative semisimple topological algebra with continuous Gzl [23] and
then apply Theorem 1 and Theorem 2. a

Let now A be a spectrally bounded semisimple algebra with functional
spectrum. Then A is said to have the unique uniform norm property if r4
is the only uniform norm on A [7].

From Theorem 1 we easily have the following characterization of the
unique uniform norm property.

Theorem 5 (cf. [7, Theorem 2.3]). Let A be a commutative semisimple
Gelfand-Mazur Q-algebra. The following are equivalent:

(a) A has the unique uniform norm property,

(b) A has the spectral extension property for semisimple algebras,
(c) every set of uniqueness for A is a boundary set for A,
(d) T'(4) C ({K C HomA : K isaset of uniqueness for A},

(e) every character A € T'(A) has a multiplicative linear eztension to any
semisimple spectrally bounded extension B of A.

Finally, to consider the existence of algebra norms on semisimple algebras
with functional spectrum, we need the following definition and lemma.

A topological algebra A is said to be normal if for any disjoint closed
subsets S and T' in homA there exists a € A, such that a(A) = 0 for all
A€eTand é(A)=1forall A€ S.

Lemma 4. Let A be a normal and semisimple Gelfand-Mazur Q-algebra
and let B be a spectrally bounded extension of A. Then ANRadB = {0}.

Proof. If K = 7%(HomB) # HomA then, by [19, Lemma 7], there are
nonzero elements a,b € A such that ab = 0 and a(A) =1 for all A € K. But
this is impossible, so that m%(HomB) = HomA which gives us the desired
equality AN RadB = {0}. O

Theorem 6. Let A be a semisimple algebra with functional spectrum and
let C C A be a unital semisimple subalgebra of A which can be equipped with
a topology T so that (C,T) is a normal Gelfand-Mazur Q-algebra. If 7ré. 18
one-to-one then the following are equivalent:

(a) A is spectrally bounded,
(b) A has an algebra norm.

Proof. (a) = (b). Use Proposition 1.

(b) = (a). Let || || be an algebra norm on A and denote by B the
completion of (4,]| ||). If A € HomA then A, € HomC so that, by
Theorem 2 and Lemma 4, A, has a multiplicative linear extension
® € HomB. Now @, = A, and, by assertions, A = ®,. We conclude
that o4(a) = a(HomB) is compact for every a € A. O
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Corollary ([17,28,31,35]). Let X be-a completely regular topological space.
Then there exists an algebra norm on C(X) if and only if every continuous
function on X is bounded.

Proof. Put C = Cy(X), where Cy(X) is the subalgebra of C(X) consisting
of bounded functions on X. Now apply Theorem 6. O
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