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Convergence in measure and Weyl multipliers for
absolute summability of double function series

S1MSON BARON AND HEINO TURNPU

ABSTRACT. In this article a quantitative relation between the partial sums
of the double function series 37, ., cmn fmn(z) and the double sequence
(emn) of its coefficients is established. Estimates of powers of the partial
sums of the double function series are given and Weyl multipliers for absolute
summability almost everywhere by triangular matrix methods are obtained.

1. Introduction

We denote by @ a d-dimensional interval and by A the Lebesgue measure
of sets F C R¢ with AE < co. Let f := {fn,} be a system of functions fyn
which are Lebesgue integrable on @, in short £ C L1(Q).

We consider the double function series

Zcmn fmn(w)a (1‘1)

where the double sequence ¢ := (¢mp) belongs to the Banach space #P with
finite p > 1 and z := (z1,...,2z4) belongs to Q.

Later on, unless otherwise indicated, the free indices always run through
all values 0, 1, 2, ..., and summation is likewise over all 0, 1, 2, ....

Let T be a triangular matrix method of summability. The aim of this
paper is to seek under which conditions a non-decreasing double sequence
w = (W) of positive numbers is a Weyl multiplier for f with respect to
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|T|-summability, i.e., under which conditions the double function series (1.1)
is absolutely T-summable almost everywhere on () whenever

Z lcmnlp Wmn < 00. (1.2)

m,n

The corresponding results (see Theorem 5.1 and its corollaries) are contained
in the last Section 5. They rely on an extension of a Nikishin’s inequality
(see [10], Theorem 7) established in Section 4 (see Theorem 4.1 and its
corollary). The preparatory results are contained in Sections 2 and 3.

Let us fix some more notation. If the matrix method T transforms dou-
ble series to double sequences, we denote its elements by Tmnki, and if T
transforms double series to double series, its elements are denoted by Tmnki-

It is well known (see, e.g., [9], p. 21) that T conserves the absolute

convergence of double series if and only if

o0

S sl = O(L). (13)

mn=k,l

In this paper A-measurable sets and A-measurable functions will simply
be called measurable sets and measurable functions, respectively. Therefore,
we write dz instead of dA(z).

2. Lemmas on measurable functions
and convergence in measure

The following lemma is a piece of lore; we include the proof for the sake
of completeness.

Lemma 2.1. Let g be a measurable function on Q. Then g is finite al-
most everywhere on Q if and only if for every § > 0 there exists a measurable
subset Qs C @ with AQs > AQ — § such that

/. | 9(z)| dz < oo. (2.1)
Qs

Proof. Necessity. Let
D=Q(lg(z)| = +0),  En=Q(g(x)]>n)

Since D = (), By, it follows that lim AE,, = AD = 0. Therefore, for any
§ > 0, an integer N exists such that AEy < ¢. Taking Q5 = Q \ En, we
obtain AQs = AQ — AEy > AQ — ¢ and also

/ | g(2)] dz < NAQs < NAQ < oo,
Qs

|7
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Sufficiency. Assume that a measurable subset B C Q exists with § =
AB > 0 on which g is not finite. Let a measurable subset Qs C @ be
such that AQs > AQ — ¢ and (2.1) is valid. Then A(B()Qs) > 0, because

§=MB@s) = MB)—-ABNQs) = MBUQs)~MQs) < MQ) - MQs) <
d. Moreover, the function g is Lebesgue integrable and therefore finite almost
everywhere on Q5. This contradicts the infiniteness of g on B Qs. O

The one-dimensional case (with @ = [0,1]) of the next lemma is due
to Nikishin [10], p.137, Lemma 1. We include the proof for the sake of
completeness.

Lemma 2.2. Let | > 2 be an integer and let n > 0 be a real number. If
measurable sets E; C Q and ®; C Q, foreachi=1,...,13 andk =2,...,1>,
satisfy the conditions

AD; <, (2.3)

k—1
E.(\J 2 =2, 4)
J=1

then there exists an l-tuple [i1, ..., 4] of positive integers with
1 <tg < --- < 4

such that l

14

k=1

Proof. We fix an [-tuple [i1, ..., %] of positive integers. We denote L :
0(s,k) == AN(P,, N Ey), and

l 1
U= (U Bu) () U@\ Eiy).
s=1

k=1
Since (2.2) and (2.4) imply that
EiﬂEj =g (VZ?&]),

we have

l t
M= AEL () @\ Bl
=1 k=1
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Hence by (2.4) we obtain

l l
A =S ML () U (@i \ Bil-
=1 k=3¢

Since E;, (®i, \ Ei,.) = @ for k = 5, we get

A\I/l_zf\ B U @)\ Bl <

k=3sc+1

ZA ENONVERE

k=3sc+1

l/\

-1
< [0 1r ) + 6liserzs ) F oot 8y 1))

se=l

By (2.4) we obtain that d(ég,is) = 0 if £ < 5, and therefore
!

A< Y 8k, ). (2.8)

k=1, k#sx
Let J be the set of all possible [-tuples with (2.5), i. e.,
J = {[‘il, ...,il] 1< < <. < < L}

The set J contains C}J elements. Let K7 be the arithmetical means of A¥,
that is 1
Kpi=— A,
=g D

For the estimate of the means K1 we observe that the number of [-tuples
like [1,2, 13, ...,1;] is C’fzz, since two indices are fixed. Therefore, the addend

§(1,2) is present C~% times in all possible sums of (2. 8). In the same way

we verify that the addend d(k, ») with 3 > k is also present c P 2 times in
all possible sums of (2.8). Thus

Kp < IZ Z 8k ise) =

J kye=1k#sx

1 L
=T S Ok ) =
L gose=1,ke#s
L 3-1

I(l-1)
LL~1 ZZ(SIC%)

y-lk 1

In

SHrCRe

B

se
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In view of (2.7) and (2.3) we get

r—1
> 6k, 3) =A@, N (ByUB, U ... UE,_1)] < A0, <7,
k=1

and, consequently,
Kp <i(l-1)L YL~ 1)Ly < n/l. (2.9)

Thus the arithmetical means K of the numbers \®; satisfies the inequality
(2.9). Therefore, at least one of these numbers A®; must satisfy the same
inequality, meaning that there exists an [-tuple of positive integers satisfying
(2.5) such that (2.6) is valid. O

A double function sequence (@) is called convergent in measure on the
set  to the limit function a if for any € > 0

}}lr’% Mz € Q: |amn(z) — a(z)] > €} = 0.

A double function series Zm’n Gmyp is called convergent in measure on @ to
the sum a if the double sequence of its partial sums converges in measure
on (Q to a.

We denote the partial sums of the double series (1.1) by Syne, that is

m,nm

Smnc = Z crt fri- (2.10)

k=0

The one-dimensional case (with @ = [0,1]) of the following lemma is
proved by Nikishin [10], p.154, Lemma 6. We present below a simpler
different proof.

Lemma 2.8. Let the double series (1.1) converge in measure on the set
@ to the sum

Sc = chl fkl (211)

k,l

for any ¢ € £P. Then for every € > 0 there exist a real number R, > 0 such
that the inequality

Mz eQ: [(So)(z)l 2 R} <e (2.12)
holds on the unit ball {c: ||c|| < 1} of ¢P.

Proof. We consider the F-space M := M(Q), which consists of all almost
everywhere finite measurable functions f on the set Q with the quasi-norm

4
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Iflar = inf {a+ Ma € Q: ()] > a} )

A sequence (f,) converges to f in M if and only if f, — f in measure on |
@ (see [4], p. 104, Lemma 7), that is, for every € > 0,
liTILn/\{x €Q: |fulz)— f(z)]| 2 e} =0.

We consider continuous linear operators Sy, : £ — M, defined by (2.10). I
Since f C L}(Q), it follows that Sp,c are finite almost everywhere on Q. : {
By the hypothesis the double series (1.1) converges in measure on ) to the ', ¢
function Se, defined by (2.11), that is, for every € > 0, "

lim Mz € Q ¢ [(Smnc)(x) — (S)(@)| 2 £} =0, .
3 " €
for any ¢ € ¢P. Therefore, the subsequence (Sgrc) converges in measure to
Sc for any ¢ € £P. Hence, the function Sc is almost everywhere finite and :
measurable on Q. Since Sc = limy, Sixc for each ¢ € P, it follows that S is
a continuous linear operator from ¢? into M (see, e.g., [4], p. 54, Theorem
17). Hence J

lim Sc¢ = 0. (2.13)

c—0

Denote the unit ball of 2 by U, that is U := {c €  : |l¢]| < 1}. Let
ce U;if B — 0, then Bc — 0 uniformly on U, and by (2.13)

gl_% 18 Scllar =0,

that is,
lim inf {a+ Mo € Q: B(S0)(@)] 2 a}} =0

uniformly on U. Therefore, for any € > 0, a 5. > 0 exists such that
Ve 31;%{04 + Mz € Q1 |B:(Se)(z)] > a}} <e/2
for all ¢ € U. Hence, an «, > 0 exists suéh that

Mz e Q:|B:(8c)(@)| 2 e} — /2 < ye — e <7 < €/2

Mz e Q: |(So)(z)] > a/B:} <e
for all ¢ € U. Putting R, = «./f. completes the proof.
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3. Main lemma

The following result has been inspired by ideas of proof in [10, pp. 141-
145]. Here and in what follows

r = min{p, 2}.

Lemma 3.1. Let | > 3 be a positive integer and let ¢, R, Dp;, and C
be positive real numbers. Let the double series (1.1) converge in measure on
Q to the sum (2.11) for all ¢ € £P. If for a measurable subset Q1 C Q the
estimate

Mz € Q1 [(So)(a)]" > DyR.} < Cre (3.1)

holds for all c in the unit ball of PP, then there exists a measurable subset
e C Q1 with the measure

e <IPCre (3.2)

so that

Mz e Qi\e: [(Se)(@)|" > 1A, DR} <3Cie/l (3.3)

for all ¢ in the unit ball of £7, where A, > 1 1s a constant depending on p.

Proof. Let A, be determined by the equalities (3.30) and (3.25) below.
We find ¢; € 2 such that |jc1|] < 1 and

Mz € Q1 :|(Ser) ()" > 1ApDp R} > 3C /L. (3.4)

If no such ¢; exists, then (3.3) is true for e = @ and Lemma 3.1 is proved.
If (3.4) holds, then denote

El = {'L' € Ql : ](Scl)(x)‘r 2 lAp Dpl Re}:

Py ={z € Q1: |[(Se1)(z)|" 2 Dpt R }.
From (3.4) and (3.1) it follows that

B, C®, ME; >3Ce/l, AP <Ce.

We will seek ¢y € €2 such that {Jcz2]] <1 and such that

Mz € Qy\ D1 ¢ |(Sez)(@)]” > 1A, Dy Re} > 3C1 ¢/l (3.5)

If no such ¢, exists, then (3.3) is true for e = ®; and Lemma 3.1 is proved.
But if inequality (3.5) is valid for some ¢y, then we denote

By ={z€Qi\®1: |(Sco)(z)|" 2 14, Dy R },
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Oy ={z€Q1: |(Se2)(z)|” > Dy R.}.
From (3.5) and (3.1) we obtain

EgC(I)z, Egm‘:ﬁl:@, /\E2>3Cl€/l, APy < (e

Continuing this process until some step s we obtain points ¢; € £ with
lleill <1 and the sets

1—1
Bi={zeQ\|J®: [(Sc:)(z)]" > 1A, Dy R}, (3.6)
Jg=1
¢, ={z € Qr: |(Sei)(x)]" > Dy R}, (3.7)

satisfying conditions (2.2), (2.4), and
A®; < Che, (3.8)

\E; > 3Cy ¢/l (3.9)

for each i = 1,...,s and k = 2,...,s. If we show that in the case s = I3
inequality (3.1) leads to a contradiction, then Lemma 3.1 holds, because
if the above-described process terminated before s = [3, then Lemma 3.1
would be proved.

For obtaining a contradiction we use Lemma 2.2, taking there n = Cie.
This gives an [-tuple of positive integers satisfying (2.5) such that, with the
notation from the proof of Lemma 2.2,

AU, < Cre/l, (3.10)

and also (2.7) being satisfied. We consider the set

I
P=(JE.)\ W

Its measure, in view of (3.9) and (3.10), is

1
AP =A(J Bi.) =\ > 3Cie— Ciefl > 2Ce.

==zl

It € P, then z € E;,, for some m, but z ¢ ®; for n # m by (2.2).
Therefore, on the set P, in view of (3.6) and (3.7),

(Sei,,) (@) > I Ay Dy Re (3.11)
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and for n #m
[(Sci, ) (2)]" < Dyt Re.

Now we consider the double sequence Ig := (I,,) € €7 with

l

LuwB = (By) ™" > rim(B) <!

mz=1

where 7, are the Rademacher functions (see, e.g., [8], p. 19) and ¢;,, =
(¢im); the numbers B, will be specified later (see (3. 25)). We shall show
that there exist 8y € [0,1] and P; C P such that

> HuwbolP <1, (3.13)

v

AP > Chie, and
)\{IE € P !(SIBO)(:E)IT > Dpl Rg} > Cle,

which is in contradiction with (3.1) (since P; C Q1).
By (2.11)

(SIﬁ)( ) 1/"“2,,%(’3 ZC f;w

Therefore, denoting

Zﬁ (:I?) o

{ rm(B) Y., fun(z), iz € PNE,,
07 lffL‘ ¢ P,

and for k # m

(o) = { v B0 €
0, ifre I,
we obtain from the inequalities (3.11) and (3.12) that
|Zp(x)[" 2 1 Ap Dp1 Re,

lap(z)]" < Dy Re.
But the equality (3.15) yields

(SIe) ()" > |1 B,) ™| Zg ()] — (1 Bp) ™7 Y3 ()],
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where

Ys(z) : ZT;« B) ().
To estimate Yz(z) we consider the function T, putting
T(B) = 18,)™ [ o)l de
Since

T(8)d8 = )7 [ do / V()" ds,

0

by Holder’s inequality, in view of 1—7/2 > 0 or r = 2 and the orthonormality
of the Rademacher system, we obtain

1 1
T(B)dp < (I By)™ i [0 Y5 (2)[2dB)/? =

l

= 1B,)™ [ Y] ) e

P

=1

Therefore, by (3.17),

T(ﬁ)dﬁ < (I1By)~ Z D" R4y =

= (I Bp)*"l,Dpl R, zr/2 AP,

Y(8)dB < (Bp) ' Dy Re \P.

Denoting

Q:={B:B¢€0,1, T(B)<2B;' Dy R. AP},

we obtain AQ > 1/2, since otherwise the inequality (3.19) is contradicted.
Now we prove that (3.13) holds. We start with the equality

p — —p/r dim p .
/Qg,lfwﬁl df = (1.By) HZ/Q Z (B)|PdB.  (3.20)
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First let p > 2. Then r = 2 and using Khinchin’s inequality (sce, e.g., [8], p.
30, or [6], p. 131) we obtain

/ > B < Ky 1) 73 (IR 3y

u,v m=1

where K, is a Khinchin constant. But by Holder’s inequality

Z 'sz < P Z ICL [y2/P,

and hence by (3.21)

. {
/Q S 1w BIPdB < (1 By) /2 K, ST (122 | p)?/o 02 =
v 12314

m=1

{
= Kp ByPP 170 S " e, 1P < K B2, (3.22)

me=1

because [|c;,, || < 1. Suppose now that 1 < p < 2. Then 7 = p and by (3.20),
using Holder’s inequality for integrals if p < 2, we conclude that

/ S d < 05 S i Z!c:;zrm P agpr (323

From (3.23), using the monotonicity of the £7-norms (see [5], p. 28, Theorem
19), we obtain

/Zlfuuﬂfpdﬁ< I B,) 12 Z;cm p/2 ¢

i1 vy me==l

< (1Bp)” IZZIC}]ZV’ < (By)7h, (3.24)

m=1 p,v

because [|c;,, || < 1. We define the numbers B, as follows (recall that K, is
a Khinchin constant):

2 for 1 <p <2,
B, = { P== (3.25)

(2K,)?/P  for p> 2.
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Then (3.22) and (3.24) yield that for any finite p > 1

/ > o IwBIPdB < 1/2. (3.26)

v

Since A2 > 1/2, it follows that there exists a number By € € such that
inequality (3.13) holds, because otherwise we have a contradiction to (3.26).

Finally we show that (3.14) also holds. Let 8y € € be such that (3.13)
holds. By the definition of Q

(1B, / Yo (@) dz = T(Bo) < 2B Dyy Re AP. (3.27)
P
We define the set P; as follows:
P :={zeP: (IB,) "V, (2)]" <4B,' Dy R.}.

Let us first prove that
APL > AP/2. (3.28)

In fact, if APy < AP/2, then
Mz € P: (IBy,) ' Yg, ()" > 4By Dy R} > AP/2

and therefore

@8)7 [ W (@)rde >
> 4B, Dy Re Mz € P: (1By) ™ |Yp,(2)|" > 4 B, Dy Re} >
>4 Byt Dy R AP/2 = 2B, Dy R, AP,

which contradicts (3.27). Since, as we calculated above, AP > 2Cje, we
obtain by (3.28) that

APy > Che. (3.29)
If z € P, then, because of (3.18) and (3.16), we have
[(81g,) ()" > |1 Bp)*l/T(l Ap Dy Rs)l/T -4 B;I Dy RE)l/rlT =
= Dp1 Re |[(Ay/By)/" — (4/ BT
We choose the numbers 4, as follows:
Ap =4 (BY"+1)" > 1. (3.30)
Then
(Ap/Bp)l/r - (4/Bp)l/r = (B;/T + 1)(4/Bp)l/r - (4/Bp)1/r =
= BY/T(4/By)H" = 41"

Hence, if z € P, then |(SIg,)(2)|” > 4 Dpi Re > Dy R, and by (3.29) the
inequality (3.14) holds. O
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4. A relation between the partial sums of
a double function series and its coefficients

We recall that p > 1 and 7 = min{p, 2}.

Theorem 4.1. Let the double series (1.1) converge in measure on Q
for each ¢ € £P. Then for every o € [1,7) and every n > 0 there emist a
measurable subset E, , C Q with AE, , > M\Q —n and a constant K,p >0
such that

oo

1 cwfu @l <Koy [ leul 1 @)

Ema =0 =0
foreach ¢ € P,

Proof. The proof will develop Nikishin’s arguments from (10, pp. 139-
141]. From Lemma 2.3 it follows that for any £ > 0 there exists B, > 0 such
that

MzeQ: [(So)(z)">R.}<e

for all ¢ from the unit ball U of 7. Let us fix an integer | > 3. We apply
Lemma 3.1 taking @; = Q and D,, = C; = 1. By Lemma 3.1 one can find
a measurable set e; C Q with ey < [3¢ such that

Mze@Q\er: [(Se)(@)|” >14,R.} < 3¢/l
for all c € U. Now we use Lemma 3.1 again taking Q; = Q \e1, Dp =14,

and C; = 3/l. By Lemma 3.1 there exists a measurable set e C Q1 with
Aes < 3l3E/l such that

Mze@iler: [(S)(@)]" 2 (14,)%R.} < (3/1)%

for all ¢ € U. Continuing the above process unlimitedly, we obtain a se-
quence of disjoint measurable sets (ey) with Aey < [3(3/1)%~'e such that

k
MzeQ\ Jex: 1(S9@N 2 (14)" R} < (3/D)Fe  (4.2)

=1

forallc€ U and for all k = 1,2, ....
Denote
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Since { > 4, the measure of H satisfies the condition

oG
AH < 1Pe ) (3/1)F 7 < dlPe,
k=1

We now choose a number ¢ > R.. There is a number j € {0,1,...} such
that . .
R.(1A,) < &< Re (1A,) .

Using inequality (4.2) we obtain
MzeQ\H: |(Se)(@)|” =&} < (3/1YFH1/3)e (4.3)
for all ¢ € U. Since £/R. < (1A,)7T! and [4, > 1, it follows that

W(E/R.) < (j + 1) In(iA,).

Hence
(3/l)j+1 < (3/l)ln(E/Re)/]n(lA,,) — 6h,(l)ln(RE/g) - Rg(l) é-«h(l)’ (4'4)
where

In(1/3)/ In(lAp).
Let o < r. Then r/p > 1 and we can find a 6 = (p) such that

(1-8rjo=1+a, «o>0.

Since h(l) — 1 as | — oo, there exists [ = () such that h(l) > 1—4.
We now fix a number 1 > 0 and find € = ¢(l, ) > 0 such that

4B3e <y, (1/3)e <1
Then AH < n and, denoting
Ene=Q\H,
we have AE, , > A\Q — 7 and, by (4.3) and (4.4),
Ma € Byt |(So)(@)]" > €} < RED &M, (4.5)
Since

Mz € Byt |(86)(2)]2 > &) = Mz € Byy: |(So)(@)|” 2 ¢rley,
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we obtain from (4.5) that
Mz € By |(Sc)(2)| > €} < REW¢mrhU/e < RO ¢=(re),
whenever £ > 1. As a result, denoting h, := h(l), we have the inequality
Mz € By o0 |(S0)(2)|? 2 €} < Regm (), (4.6)

for all c € U and € > max{1, R, }.
Denoting, for k£ € {0,1,...},

By, o(k) = {z € By o |(S0)(z)|* 2 k}

and
Gnolk):=={z € By o: k< |(Se)(2)]® < k+ 1},

we have
G‘r/, Q(k) = En,g(k) \ En,e(k + 1)

and

o0
Ey o= U G, o(k).
k=0
Let us fix a natural number 3 > max{1, R.}. Denoting
v = AE, ,(k),

by partial summation (see, e.g., [6], p. 1) and (4.6), we have

n

Z(k + 1) (v — V1) = 2V, — (N4 1) vppq + Z v, <

k=3t k=3t

n
< _Rg,g [%——a + (n+l)—a + Z k—l—a} <

k=st

< R?é’ B+ (n+1)"%+ ™ (e —1)77,

from which

> (k+1) (v —vpg) < (L+a h) (e~ 1) 7% Ree. (4.7)

k=23
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Now, by (4.7), we obtain

|(Sc)(z)|%dz < Zk: /G [(Se)(x)|2de <

7, e(k)

<Y (k4 1)AGy, (k) =
k

n, e

=3 (k+1)(vk = ve1) =
P
<> +Y <

k< k>
< (e -+ 1) AQ+
+ (14 a 1) (e —1)"*Rhe

for all ¢ € U. Therefore, a constant K,, > 0 exists such that

|(Se)(z)|?dz < K2, (4.8)
En, o ’
for all ¢ € U. In view of (4.8) we proved that for the linear operator

S0P — L¢ := L5(E, ,) the inequality ||Sc||r. < K, holds for all ¢ € U.
This immediately yields (4.1). O

From Theorem 4.1, assuming ¢ = 1, we obtain

Corollary 4.2 (cf. [10], p. 158, Theorem 7). Let the double series (1.1)
converge in measure on @ for each ¢ € £P. Then for every § > 0 there exists

a measurable subset Qs C Q with AQs > AQ — § and a constant K5 > 0
such that

m,n m,n
| > cr fri(o)lde < K ( > lewl”)H”

@s k=0 k,l=0

for all numbers cy.

5. Weyl multipliers for absolute
summability of double function series

Let p > 1 and let
1 1
-4+ -=1.
rp q
Recall that a double sequence (an,) is said to be non-decreasing (or
non-increasing) in m,n, whenever it is non-decreasing (respectively, non-
increasing) if either index is fixed.




s (1.1)
exists
s >0

sing (o
Ely, non-
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Theorem 5.1. Let the double function series (1.1) converge in measure
on @ for all c € £P. Let the method T' conserve the absolute convergence. In
addition, let the double sequence w be unbounded and satisfy the condition

Z [ Tonnmn| WP < 00 (5.1)

and let the double sequence

(’%mnkllpvl lenmn[.—p/q wmn) (5'2)

be non-increasing in m,n for all k,l=10,1,....
Then the double series (1.1) is |T|-summable almost everywhere on Q
whenever c satisfies condition (1.2).

Proof. By the definition of |T'|-summability we must prove that

> Z Tmnkt Ckt fe1(x)] < 00 (5.3)

m,n k=0

almost everywhere on Q. The function defined by the double series (5.3) is
measurable on () (see [7], p. 101, Theorem 1). By Lemma 2.1 we must show
that for every § > 0 a measurable subset Qs C Q exists with AQs > AQ —§
such that the integral of (5.3) over the set Qs is finite. By the theorem of
B. Levi for double series (cf. [1], p. 11, [2], p. 174) it is sufficient to prove
that there exists a constant Ls > 0 such that

Bun < Ly, (5.4)
where
M,N A m,n
Bun= Y / 1> Pkt cxt fra (@) da
mn=0" s k=0

By Corollary 4.2 there exist a subset Q5 C @ as needed and a constant
K5 > 0 such that

Bun < K5 Cun, (5.5)

where

M,N mmn

Cun =D (D Fmnks cra|?)/?

m,n=0 k=0
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Since
M,N m,n
CJVIN - Z ITmnmn‘l/qw;L;/plenmn|M1/q'wrlr{7zz) ( Z I'T_mnklckllp)l/py
m,n=0 k=0

applying Holder’s inequality and condition (5.1), we obtain

M,N M,N m,n
CVMN < ( Z lenmniw;q,(yll/p)l/q( Z I'Tmnmnz»p/qwmn Z l%mnklckl!p)l/p
mn=0 m,n=0 k,l=0
M,N M, N
= O(1>( Z Ickllp Z l mnkl‘pl'rmnmnr—p/q wmn)l/p
k=0 mn=k,l
o
= O(l)(z [ckl‘p Z l'}:'mnlclH%mnkl]pM1ITmnmn,_p/q wmn)]/p-
k.l m,n=k,l

Now, from conditions (5.2), (1.3), and (1.2) it follows that

o0

Cun =0(1) Z let? 1Tl ke P Twi Z | Tkt

m,n=k,l

kl
= O(l)z‘ckllp Wy = O(l)
kel

Therefore, in view of (5.5), we obtain (5.4). O

Theorem 5.1 is an extension of Theorem 3 in [11] to double function series.

We next apply Theorem 5.1 to the Cesiro method C*# and to the
weighted means method (R, d) of Riesz.

For the method C*# we have (see [3], p. 84)

KLASTL AP
mn Ag, A

Tmnkl =

where 0/0 = 1. The method C®¥ satisfies condition (1.3) whenever «, § > 0
or Rea,Re 8 > 0 (see [3], p. 85). Since A%, ~ (m+1)*/T'(a+1), we deduce
from Theorem 5.1
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Corollary 5.2. Let the double function series (1.1) converge in measure
on Q for allc € P. Let o, > 0 or Rea, Re B > 0. In addition, let the
double sequence w be unbounded and satisfy the condition

Y Hm+1) " (n+ 1) lugdl? < oo

m,n
and the double sequence (|(m + 1)(@=2@=1) (n 4 1)(B-2)(=1)| 4, ) be non-
increasing in m,n. Then the double series (1.1) is |C®#|-summable almost
everywhere on Q) whenever ¢ satisfies condition (1.2).

Let (R, d) be the factored weighted means method of Riesz, defined by a
factored double sequence d = (d,;,,) of complex numbers with partial sums

m,n

Dpp i= Z dp.-

k=0

In view of (1.3), the method (R, d) conserves the absolute convergence if
and only if the condition

e}
dmn
Digrg-1 Y 55— =0(1) (5.6)
mon=k,l m~1lm—1+"mn

is satisfied (see [3], p. 114). Thus from Theorem 5.1 we deduce

Corollary 5.3. Let the double function series (1.1) converge in measure
on @ for all c € 7 and let (R,d) be a factored method satisfying condition
(5.6). In addition, let the double sequence w be unbounded and satisfy the

condition
Z }dmn/Dmn[ w;};g]l/p < 00
m,n

and let the double sequence (|Dpy—1.n—1|P"1/Wmn) be non-decreasing in m,n.
Then the double series (1.1) is |R,d|-summable almost everywhere on @
whenever ¢ satisfies condition (1.2).

For a nonfactored method (R, d) it is necessary to put

_ _A Dy—14-1~Dmji—1~Di_1n
Tmnkl = Lmn D
mn

in Theorem 5.1.
For double orthogonal series, if p = ¢ = 2 and d = 2, Corollary 5.3 is
known (see Theorem 11 of [2]).

From Theorem 5.1 and Corollaries 5.2 and 5.3 we conclude the following
statements on summability factors for double function series.

Let € = (g;un) be a double sequence of complex numbers such that the
double sequence (|e,,n|) non-increases and tends to 0.
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Theorem 5.4. Let the double function series (1.1) converge in measure
on @ for all c € ¢P. Let the method T conserve the absolute convergence. In
addition, let the double sequence € satisfy the condition

Z [Tmnmnl Igmniq <o
myn
and let the double sequence
(ﬁmnklll——pl'fmnmnlp/q lsmnlp)
be non-decreasing in m,n for all k,1 =0,1,... . Then the double series
> emn Cmn fmn (2) (5.7)
mn
is |T'|-summable almost everywhere on @ whenever ¢ € ¢P.

Proof. Putting Wy, = |emn|™? we see that all the conditions of Theorem
5.1 are satisfied, in particular, ¢ € ¢P yields that (1.2) is satisfied for ec,

because
Z lemn cmn]pwmn = Z Icmnlp < 0.

m,n m,n

O

Corollary 5.5. Let the double function series (1.1) converge in measure
on Q for all ¢ € #2. Let a,8 > 0 or Re o, Re 8 > 0. In addition, let the
double sequence € satisfy the condition

Z l(m 4+ 1)"%(n + 1) 7| lemnl|? < 00
m,n

and let the double sequence (|(m + 1)(@=2=1) (n 4 1)B-2@-V[|g |7P)
be non-increasing in m,n. Then the double series (5.7) is |C%P|-summable
almost everywhere on ) whenever ¢ € £P.

Corollary 5.6. Let the double function series (1.1) converge in measure
on @ for all c € £ and let (R,d) be a factored method satisfying condition
(6.6). In addition, let the double sequence € satisfy the condition

Z Idmn/Dmni Ismnlq <00
m,n

and let the double sequence (|Dpm-1n-1P"temn|P) be non-decreasing in
m,n. Then the double series (5.7) is |R, d|-summable almost everywhere on
@ whenever ¢ € £P.

For double orthogonal series, if p = ¢ = 2 and d = 2, Corollary 5.6 is
known (see Theorem 12 of [2]).
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