On the A-statistical core of sequences of complex numbers

CELAL ÇAKAN AND HÜSAMETTIN ÇOŞKUN

ABSTRACT. In [4], the concept of A-statistical core of a sequence of complex numbers was introduced and necessary and sufficient conditions were given for a summability matrix T to satisfy K-core $(Tx) \subseteq st_A$ -core(x) whenever x is a bounded complex sequence. In the present paper, we determine the classes of summability matrices T such that st_A -core $(Tx) \subseteq K$ -core(x) and st_A -core $(Tx) \subseteq st_B$ -core(x) for all bounded complex sequences x.

1. Introduction

Let K be a subset of \mathbb{N} , the set of positive integers. Natural density δ of K is defined by

$$\delta(K) = \lim_{n} \frac{1}{n} |\{k \le n : k \in K\}|,$$

where vertical bars indicate the number of elements in the enclosed set. A sequence $x=(x_k)$ of complex numbers is said to be statistically convergent to the number l if for every ε , $\delta(\{k: |x_k-l| \geq \varepsilon\}) = 0$ (see [5]). In this case, we write st-lim x=l. We shall also write S to denote the set of all statistically convergent sequences.

For a given nonnegative regular matrix A, the number

$$\delta_A(K) = \lim_n \sum_{k \in K} a_{nk}$$

is said to be the A-density of $K \subseteq \mathbb{N}$ (see [7]). A sequence $x = (x_k)$ is said to be A-statistically convergent to a number s if for every $\varepsilon > 0$ the set $\{k : |x_k - s| \ge \varepsilon\}$ has A-density zero (see [2]). In this case, we write

Received November 14, 2002.

²⁰⁰⁰ Mathematics Subject Classification. 40C05, 40J05, 46A45.

Key words and phrases. A-statistical convergence, A-statistical core, matrix transformations, core theorems.

 st_A - $\lim x = s$. By st(A) and $st(A)_0$ we respectively denote the set of all A-statistically convergent and A-statistically convergent to zero sequences. Let $x = (x_k)$ be a sequence in \mathbb{C} , the set of all complex numbers, and let R_k be the closed convex hull of the set $\{x_k, x_{k+1}, x_{k+2}, \ldots\}$. The Knopp core (or K-core) of x is defined by the intersection of all R_k ($k \in \mathbb{N}$) ([1], p.137). In [12], it is shown that for any bounded sequence x one has

$$K\text{-}core(x) = \bigcap_{z \in \mathbb{C}} B_x(z),$$

where $B_x(z) = \{ w \in \mathbb{C} : |w - z| \le \limsup_k |x_k - z| \}.$

In [4], the notion of the statistical core of a complex sequence introduced by Fridy and Orhan [6] has been extended to the A-statistical core (or st_A -core) and it has been shown that, for an A-statistically bounded sequence x,

$$st_A$$
- $core(x) = \bigcap_{z \in \mathbb{C}} C_x(z),$

where $C_x(z) = \{ w \in \mathbb{C} : |w - z| \le st_A - \limsup |x_k - z| \}.$

Let ℓ_{∞} and c be the Banach spaces of bounded and convergent sequences of complex numbers with the usual supremum norm. Let $T = (t_{nk})$ (n, k =1,2,...) be an infinite matrix of complex numbers and let $x=(x_k)$ be a complex sequence. We write $Tx = (T_n x)$ if the series $T_n x = \sum_k t_{nk} x_k$ converges for each n. Let X and Y be any two sequence spaces. If $x \in X$ implies $Tx \in Y$, then we say that the matrix T maps X into Y. By (X,Y)we denote the class of matrices T which map X into Y. If X and Y are equipped with the limits X-lim and Y-lim, respectively, $T \in (X,Y)$ and Y- $\lim Tx = X$ - $\lim x$ for all $x \in X$, then we write $T \in (X,Y)_{reg}$. The matrix $T \in (c, c)_{reg}$ is said to be regular and the conditions of the regularity of T are well known (see [1]).

In [9], Kolk has proved that $T \in (c, st(A) \cap \ell_{\infty})_{reg}$ if and only if

$$||T|| = \sup_{n} \sum_{k} |t_{nk}| < \infty \tag{1.1}$$

and there exists an index set $N = (n_i)$ with $\delta_A(N) = 1$ such that

$$\lim_{i} t_{n_i,k} = 0 \quad (k \in \mathbb{N}), \tag{1.2}$$

$$\lim_{i} t_{n_{i},k} = 0 \quad (k \in \mathbb{N}), \tag{1.2}$$

$$\lim_{i} \sum_{k} t_{n_{i},k} = 1. \tag{1.3}$$

In [4], Demirci has obtained necessary and sufficient conditions for a matrix T to satisfy K-core $(Tx) \subseteq st_A$ -core(x) on ℓ_{∞} . In the present paper, we determine subclasses of the classes $(c, st(A) \cap \ell_{\infty})_{reg}$ and $(st(B) \cap \ell_{\infty}, st(A) \cap \ell_{\infty})_{reg}$ ℓ_{∞})_{reg} such that st_A -core $(Tx) \subseteq K$ -core(x) and st_A -core $(Tx) \subseteq st_B$ -core(x)for all $x \in \ell_{\infty}$.

set of all equences. bers, and he Knopp $\in \mathbb{N}$) ([1], as

itroduced çore (or inded se-

sequences (x_k) (n, k = 1) be a $\sum_k t_{nk} x_k$ If $x \in X$ by (X, Y) and Y are (x, Y) and (x, Y) are egularity

(1.1)

(1.2)

(1.3)

for a mapaper, we $st(A) \cap s-core(x)$

2. The main results

We begin with some lemmas which can easily be derived from Theorem 4.1 of [10].

Lemma 2.1. One has $T \in (st(B) \cap \ell_{\infty}, st(A) \cap \ell_{\infty})_{reg}$ if and only if $T \in (c, st(A) \cap \ell_{\infty})_{reg}$ and

$$st_A - \lim_n \sum_{k \in E} |t_{nk}| = 0$$
 (2.1)

for every $E \subseteq \mathbb{N}$ with $\delta_B(E) = 0$.

Lemma 2.2. One has $T \in (st(A) \cap \ell_{\infty}, st(A) \cap \ell_{\infty})_{reg}$ if and only if $T \in (c, st(A) \cap \ell_{\infty})_{reg}$ and (2.1) holds for every $E \subseteq \mathbb{N}$ with $\delta_A(E) = 0$.

In the special case $A=B=C_1$, the Cesàro matrix, Theorem 2.1 reduces to the characterization of the class $(S \cap \ell_{\infty}, S \cap \ell_{\infty})_{reg}$ studied in [3] and also to the following results.

Lemma 2.3. One has $T \in (st(A) \cap \ell_{\infty}, S \cap \ell_{\infty})_{reg}$ if and only if $T \in (c, S \cap \ell_{\infty})_{reg}$ and

$$st\text{-}\lim_{n}\sum_{k\in E}|t_{nk}|=0$$

for every $E \subseteq \mathbb{N}$ with $\delta_A(E) = 0$.

Lemma 2.4. One has $T \in (S \cap \ell_{\infty}, st(A) \cap \ell_{\infty})_{reg}$ if and only if $T \in (c, st(A) \cap \ell_{\infty})_{reg}$ and (2.1) holds for every $E \subseteq \mathbb{N}$ with $\delta(E) = 0$.

Theorem 2.5. The inclusion st_A -core $(Tx) \subseteq K$ -core(x) holds for all $x \in \ell_{\infty}$ if and only if $T \in (c, st(A) \cap \ell_{\infty})_{reg}$ and

$$st_A - \lim_n \sum_k |t_{nk}| = 1.$$
 (2.2)

Proof. Let st_A -core $(Tx) \subseteq K$ -core(x) for all $x \in \ell_\infty$. If $x \in c$ and $\lim x = l$, then K-core $(x) = \{l\}$ and so, by hypothesis, st_A -core $(Tx) \subseteq \{l\}$ which implies that st_A - $\lim Tx = l$. Hence, we have $T \in (c, st(A) \cap \ell_\infty)_{reg}$.

Next, suppose that the condition (2.2) does not hold. Then

$$st_A\text{-}\lim_n\sum_k|t_{nk}|>1.$$

The conditions (1.1)–(1.3) allow us to choose two strictly increasing sequences $\{n_i\}$ and $\{k(n_i)\}$ $(i=1,2,\ldots)$ of positive integers such that

$$\sum_{k=0}^{k(n_{i-1})} |t_{n_i,k}| < \frac{1}{4}, \quad \sum_{k=k(n_{i-1})+1}^{k(n_i)} |t_{n_i,k}| > 1 + \frac{1}{2}$$

and

$$\sum_{k=k(n_i)+1}^{\infty} |t_{n_i,k}| < \frac{1}{4}.$$

Now, let us define a sequence $x = (x_k)$ by

$$x_k = \text{sign}\{t_{n_i,k}\}, \ k(n_{i-1}) + 1 \le k < k(n_i).$$

Then, it is clear that K-core $(x) \subseteq B_x(0)$. Also,

$$|(Tx)_{n_i}| \geq \sum_{k=k(n_{i-1})+1}^{k(n_i)} |t_{n_i,k}| - \sum_{k=0}^{k(n_{i-1})} |t_{n_i,k}| - \sum_{k=k(n_i)+1}^{\infty} |t_{n_i,k}| 1 + \frac{1}{2} - \frac{1}{4} - \frac{1}{4} = 1.$$

Since $T \in (c, st(A) \cap \ell_{\infty})_{reg}$, it follows that $\{(Tx)_{n_i}\}$ is bounded, and hence (Tx) has an A-statistically convergent subsequence whose st_A -limit cannot be in $B_x(0)$. This is a contradiction with the fact that

$$st_A$$
- $core(Tx) \subseteq K$ - $core(x)$.

Thus, (2.2) must hold.

Conversely, suppose that $T \in (c, st(A) \cap \ell_{\infty})_{reg}$ and (2.2) holds. Let $w \in st_A$ -core(Tx). Then, by (2.2), we can write, for any $z \in \mathbb{C}$,

$$|w-z| \leq st_A - \limsup_n |z - Tx|$$

$$= st_A - \limsup_n |z - \sum_k t_{nk} x_k|$$

$$\leq st_A - \limsup_n |\sum_k t_{nk} (z - x_k)| + st_A - \limsup_n |z| |1 - \sum_k t_{nk}|$$

$$= st_A - \limsup_n |\sum_k t_{nk} (z - x_k)|.$$

Now, put $\limsup_{k} |x_k - z| = l$. Then, for any $\varepsilon > 0$, $|x_k - z| \le l + \varepsilon$ whenever $k \ge k_0$. Hence, since

$$\left| \sum_{k} t_{nk} (z - x_{k}) \right| = \left| \sum_{k < k_{0}} t_{nk} (z - x_{k}) + \sum_{k \ge k_{0}} t_{nk} (z - x_{k}) \right|$$

$$\leq \sup_{k} |z - x_{k}| \sum_{k < k_{0}} |t_{nk}| + (l + \varepsilon) \sum_{k \ge k_{0}} |t_{nk}|$$

$$\leq \sup_{k} |z - x_{k}| \sum_{k < k_{0}} |t_{nk}| + (l + \varepsilon) \sum_{k} |t_{nk}|,$$

using (1.2) and (2.2) we get

$$|w-z| \le st_A$$
- $\limsup_n \left| \sum_k t_{nk} (z-x_k) \right| \le l + \varepsilon.$

Since ε is arbitrary, we conclude that $|w-z| \leq \limsup_k |x_k-z|$ which means that $w \in K\text{-}core(x)$.

For $A = C_1$, Theorem 2.5 reduces to the Theorem 5.1 of [11].

Theorem 2.6. One has st_A -core $(Tx) \subseteq st_B$ -core(x) for all $x \in \ell_\infty$ if and only if $T \in (st(B) \cap \ell_\infty, st(A) \cap \ell_\infty)_{reg}$ and (2.2) holds.

Proof. Let st_A -core $(Tx) \subseteq st_B$ -core(x) for all $x \in \ell_{\infty}$. Then, the necessity of (2.2) follows from Theorem 2.5, since st_B -core $(x) \subseteq K$ -core(x). To show that $T \in (st(B) \cap \ell_{\infty}, st(A) \cap \ell_{\infty})_{reg}$, it is sufficient to take any $x \in st(B) \cap \ell_{\infty}$ with st_B - $\lim x = l$.

Conversely, assume that the conditions hold and $w \in st_A$ -core(Tx). Then, as in Theorem 2.5, we have

$$|w-z| \le st_A$$
- $\limsup_n \Big| \sum_k t_{nk} (z-x_k) \Big|$

for any $z \in \mathbb{C}$.

Further, if we put st_A - $\limsup_k |x_k - z| = s$, then, since for any $\varepsilon > 0$, $\delta_A(E) = \delta_A(\{k : |x_k - z| > s + \varepsilon\}) = 0$, and

$$\left| \sum_{k} t_{nk}(z - x_k) \right| = \left| \sum_{k \in E} t_{nk}(z - x_k) + \sum_{k \notin E} t_{nk}(z - x_k) \right|$$

$$\leq \sup_{k} |z - x_k| \sum_{k \in E} |t_{nk}| + (s + \varepsilon) \sum_{k \notin E} |t_{nk}|$$

$$\leq \sup_{k} |z - x_k| \sum_{k \in E} |t_{nk}| + (s + \varepsilon) \sum_{k} |t_{nk}|,$$

the conditions (2.1) and (2.2) imply that

$$st_A$$
- $\limsup_n \left| \sum_k t_{nk} (z - x_k) \right| \le s + \varepsilon.$

Hence, since ε is arbitrary, it is obtained that $|w-z| \leq s$ which means $w \in st_A$ -core(x).

Finally, we note that our Theorem 2.6 for $A=B=C_1$ gives a simple proof of Theorem 3 of Lie and Fridy [8] and also the following results.

Corollary 2.7. One has st_A -core $(Tx) \subseteq st$ -core(x) for all $x \in \ell_\infty$ if and only if $T \in (S \cap \ell_\infty, st(A) \cap \ell_\infty)_{reg}$ and (2.2) holds.

d hence cannot

ls. Let

 $|t_{nk}|$

lenever

Corollary 2.8. One has $st\text{-}core(Tx) \subseteq st_A\text{-}core(x)$ for all $x \in \ell_{\infty}$ if and only if $T \in (st(A) \cap \ell_{\infty}, S \cap \ell_{\infty})_{reg}$ and

$$st\text{-}\lim_{n}\sum_{k}|t_{nk}|=1.$$

References

- R. G. Cooke, Infinite Matrices and Sequence Spaces, McMillan&Co., Ltd., London, 1950.
- [2] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), 194-198.
- [3] C. Çakan, H. Çoşkun and Mursaleen, On the statistical core and statistical absolute equivalence (under communication).
- [4] K. Demirci, A-statistical core of a sequence, Demonstratio Math. 160 (1993), 43-51.
- [5] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
- [6] J. A. Fridy and C. Orhan, Statistical core theorems, J. Math. Anal. Appl. 208 (1997), 520-527.
- [7] A. R. Freedman and J. J. Sember, Densities and summability, Pacific J. Math. 95 (1981), 293-305.
- [8] J. Lie and J. A. Fridy, Matrix transformations of statistical cores of complex sequences, Analysis 20 (2000), 15-34.
- [9] E. Kolk, Matrix maps into the space of statistically convergent bounded sequences, Proc. Estonian Acad. Sci. Phys. Math. 45 (1996), 187-192.
- [10] E. Kolk, Matrix summability of statistically convergent sequences, Analysis 45 (1993), 77-83.
- [11] Mursaleen and Osama H. H. Edely, On some statistical core theorems, Analysis 22 (2002), 265-276.
- [12] A. A. Shcherbakov, Kernels of sequences of complex numbers and their regular transformations, Math. Notes 22 (1977), 948-953.

İNÖNÜ ÜNIVERSITESI EĞITIM FAKÜLTESI, 44100-MALATYA, TÜRKIYE

E-mail address: ccakan@inonu.edu.tr E-mail address: hcoskun@inonu.edu.tr