heory, Wiley

Mem. Amer.

act operators

perator topol-

proximability 713–723.

0, S-75106,

S-nuclearity and n-diameters of infinite Cartesian products of bounded subsets in Banach spaces

NASHAT FARIED AND MONA FATHEY

ABSTRACT. In this paper we classify compact subsets of a normed space according to the rate of convergence to zero of its sequence $\{\delta_n(B)\}$ of Kolmogorov diameters. We introduce σ -compact sets to satisfy that $\{\delta_n(B)\}\in\sigma$ where σ is an ideal of convergent to zero sequences. Examples of sequence ideals are the ideals of rapidly decreasing sequences $\{\lambda_n\}$ satisfying $\lim_{n\to\infty}\lambda_n\,n^\alpha=0$ for any $\alpha>0$, or radically decreasing sequences satisfying $\lim_{n\to\infty}\sqrt[n]{|\lambda_n|}=0$. In case σ is the ideal of rapidly decreasing sequences, this notion is identical to the S-nuclearity introduced by K. Astala and M. S. Ramanujan in 1987. We show that the infinite Cartesian product $\prod_{i=1}^\infty B_i$ of compact sets B_i is ℓ^p -compact in $\ell^p(X_i)$, for all p>0, if $(\delta_0(B_i))\in S$. In this case we give upper estimates of n-th diameters of $\prod_{i=1}^\infty B_i$ in $\ell^p(X_i)$ for any p>0.

1. Introduction

Astala and Ramanujan have suggested to call a subset B of a normed space S-nuclear if and only if its sequence of Kolmogorov diameters (see Definition 6.1) $\{\delta_n(B)\}\in S$ where S is the space of rapidly decreasing sequences (see Section 2). This happens if and only if $\sum_{n=0}^{\infty} \delta_n^p(B) < \infty$ for all p>0. However it is known [3] that a bounded subset B of a normed space X is precompact if and only if its sequence of Kolmogorov diameters $\{\delta_n(B)\}$ converges to zero. This motivated us to call a subset B of a normed space σ -compact if and only if $\{\delta_n(B)\}\in \sigma$, where σ is any sequence ideal. In fact, we make a slight modification of the definition of the sequence ideal mentioned in [4]. We only require that the ideal σ contains the dilated sequence $\{\lambda_{[n/2]}\}$ together with any sequence $\{\lambda_n\}\in \sigma$. This requirement

Received June 1, 2003.

²⁰⁰⁰ Mathematics Subject Classification. 47B06.

Key words and phrases. S-nuclearity, Kolmogorov diameters, rapidly decreasing sequences, radically decreasing sequences, n-diameters of Cartesian products.

is weaker than the symmetricity condition included in the definition of the sequence ideal mentioned in [4].

2. Notation and basic definitions

- 1. By ℓ^{∞} we denote the space of all bounded sequences of real numbers and by c_0 its closed subspace of all convergent to zero sequences.
- 2. By S we denote the space of all rapidly decreasing sequences of real numbers defined by

$$S = \left\{ \left\{ \lambda_n \right\}_{n=1}^{\infty} : \sup_{n} n^{\alpha} \left| \lambda_n \right| < \infty \quad \forall \ \alpha > 0 \right\}.$$

Example for a rapidly decreasing sequence is $\{\lambda_n\} = \{2^{-n}\}.$

3. For a sequence $\alpha = \{\alpha_i\}_{i=1}^{\infty}$, $0 < \alpha_1 < \alpha_2 < \dots$, satisfying that there exists a constant c > 0 such that $\alpha_{2n} \leq c\alpha_n$, $n = 1, 2, \dots$, the space S_{α} is defined as the following space of sequences:

$$S_{\alpha} = \left\{ \left\{ \lambda_{n} \right\}_{n=1}^{\infty} : \sup_{n} x^{\alpha_{n}} \left| \lambda_{n} \right| < \infty \quad \forall \ x \in \mathbb{R}^{+} \right\}.$$

4. By \Re we denote the space of all radically decreasing sequences of real numbers defined by

$$\Re = \left\{ \left\{ \lambda_n \right\}_{n=1}^{\infty} : \lim_{n \to \infty} \sqrt[n]{|\lambda_n|} = 0 \right\}.$$

3. Remarks and consequences on definitions

- 1. One can easily see that a sequence $\{\lambda_n\}_{n=1}^{\infty}$ is rapidly decreasing, i.e., satisfying the condition $\sup_n n^{\alpha} |\lambda_n| < \infty$ for any $\alpha > 0$, if and only if $\lim_{n\to\infty} |\lambda_n| n^{\alpha} = 0$ for each $\alpha > 0$.
- 2. A sequence $\{\lambda_n\}$ belongs to the space S_α if and only if $\sup_n x^{\alpha_n} |\lambda_n| < \infty$ for any $x \in \mathbb{R}^+$. This condition is equivalent to $\lim_{n\to\infty} x^{\alpha_n} |\lambda_n| = 0$ for any $x \in \mathbb{R}^+$.
- 3. If $\lim_{n\to\infty} x^{\alpha_n} |\lambda_n| = 0$ for any $x \ge 1$ then $\lim_{n\to\infty} x^{\alpha_n} |\lambda_n| = 0$ for all 0 < x < 1.
- 4. The space S of rapidly decreasing sequences is a special case of the space S_{α} . In fact, taking $\alpha_n = \log n$ and $x = e^k$ for any k > 0, we get

$$x^{\alpha_n} = (e^k)^{\log n} = n^k.$$

For this choice of α we get

$$S_{\alpha} = S$$
, $\alpha = (\alpha_n)_{n=1}^{\infty}$.

of the

umbers

of real

there e S_{lpha} is

of real

g, i.e., only if

 $|\lambda_n| < 1$ 0 for

for all

of the

Proposition 3.1. (1) If $\{\lambda_n\}_1^{\infty}$ is a radically decreasing sequence then $\{\lambda_n \ n^{\alpha}\}$ is also radically decreasing, i.e., if $\{\lambda_n\}_{n=1}^{\infty} \in \Re$ then $\{\lambda_n \ n^{\alpha}\} \in \Re$ $\Re \subseteq c_0$ for any $\alpha > 0$.

(2) Each radically decreasing sequence is rapidly decreasing and the converse is not necessarily true, i.e., $\Re \subseteq S \subseteq c_0$, $\Re \neq S$.

Proof. Let $\{\lambda_n\}_1^{\infty} \in \Re$; then $\lim \sqrt[n]{|\lambda_n|} = 0$. Since $\lim_{n \to \infty} \sqrt[n]{n} = 1$, we get for each $\alpha > 0$

$$\lim_{n\to\infty} \sqrt[n]{|\lambda_n| \, n^{\alpha}} = \lim_{n\to\infty} \sqrt[n]{|\lambda_n|} \, \lim_{n\to\infty} (\sqrt[n]{n})^{\alpha} = 0,$$

and hence $\{\lambda_n \ n^{\alpha}\} \in \Re$. Therefore $\lim_{n\to\infty} |\lambda_n| \ n^{\alpha} = 0$ for all $\alpha > 0$, and $\sup_n |\lambda_n| n^{\alpha} < \infty$. Hence $\Re \subseteq S \subseteq c_0$.

Moreover, since $\lim_{n\to\infty} n^{\alpha}/2^n = 0$ for all $\alpha > 0$, we have $\{1/2^n\} \in S$. However $\{1/2^n\} \notin \Re$ since $\lim_{n\to\infty} \sqrt[n]{1/2^n} = 1/2$. Therefore $\{1/2^n\} \in S \setminus \Re$ and so $\Re \subsetneq S$.

Remark 3.2. There is enough variety of sequence spaces with different rates of convergence to zero of its general terms λ_n . For example, we can take $\left\{\sqrt[n]{|\lambda_n|}\right\} \in S$ or $\left\{\sqrt[n]{|\lambda_n|}\right\} \in \Re$, and so on,

$$\Re = \left\{ \left\{ \lambda_n \right\} : \left\{ \sqrt[n]{|\lambda_n|} \right\} \in c_0 \right\},$$

$$\Re^{(2)} = \left\{ \left\{ \lambda_n \right\} : \left\{ \sqrt[n]{|\lambda_n|} \right\} \in \Re \right\},$$

$$\Re^{(k+1)} = \left\{ \left\{ \lambda_n \right\} : \left\{ \sqrt[n]{|\lambda_n|} \right\} \in \Re^{(k)} \right\}, \quad k = 1, 2, \dots.$$

4. Sequence ideals

A sequence ideal σ on the scaler field is a subset of the space ℓ^{∞} satisfying the following conditions:

- (1) $e_i \in \sigma$, where $e_i = (0, 0, \ldots, 1, 0, \ldots)$, the one in the *i*-th place.
- (2) If $\lambda_1, \lambda_2 \in \sigma$ then $\lambda_1 + \lambda_2 \in \sigma$.
- (3) If $\lambda = \{\lambda_i\}_{i=0}^{\infty} \in \ell^{\infty} \text{ and } \mu = \{\mu_i\}_{i=0}^{\infty} \in \sigma \text{ then } \lambda \mu = \{\lambda_i \mu_i\}_{i=0}^{\infty} \in \sigma.$ (4) If $\lambda = \{\lambda_0, \lambda_1, \dots\} \in \sigma \text{ then the dilated sequence } \{\lambda_0, \lambda_0, \lambda_1, \lambda_1, \dots\} = 0$ $\{\lambda_{[n/2]}\}_{n=0}^{\infty} \in \sigma$, where [x] is the integer part of the real number x.

For a sequence ideal σ , we call the operator $D: \sigma \to \sigma$, defined by

$$D(\{\lambda_n\}) = \{\lambda_{[n/2]}\}_{n=0}^{\infty} \in \sigma,$$

the dilatation operator, and condition (4) the dilatation property.

Examples of sequence ideals. The sequence spaces S, \Re , and S_{α} are examples of sequence ideals. We will verify the satisfaction of the dilatation property of the above-mentioned examples.

(1) The space S: taking $\{\lambda_n\} \in S$, we get

$$\lim_{n \to \infty} n^{\alpha} \lambda_n = 0 \ \forall \alpha > 0.$$

Therefore,

$$\lim_{n\to\infty} n^{\alpha} \ \lambda_{[n/2]} \le 2^{\alpha} \ \lim_{n\to\infty} ([n/2]+1)^{\alpha} \lambda_{[n/2]} = 0.$$

Hence $D(\lambda_n) \in S$.

(2) The space \Re : for a radical sequence $\{\lambda_n\} \in \Re$ and for large values of n we get $|\lambda_{\lceil n/2 \rceil}| < 1$, and therefore

$$\lim_{n \to \infty} \sqrt[n]{|\lambda_{[n/2]}|} = \lim_{n \to \infty} \left\{ \sqrt[n/2]{|\lambda_{[n/2]}|} \right\}^{1/2} \le$$

$$\le \lim_{n \to \infty} \left\{ \sqrt[n/2]{|\lambda_{[n/2]}|} \right\}^{1/2} \le$$

$$\le \lim_{n \to \infty} \left\{ \sqrt[n/2]{|\lambda_{[n/2]}|} \right\}^{1/4} = 0.$$

Hence $D(\lambda_n) \in \Re$.

(3) The space S_{α} : for $\{\lambda_n\} \in S_{\alpha}$ and $x \geq 1$ we get, using the notation from Section 2,

$$\sup_{n} x^{\alpha_{n}} |\lambda_{[n/2]}| \leq \sup_{n} x^{\alpha_{2[n/2]+1}} |\lambda_{[n/2]}| =$$

$$= x \sup_{n} x^{\alpha_{2[n/2]}} |\lambda_{[n/2]}| \leq$$

$$\leq x \sup_{n} (x^{c \alpha_{[n/2]}} |\lambda_{[n/2]}|) =$$

$$= x \sup_{n} (x^{c})^{\alpha_{n}} |\lambda_{n}| < \infty.$$

Hence $D(\lambda_n) \in S_{\alpha}$.

5. Infinite Cartesian products of unit balls

Let X_1, X_2, \ldots be a sequence of normed spaces with closed unit balls U_{X_1}, U_{X_2}, \ldots , respectively. By $\ell^{\infty}(X_i), \ell^p(X_i)$ we denote the linear subspaces of the Cartesian product $X_1 \times X_2 \times X_3 \ldots$ equipped with the norms

$$||x||_{\infty} = \sup_{i \in N} ||x_i||, ||x||_p = \sqrt[p]{\sum_{i=1}^{\infty} ||x_i||^p},$$

respectively. By $c_0(X_i)$ we denote the subspace of $\ell^{\infty}(X_i)$ of all convergent to zero sequences, i.e.,

$$c_0(X_i) = \{x = \{x_i\} \in \ell^{\infty}(X_i) : \lim_{i \to \infty} ||x_i|| = 0\}.$$

49

By $U_{\ell^{\infty}(X_i)}$, $U_{c_0(X_i)}$ and $U_{\ell^p(X_i)}$ we denote the closed unit balls of the spaces $\ell^{\infty}(X_i)$, $c_0(X_i)$ and $\ell^p(X_i)$, respectively.

Proposition 5.1. Let $\{X_i\}$ be a sequence of Banach spaces. Then the following holds.

(1) The unit ball of $\ell^{\infty}(X_i)$ is the Cartesian product of the unit balls U_{X_i} , i.e.,

$$U_{\ell^{\infty}(X_i)} = \prod_{i=1}^{\infty} U_{X_i} .$$

(2) For any absolutely p-summable sequence $\lambda = \{\lambda_i\} \in \ell^p$, $p \geq 1$, such that $\sum_{i=1}^{\infty} |\lambda_i|^p \leq 1$ one has

$$\prod_{i=1}^{\infty} (\lambda_i \ U_{X_i}) \subseteq U_{\ell^p(X_i)} \subseteq U_{c_0(X_i)} \subseteq U_{\ell^{\infty}(X_i)}.$$

Proof. This is an easy straightforward verification.

Lemma 5.2. Let F_1, F_2, \ldots be a sequence of finite dimensional subspaces of normed spaces X_1, X_2, \ldots , respectively. Let dim $F_i = n_i$ (dim $F_i = 0$ if and only if $F_i = \{0\}$) and let $\sum_{i=1}^{\infty} n_i = m$. In this case only finite number of spaces F_i are not trivially $\{0\}$ and $F = \prod_{i=1}^{\infty} F_i$ is a finite dimensional subspace of $\prod_{i=1}^{\infty} X_i$ with

$$\dim F = \sum_{i=1}^{\infty} \dim F_i = \sum_{i=1}^{\infty} n_i = m.$$

Proof. Let $\Im=\{i: \dim F_i=n_i\neq 0\}=\{i_1,\ i_2,\ldots,\ i_k\}$. For any $j=1,\ 2,\ldots,\ k$, the subspace F_{i_j} has a basis say

$$\{x_1^{i_j}, x_2^{i_j}, \dots, x_{n_{i_i}}^{i_j}\}.$$

Therefore the elements

$$z_{i} = \left\{ \begin{array}{cccc} (0, \ 0, \dots, \ x_{i}^{i_{1}}, \ 0, \dots) & 1 \leq i \leq n_{i_{1}} \\ (0, \ 0, \dots, \ x_{i}^{i_{2}}, \ 0, \dots) & n_{i_{1}} < i \leq n_{i_{2}} \\ & \ddots & \ddots & \\ & \ddots & \ddots & \\ (0, \ 0, \dots, \ x_{i}^{i_{k}}, \ 0, \dots) & n_{i_{k-1}} < i \leq n_{i_{k}}, \end{array} \right\}$$

form a basis for the subspace $F = \prod_{i=1}^{\infty} F_i$ with

$$\dim F = \sum_{i=1}^{\infty} \dim F_i = \sum_{i=1}^{\infty} n_i = m.$$

notation

values of

it balls ar subnorms

vergent

6. n-Diameters of Cartesian products

Definition 6.1 (see [4]). Let B be a bounded subset of a Banach space X with the closed unit ball U. For $n = 0, 1, \ldots$, the n-th diameter $\delta_n(B)$ of a bounded subset B is defined as

$$\delta_n(B) = \inf \delta_n(B, F),$$

where the infimum is taken over all subspaces F with dim $F \leq n$ and

$$\delta_n(B, F) = \inf\{c > 0 : B \subseteq c \ U + F\}.$$

These diameters, introduced by A. N. Kolmogorov, satisfy the following properties (see, e.g. [6]).

1) $\delta_0(B) \geq \delta_1(B) \geq \cdots \geq 0$.

2) $\delta_n(B) = 0$ if and only if B is contained in a linear subspace F of X of dimension at most n, i.e.,

$$\delta_n(B) = 0$$
 if and only if $B \subset F$, dim $F \leq n$.

3) B is precompact (its closure is compact) if and only if $\{\delta_n(B)\} \in c_0$. Astala and Ramanujan [1] have suggested the following definition. The subset B is called S-nuclear if and only if $\{\delta_n(B)\} \in S$. Parallel to their suggestion we suggest the following definition.

Definition 6.2 (see [2]). For a sequence ideal $\sigma \subseteq c_0$ we will call a subset B, in a normed space X, a σ -compact subset if and only if $\{\delta_n(B)\} \in \sigma$.

In the special case where σ is the space \Re of radically decreasing sequences we will call a subset B, in a Banach space X, radically compact if and only if $\{\delta_n(B)\}\in\Re$.

Main Theorem. Let B_0 , B_1 ,... be bounded subsets of normed spaces X_0 , X_1 ,..., respectively. Then the following holds.

(1) If $\delta_0(B_i) \to_{i \to \infty} 0$ and B_i are compact subsets, i.e., $\delta_n(B_i) \to_{n \to \infty} 0$ for all $i = 0, 1, \ldots$, then $\prod_{i=0}^{\infty} B_i$ is compact in $\ell^{\infty}(X_i)$ and

$$\sup_{i} \delta_{m}(B_{i}) \leq \delta_{m}^{\infty}(\prod_{i=0}^{\infty} B_{i}) \leq \inf_{\sum n_{i}=m} \sup_{i} \delta_{n_{i}}(B_{i}) \longrightarrow 0.$$

(2) If B_i are compact subsets and $\{\delta_0(B_i)\}\in S$ then $\prod_{i=0}^{\infty} B_i$ is compact in $\ell^p(X_i)$ for any p>0 and

$$\delta_m^p(\prod_{i=0}^{\infty} B_i) \le \inf_{\sum n_i = m} \left(\sum_{i=0}^{\infty} (\delta_{n_i}(B_i))^p \right)^{1/p} \longrightarrow 0.$$

Here $\delta_n^p(C)$ is the n-th diameter of C in the space $\ell^p(X_i)$.

Remark 6.3. The item (2) of the Main Theorem holds in case $0 , only we remark that the space <math>\ell^p$, 0 , is not a normed space, but a <math>p-normed space.

51

To prove this theorem we need the following lemmas.

Lemma 6.4. Let $\{\lambda_n^i\}_{n=0}^{\infty}$, $i=0,1,\ldots$, be a sequence of monotonically decreasing sequences of non-negative real numbers, $\lambda_{n+1}^i \leq \lambda_n^i$, $n=0,1,\ldots$. A necessary and sufficient condition for the sequence

$$\eta_m = \inf_{\sum n_i = m} \sup_i \lambda_{n_i}^i, \ m = 1, 2, \dots,$$

to converge to zero as $m \to \infty$ is that

(1)
$$\lim_{i\to\infty} \lambda_0^i = 0$$
 and (2) $\{\lambda_n^i\}_{n=0}^\infty \to 0$ for all $i = 0, 1, \dots$

Proof. Necessity of condition (1). Suppose at first that $\{\lambda_0^i\}$ does not converge to zero. Then it contains a subsequence $\{\lambda_0^{i_k}\}_{k=1}^{\infty}$ such that $\lambda_0^{i_k} \ge \varepsilon_0 > 0$, for a certain number ε_0 and for $k = 1, 2, \ldots$ Since for each m and each representation $\sum_{i=0}^{\infty} n_i = m$, the subset $G = \{i : n_i \ne 0\}$ is a finite subset of indices, we have $i_k \notin G$ for all indices i_k except a finite number of indices k. Hence for some k_0 it is true that

$$\sup_{i} \lambda_{n_{i}}^{i} \ge \sup_{i \notin G} \lambda_{0}^{i} \ge \lambda_{0}^{i_{k_{0}}} \ge \varepsilon_{0}.$$

Therefore,

$$\eta_m = \inf_{\sum n_i = m} \sup_i \lambda_{n_i}^i \ge \varepsilon_0 \quad \forall \ m = 1, 2, \dots$$

Hence η_m does not converge to zero.

Necessity of condition (2). Suppose that $\{\lambda_n^{i_0}\}_{n=0}^{\infty}$ does not converge to zero for some $i=i_0$. The monotonicity of $\{\lambda_n^{i_0}\}_{n=0}^{\infty}$ shows that there exists $\beta>0$ such that $\lambda_n^{i_0}\geq\beta$ for all $n=0,1,2,\ldots$. In fact we take $\beta=\inf_n \lambda_n^{i_0}>0$. In this case we get $\sup_i \lambda_{n_i}^i \geq \lambda_{n_{i_0}}^{i_0} \geq \beta$. Since this is true for any choice of $\sum n_i=m$, we have $\eta_m=\inf_{\sum n_i=m}\sup_i \lambda_{n_i}^i \geq \beta>0$.

Sufficiency part. Since $\lambda_0^i \to 0$ as $i \to \infty$, for any $\varepsilon > 0$ there exists i_0 such that $\lambda_0^i < \varepsilon$ for any $i \ge i_0$. From the convergence of $\{\lambda_n^i\}$ to zero then for any $i = 0, 1, 2, \ldots, i_0 - 1$ and for any $\varepsilon > 0$, there exists n_i^0 such that $\lambda_n^i < \varepsilon$, for any $n \ge n_i^0$. Taking $m_0 = \sum_{i=0}^{i_0-1} n_i^0$ then we get

$$\begin{array}{ll} \eta_m & \leq & \eta_{m_0} = \inf\limits_{\sum n_i = m_0} \left(\sup\limits_i \ \lambda_{n_i}^i\right) \leq \\ & \leq & \max(\sup\limits_{0 \leq i < i_0} \lambda_{n_i^0}^i \ , \sup\limits_{i \geq i_0} \lambda_0^i) < \varepsilon \end{array}$$

for any $m \geq m_0$.

Lemma 6.5. Let $\{\lambda_n^i\}_{n=0}^{\infty}$, $i=0,1,\ldots$, be a sequence of monotonically decreasing sequences of non-negative real numbers. A necessary and sufficient condition for the sequence $\xi_m = \inf_{\sum n_i = m} \sum_{i=0}^{\infty} \lambda_{n_i}^i$ to converge to zero as $m \to \infty$ is that

of X of

ollowing

 $\delta_n(B)$ of

a subset $\in \sigma$. quences nd only

d spaces

 $\Rightarrow_{n\to\infty} 0$

compact

0 ace, but

(1)
$$\sum_{i=0}^{\infty} \lambda_0^i < \infty$$
 and (2) $\{\lambda_n^i\}_{n=0}^{\infty} \to 0$ for all $i = 0, 1, \dots$

Proof. Necessity of condition (1). For each m and each representation $\sum_{i=0}^{\infty} n_i = m$, the subset $G = \{i : n_i \neq 0\}$ is a finite subset of indices. Therefore the two series $\sum_{i=0}^{\infty} \lambda_{n_i}^i$ and $\sum_{i=0}^{\infty} \lambda_0^i$ differ in only finite number of terms, so they converge or diverge together. So condition (1) is necessary for the series $\sum_{i=0}^{\infty} \lambda_{n_i}^i$ to be convergent and for ξ_m to exist.

Necessity of condition (2). If $\{\lambda_n^i\}$ does not converge to zero, for some i_0 , then there exists $\delta > 0$ such that $\lambda_n^{i_0} \geq \delta > 0$ for all $n = 0, 1, \ldots$ Hence,

$$\xi_m = \inf_{\sum n_i = m} \sum_{i=0}^{\infty} \lambda_{n_i}^i \ge \lambda_{n_{i_0}}^{i_0} \ge \delta,$$

and ξ_m does not converge to zero.

Sufficiency part. From condition (1) we get that for any $\varepsilon > 0$ there exists i_0 such that $\sum_{i=i_0}^{\infty} \lambda_0^i < \varepsilon/2$. From condition (2) we get that for any $i = 0, 1, \ldots, i_0$, and any $\varepsilon > 0$ there exists $n_{i_0}^0$ such that $\lambda_n^i < \varepsilon/2i_0$ for all $n > n_i^0$. Hence for any

$$m \ge m_0 = \sum_{i=0}^{i_0-1} n_i^0$$

we get

$$\xi_m = \inf_{\sum n_i = m} \sum_{i=0}^{\infty} \lambda_{n_i}^i \le$$

$$\le \sum_{i=0}^{i_0 - 1} \lambda_{n_i}^i + \sum_{i=i_0}^{\infty} \lambda_0^i <$$

$$< \sum_{i=0}^{i_0 - 1} \frac{\varepsilon}{2i_0} + \frac{\varepsilon}{2} < \varepsilon.$$

Remark 6.6. Excluding monotonicity of λ_n^i in Lemmas 6.4 and 6.5 we get, nearly by the same proof, the following.

1. If $\{\lambda_n^i\}_{n=0}^{\infty} \in c_0$ for all i and $\sup_n \lambda_n^i$ converges to zero when i tends to infinity then $\inf_{\sum n_i = m} \sup_i \lambda_{n_i}^i$ converges to zero.

2. If $\{\lambda_n^i\}_{n=0}^{\infty} \in c_0$ for all i and $\sum_{i=0}^{\infty} \lambda_n^i < \infty$ then $\inf_{\sum n_i = m} \sum_{i=0}^{\infty} \lambda_{n_i}^i$ converges to zero.

Lemma 6.7. Let B_0 , B_1 ,... be bounded subsets of normed spaces X_0 , X_1 ,... with closed unit balls U_{X_0} , U_{X_1} ,..., respectively. Then the following holds.

number ecessary

6.5 we

i tends

 $\sum_{i=0}^{\infty} \lambda_{n_i}^i$

 $es X_0$, llowing (1) If $\{\delta_0(B_i)\}\in \ell^{\infty}$ then

$$\sup_{i} \delta_{m}(B_{i}) \leq \delta_{m}^{\infty}(\prod_{i=0}^{\infty} B_{i}) \leq \inf_{\sum n_{i}=m} \sup_{i} \delta_{n_{i}}(B_{i}).$$

(2) If $\{\delta_0(B_i)\}\in \ell^p$ then

$$\delta_m^p(\prod_{i=0}^{\infty} B_i) \le \inf_{\sum n_i = m} \left(\sum_{i=0}^{\infty} (\delta_{n_i}(B_i))^p \right)^{1/p}.$$

Here $\delta_n^p(C)$ is the n-th diameter of C in the space $\ell^p(X_i)$.

Proof. (1) From the definition of n-diameters $\delta_{n_i}(B_i)$ we have

$$B_i \subseteq (1+\varepsilon)\delta_{n_i}(B_i)U_{X_i} + F_i, \quad i = 0, 1, 2, \dots,$$

for some F_i , dim $F_i \leq n_i$. Thus

$$\prod_{i=0}^{\infty} B_i \subseteq (1+\varepsilon) \prod_{i=0}^{\infty} \delta_{n_i}(B_i) U_{X_i} + \prod_{i=0}^{\infty} F_i.$$

Taking $\sum n_i = m$, then $F_i \neq \{0\}$ for only finite numbers of indices i. In this case $F = \prod_{i=0}^{\infty} F_i$ is a finite dimensional subspace with dim $F = \sum n_i = n_i$ m and we get

$$\prod_{i=0}^{\infty} B_i \subseteq (1+\varepsilon) \sup_i \delta_{n_i}(B_i) \prod_{i=0}^{\infty} U_{X_i} + F.$$

From Proposition 5.1(2) we get

$$\prod_{i=0}^{\infty} B_i \subseteq (1+\varepsilon) \sup_i \delta_{n_i}(B_i) \ U_{l^{\infty}(X_i)} + F.$$

Since $\dim F = m$, we get

$$\delta_m^{\infty}(\prod_{i=0}^{\infty} B_i) \le (1+\varepsilon) \sup_i \delta_{n_i}(B_i),$$

and since $\varepsilon > 0$ is arbitrary,

$$\delta_m^{\infty}(\prod_{i=0}^{\infty} B_i) \le \sup_i \delta_{n_i}(B_i).$$

This is true for any choice of $m = \sum_{i=0}^{\infty} n_i$. Therefore,

$$\delta_m^{\infty}(\prod_{i=0}^{\infty} B_i) \leq \inf_{\sum n_i = m} \sup_i \delta_{n_i}(B_i).$$

(2) Taking $\sum_{i=0}^{\infty} (\delta_{n_i}(B_i))^p = \mu^p$, we have

$$\sum_{i=0}^{\infty} \frac{(\delta_{n_i}(B_i))^p}{\mu^p} = 1.$$

Similarly to the proof of (1) we get

$$\prod_{i=0}^{\infty} B_i \subseteq (1+\varepsilon) \prod_{i=0}^{\infty} \delta_{n_i}(B_i) U_{X_i} + F.$$

Then

$$\prod_{i=0}^{\infty} B_i \subseteq (1+\varepsilon)\mu \prod_{i=0}^{\infty} \frac{1}{\mu} \, \delta_{n_i}(B_i) U_{X_i} + F.$$

Using Proposition 5.1(2), we get

$$\prod_{i=0}^{\infty} B_i \subseteq (1+\varepsilon)\mu \ U_{\ell^p(X_i)} + F.$$

Therefore

$$\delta_m^p(\prod_{i=0}^{\infty} B_i) \le (1+\varepsilon) \left(\sum_{i=0}^{\infty} (\delta_{n_i}(B_i))^p\right)^{1/p}.$$

Since ε is arbitrary, we get

$$\delta_m^p(\prod_{i=0}^{\infty} B_i) \le \left(\sum_{i=0}^{\infty} (\delta_{n_i}(B_i))^p\right)^{1/p}.$$

Since this is true for any choice of $m = \sum n_i$,

$$\delta_m^p(\prod_{i=0}^{\infty} B_i) \le \inf_{\sum n_i = m} \sum_{i=0}^{\infty} ((\delta_{n_i}(B_i))^p)^{1/p}.$$

Proof of the Main Theorem. Proof of part (1) comes from Lemma 6.4 and Lemma 6.7 and the proof of part (2) comes from Lemma 6.5 and Lemma 6.7.

References

- [1] K. Astala and M. S. Ramanujan, (s)-Nuclear sets and operators, Pacific J. Math. 127 (1987), 233-246.
- [2] N. Faried and F. Ramadan, n-Diameters and Kolmogorov numbers of finite Cartesian product of @-compact sets and direct sums of operators, Proc. Math. Phys. Soc. Egypt, No. 68 (1993), 7-18 (1997).
- [3] A. Pietsch, Nuclear Locally Convex Spaces, Springer-Verlag, New York-Heidelberg, 1972.
- [4] A. Pietsch, Operator Ideals, North-Holland Publishing Co., Amsterdam-New York, 1980.

[5] A. Pietsch, Eigenvalues and s-Numbers, Akademische Verlagsgesellschaft Geest&Portig K.-G., Leipzig, 1987.

[6] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge University Press, Cambridge, 1989.

Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt $E\text{-}mail\ address:\ n_faried@hotmail.com}$

MATH. DEPARTMENT, FACULTY OF WOMEN, AIN SHAMS UNIVERSITY, 1 ASMA FAHMY STR., HELIOPOLIS, CAIRO, EGYPT E-mail address: mona_fathey@hotmail.com

._

ima and

ian

rg,

k,