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S-nuclearity and n-diameters of infinite Cartesian
products of bounded subsets in Banach spaces

NASHAT FARIED AND MONA FATHEY

ABSTRACT. In this paper we classify compact subsets of a normed space
according to the rate of convergence to zero of its sequence {6.(B)} of
Kolmogorov diameters, We introduce o-compact sets to satisfy that
{0n(B)} € 0 where ¢ is an ideal of convergent to zero sequences. Ex-
amples of sequence ideals are the ideals of rapidly decreasing sequences
{An} satisfying limn—yoo An n® = 0 for any @ > 0, or radically decreas-
ing sequences satisfying limn—co 3/[An [ =0. In case o is the ideal of
rapidly decreasing sequences, this notion is identical to the S-nuclearity
introduced by K. Astala and M. S. Ramanujan in 1987. We show that
the infinite Cartesian product T1:2, B: of compact sets B; is fP-compact
in £P(X;), for all p > 0, if (Jo(B:)) € S. In this case we give upper
estimates of n-th diameters of []5°, B; in £(X;) for any p > 0.

1. Imtroduction

Astala and Ramanujan have suggested to call a subset B of a normed
space S-nuclear if and only if its sequence of Kolmogorov diameters (see
Definition 6.1) {4,(B)} € S where S is the space of rapidly decreasing
sequences (see Section 2). This happens if and only if Y omeg 65(B) < oo for
all p > 0. However it is known [3] that a bounded subset B of a normed
space X is precompact if and only if its sequence of Kolmogorov diameters
{dn(B)} converges to zero. This motivated us to call a subset B of a normed
space g-compact if and only if {0,(B)} € o, where ¢ is any sequence ideal.
In fact, we make a slight modification of the definition of the sequence ideal
mentioned in [4]. We only require that the ideal ¢ contains the dilated
sequence {/\[n /2]} together with any sequence {)\,} € . This requirement
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is weaker than the symmetricity condition included in the definition of the
sequence ideal mentioned in [4].

2. Notation and basic definitions
1. By £ we denote the space of all bounded sequences of real numbers
and by ¢y its closed subspace of all convergent to zero sequences.

2. By S we denote the space of all rapidly decreasing sequences of real
numbers defined by

S =< {Antor isupn®|Ap <oo V¥V a>0
"

Example for a rapidly decreasing sequence is {X,} = {27"}.

3. For a sequence o = {o;}0;, 0 < oy < ap < ..., satisfying that there
exists a constant ¢ > 0 such that oo, < capn, m=1, 2,..., the space S, is
defined as the following space of sequences:

So =< {0} ssupz® Ay <00 YV z R .
n

4. By R we denote the space of all radically decreasing sequences of real
numbers defined by

R={ M}« lim /8] =0}

3. Remarks and consequences on definitions

1. One can easily see that a sequence {A,},2, is rapidly decreasing, i.e.,
satisfying the condition sup,, n%|\,| < oo for any a > 0, if and only if
lmy, 00 [An] 1% = 0 for each a > 0.

2. A sequence {\,} belongs to the space S, if and only if sup, % |A,] <
oo for any z € RT. This condition is equivalent to limy ;00 %™ |Ay| = 0 for
any ¢ € R,

3. If limy 500 % |Ap| = 0 for any = > 1 then limy_,00 2% [Ap| = 0 for all
0<z<1.

4. The space S of rapidly decreasing sequences is a special case of the
space S,. In fact, taking o, = logn and z = e* for any k > 0, we get

o = (ek)logn — nk

For this choice of o we get
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Proposition 3.1. (1) If {\,}7° is a radically decreasing sequence then
{A\n n®} is also radically decreasing, i.e., if {\;}>2, € R then {\, n®} €
R C ey for any a > 0.

(2) Each radically decreasing sequence is rapidly decreasing and the con-
verse is not necessarily true, i.e., RC S Cco, R# S.

Proof. Let {A\,}7° € ®; then lim {/|A,| = 0. Since lim,, ., ¥/n = 1, we
get for each o > 0

hm Vidalne = hm V1 Anl hm =0,

and hence {\, n®} € R. Therefore lim;, 0o |An|n® = 0 for all @ > 0, and
sup, |An|n%* < co. Hence R C S C cp.

Moreover, since limg, oo n%/2" = 0 for all @ > 0, we have {1/2"} € S.
However {1/2"} ¢ R since lim,,_,, {/1/2" = 1/2. Therefore {1/2"} € S\R
and so R &G S. O

Remark 3.2. There is enough variety of sequence spaces with different
rates of convergence to zero of its general terms \,. For example, we can

take{m}esor{m}e%,wdsoon,
2= {0y (i} ca}.
- {0} {3} ex).
R+ - {{/\} {{‘/W}e%‘#“} k=1,2,.

4. Sequence ideals

A sequence ideal o on the scaler field is a subset of the space €% satisfying
the following conditions :

(1) e; € 0, where ¢; = (0, 0,..., 1, 0,...), the one in the i-th place.

(2) If Ay, Ay € 0 then \; + X2 € 0.

(3) EA={N}Z0 € €% and p = {ps}op € 0 then A p = {A\; i}, € 0.

(4) IEX = {Xo, A1, ... } € o then the dilated sequence {A\g, Ao, A1, A1,... } =
{ [n /2}}00 € o, where [z] is the integer part of the real number z.

For a sequence ideal o, we call the operator D : ¢ -+ o, defined by
D({An}) = {Mns21 } o € 0
the dilatation operator, and condition (4) the dilatation property.

Examples of sequence ideals. The sequence spaces S, R, and S, are
examples of sequence ideals. We will verify the satisfaction of the dilatation
property of the above-mentioned examples.
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(1) The space S : taking {\,} € S, we get
lim n®* X\, =0 Va>0.

n—oc

Therefore,
A, 1 Aoy < 2 lim ([n/2] + 1)% Ay = 0.

Hence D()\,) € S.
(2) The space R : for a radical sequence {),} € ® and for large values of
n we get ‘)\[n /2]! < 1, and therefore

' _ 1/2
m 2/ Ay = lim ¢ /[Nyl <

00 n—o0

1/2
: n/2
Jm {1 Ppl} <

. . 1/4
7}520 [n/2] /l)‘{n/ﬂl} = 0.
Hence D(\,) € R.

(3) The space S, : for {A\,} € S, and = > 1 we get, using the notation
from Section 2,
supz®” (Al < sup @A/ N g =
' wT;UP /2 Xy | <
xsgp(-’ﬂc A A ]) =
a:sgp(wc)a" |An] < oo.

Hence D(Ay) € S,.

5. Infinite Cartesian products of unit balls

Let X;, X»,... be a sequence of normed spaces with closed unit balls
Ux,, Ux,,--., respectively. By £°(X;), ¢P(X;) we denote the linear sub-

pa

spaces of the Cartesian product X; x X9 x X3... equipped with the norms

o0 = sup sl lal, =

respectively. By co(X;) we denote the subspace of £*°(X;) of all convergent
to zero sequences, i.e.,

co(Xi) = {z = {z;} € £°(X;) : Bm
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By Upso(x;), Ucy(x,) and Upr(x,) we denote the closed unit balls of the spaces
£°(X5), co(X;) and £P(X;), respectively.

Proposition 5.1. Let {X;} be a sequence of Banach spaces. Then the
following holds.

(1) The unit ball of £°(X;) is the Cartesian product of the unit balls
Ux;, i.e.,

. .9
walues of Upso (x;) = H Ux, .
i=1
(2) For any absolutely p-summable sequence \ = {Ni} e, p>1, such
that 32 | MIP < 1 one has
oo

H(/\i Ux;) € Um(x;) C Ueyxy) € Upso(xy)-

=1
Proof. This is an easy straightforward verification. (]
Lemma 5.2. Let Fy, Fy,... be a sequence of finite dimensional subspaces
of normed spaces X, Xs,..., respectively. Let dim F; = n; (dim F; = 0 if
and only if F; = {0}) and let > 72, n; =m. In this case only finite number
of spaces F; are not trivially {0} and F = [[2, F; is a finite dimensional
subspace of [0, X; with

[e.e] (o]
dim F = ZdimFi = an = m.

Proof. Let & = {i : dim F; = n; # 0} = {iy, is,..., 4x}. For any j =
J
1, 2,..., k, the subspace F;; has a basis say
{xij,x;", e ,mf{ij }.
Therefore the elements

0, 0,..., 2}, 0,... 1<i<my,
lit balls , 0, 0,..., 22, 0,... Ny <1< nyg,
ar sub- 3 :

(0, 0,..., o 0,... Ny <1 < Ny

70

form a basis for the subspace F = [[2, F; with

o0 oG
dim F = ZdimFi = Zni = m.
i=1 =1
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6. n-Diameters of Cartesian products

Definition 6.1 (see [4]). Let B be a bounded subset of a Banach space
X with the closed unit ball U. For n = 0,1,..., the n-th diameter 6,(B) of
a bounded subset B is defined as

8p(B) = inf 6,(B, F),
where the infimum is taken over all subspaces F with dim F' < n and
§,(B,F) =inf{c >0: BCcU+ F}.

These diameters, introduced by A. N. Kolmogorov, satisfy the following
properties (see, e.g. [6]).

1) 6o(B) 2 61(B) =2 +-- 20,

2) 6,(B) = 0 if and only if B is contained in a linear subspace F of X of
dimension at most n, i.e.,

0p(B) =0 ifand only if BC F, dimF < n.

3) B is precompact (its closure is compact ) if and only if {6,(B)} € co.

Astala and Ramanujan [1] have suggested the following definition. The
subset B is called S-nuclear if and only if {6, (B)} € S. Parallel to their
suggestion we suggest the following definition.

Definition 6.2 (see [2]). For a sequence ideal o C ¢ we will call a subset
B, in a normed space X, a o-compact subset if and only if {0,(B)} € o.
In the special case where o is the space R of radically decreasing sequences

we will call a subset B, in a Banach space X, radically compact if and only
if {6,(B)} € R.

Main Theorem. Let By, By,... be bounded subsets of normed spaces
Xo, X1,..., respectively. Then the following holds.

(1) If 60(B;) —vis00 0 and B; are compact subsets, i.e., on(B;) —rn—oo 0
for alli=0,1,..., then [[32, B; is compact in £°(X;) and

n;=m

3
sup 0m (B;) < 62(] [ B) < Zinf sup on, (Bg) — 0.
1 =0 1

(2) If B; are compact subsets and {8o(B;)} € S then []72, B; is compact
in £P(X;) for anyp >0 and
o0 1/p

6£’n(ﬁBZ~)§ Zmf > (Gn (B —0.
1=0

HET N =0
Here 6h(C) is the n-th diameter of C in the space (X;).

Remark 6.3. The item (2) of the Main Theorem holds in case 0 < p <
1, only we remark that the space 7, 0 < p < 1, is not a normed space, but
a p-normed space.
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To prove this theorem we need the following lemmas.

Lemma 6.4. Let {)\fl}oo__ .1 =0,1,..., be a sequence of monotonically
n=0 . .
decreasing sequences of non-negative real numbers, A} 1 < A,n=0,1,....
A necessary and sufficient condition for the sequence

m = ;nim SL'Llp >‘ni y T = 17 27 et
i=

to converge to zero as m — oo s that
(1) limjyoo Ay =0 and (2) {/\fl}:ozo —~0 forall 1=0,1,....

Proof. Necessity of condition (1). Suppose at first that {\j} does not

converge to zero. Then it contains a subsequence {)\6’“} such that A >

g0 > 0, for a certain number e and for k = 1,2,.... Since for each m and
each representation Y oo, m; = m, the subset G = {i : n; # 0} is a finite
subset of indices, we have i ¢ G for all indices i except a finite number of
indices k. Hence for some kg it is true that
sup /\fn > sup )\6 > Agko > £g.
i itG
Therefore,

N = _inf sqp)\ili}_ao YVm=12,....

n;=m i
Hence 7, does not converge to zero.

Necessity of condition (2). Suppose that {Af{’}zozo does not converge to
zero for some § = 1g. The monotonicity of {X?}° = shows that there exists
B > 0 such that A > Bforalln =0,1,2,.... Infact we take 0 = inf, A0 >
0. In this case we get sup; A, > )\ﬁ{’io > (3. Since this is true for any choice
of >>n; =, we have 0y, = infs,, -, sup; )\%i >p3>0.

Sufficiency part. Since A} — 0 as i — oo, for any £ > 0 there exists ig
such that A} < e for any i > 49. From the convergence of {A%} to zero then
forany i =0, 1, 2,..., 49 — 1 and for any € > 0, there exists n) such that

N, < g, for any n > nf. Taking mg = ZZ?:—()l nY then we get

Mn < Mme = _inf  (sup Xy,) <

- ni=mg 4
< max( sup Ao, sup Ag) <€
0<i<ip ¢ i>ig
for any m > my. O

Lemma 6.5. Let {,\’n}nzo, 1=0,1,..., be a sequence of monotonically
decreasing sequences of non-negative real numbers. A mnecessary and suffi-
cient condition for the sequence & = infy-pop, PR Ay, to converge to

zero as m-—y 0o 18 that
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1) 50, Ay < oo and (2) {AZ}ZO:O =0 foral 1=0,1,....

Proof. Necessity of condition (1). For each m and each representation
Yiegni = m, the subset G = {i : n; # 0} is a finite subset of indices.
Therefore the two series Y ;o) AL and Y oo A differ in only finite number
of terms, so they converge or diverge together. So condition (1) is necessary
for the series 3 2, )\f“ to be convergent and for &, to exist.

Necessity of condition (2). If { )\;} does not converge to zero, for some i,
then there exists 6 > 0 such that A > § > 0 for all n =0, 1,.... Hence,

(o]
bn = _inf Z My 2 AR >4,
and &, does not converge to zero.

Sufficiency part. From condition (1) we get that for any € > 0 there
exists 49 such that Y 2%, Ay < /2. From condition (2) we get that for any
1=0,1,...,%, and any 5 > 0 there exists nio such that )\fl < €/2iy for all
n > nl. Hence for any

290—1

mZm():Zn?
=0

mf_ Z )‘ni <

S ni=m
' =0

ip—1

O

Remark 6.6. Excluding monotonicity of A} in Lemmas 6.4 and 6.5 we
get, nearly by the same proof, the following.

1IN } o € co for all 4 and sup, A% converges to zero when 4 tends
to infinity then mfz ni=m SUD; )\;, converges to zero.

2. If {M,}77  €co foralliand 3500 M\, < oo then infs~pmm Doie
converges to zero.

ZOn,

Lemma 6.7. Let By, By,... be bounded subsets of normed spaces Xy,
X1,... with closed unit balls Ux,, Ux,,..., respectively. Then the following
holds.




for all

% tends
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(1) If {00(B;)} € £ then

sup Om(Bi) < 6% H B;)
7=0

(2) If {60(B;)} € P then

x [e 0]
ﬂQUMSEQLLEJMw
1=0 1=0
Here 64,(C) is the n-th diameter of C in the space £P(X;).
Proof. (1) From the definition of n-diameters dy,(B;) we have
B;C(1 +5)5n,;(Bi)UXi +F, 1=0,1,2,...,

for some F;, dim F; < n;. Thus

HBC (1+¢) H(Snl X+HF

Taking »"n; = m, then F; # {0} for only finite numbers of indices 7. In
this case F' = [[;2, F; is a finite dimensional subspace with dim F = > n; =
m and we get

oo
HB C( 1+5)sup5 i)HUX,-+F-
i=0 =0

From Proposition 5.1(2) we get

HB C(1+e¢) sup Ons (By) Upo(x,y -+ F.
i=0

Since dim F' = m, we get

O HB 1+£)sup6 (By),

and since € > 0 is arbitrary,

I H B;) < sup On, (B;).
=0
This is true for any choice of m = .2, n;. Therefore,

[o.¢]
S]] Bs) < _inf supdy,(By).

n;=m
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(2) Taking Y72, (0n, (B;))P = uP, we have

$6u B _
1=0 'up
Similarly to the proof of (1) we get
o0

[I1B: €+ ][] on(B:)Ux, + F.
1= 1=20

oG o] l

[IB:ic+eu]]= 6n(B)Ux, + F.

=0 i=o ¥
Using Proposition 5.1(2), we get

o
HBi CA+e)pUpx,) + F
1220
Therefore
] oo 1/p
h(I]Bi) < (1+e) | D (6ni(B))
i=0 i=0
Since ¢ is arbitrary, we get
oo o0 i/p
(1B < { D_n (B
2220 2==0
Since this is true for any choice of m = 3" n;,

o

5%(19.1 B;) < _inf ((6n, (B))P)P.
i=0

2omi=m iy
O

Proof of the Main Theorem. Proof of part (1) comes from Lemma
6.4 and Lemma 6.7 and the proof of part (2) comes from Lemma 6.5 and
Lemma 6.7.
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