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Strong summability defined by p-convex modulus
functions and Kuttner’s theorem

VIRGE SOOMER

ABsTRACT. The purpose of this paper is to extend Thorpe’s generaliza-
tion of Kuttner’s theorem (cf. Theorem K) to strong summability with
respect to a p-convex modulus function.

1. Introduction and preliminaries

A function f : [0,00) — [0,00) is called a modulus function (or simply
a modulus), if f is strictly increasing, continuous on [0,00), f(t+ u) <
f(t) + f(u) for all £,u > 0 and f(0) = 0.

Let 0 <p < 1. A function f : [0, 00) — [0, 00) is called p-conver if

flat+ Bu) < aP f(t) + 37 f(u)
for all t,u >0 and o, 8 > 0 with o + P = 1.
In this paper we consider p-convex (0 < p < 1) modulus functions. Note
that the notion of I-convex functions coincides with the notion of convex
functions.

Example 1. The function f(¢) =P, 0 < p < 1 is p-convex and it is not
r-convex if r > p.

Let E be a sequence space and let f be a modulus function. The space
E(f) is defined as
B(f) ={z = (&) : F(z) = (f(I&])) € E}. (1)

A real functional g on a linear space F is called an F-norm if

(1) g(z) = 0 if and only if z = 0,

(i) ol <1 (¢ €K) = g(az) < g(z) forall z € E,

(iii) gz +y) < g(z) + g(y) for all z,y € E,

(iv) limp o =0 (o € K), 2 € E = lim,, g(apz) = 0.
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An F-space is defined as a complete F'-normed space. If a sequence space
E is an F-space on which the coordinate functionals n(z) = & are conti-
nuous, then E is called an FK-space. An FK-space with normable topology
is called a BK -space. Some authors include local convexity in the definition
of a Fréchet space and of an FK-space. We do not and we follow the
definition used by Maddox and by Wilansky (cf. [14]).

Let ¢ be the space of all finite sequences. An F-space F containing ¢ is
called an AK -space, if limy, 3 5, pex =z for all 2 = (&) € E.

An F-norm ¢ in a sequence space E is called absolutely monotone if
€] < Inkl, k €N, implies g(z) < g(y) for all = (&), y = (m) in E.

Let gf(z) = g(F(z)). The topologization of the space E(f) was studied
by E. Kolk and by the author. According to these results we get

Theorem 1 ([11]). Let f be a modulus function and let g be an absolutely
monotone F-norm on a solid sequence space E. The functional g; defines
an absolutely monotone F-norm on E(f) if the following condition holds:

(F) There ezists a function v such that f(ut) < v(u)f(t), 0 < u <1,
t > 0 and limy 04 v(u) = 0.

Remark 1. It is easy to check that condition (F) holds for each p-convex
(0 < p £ 1) modulus function.

A sequence space E is called solid (or normal) if (ng) € E and || < |ni]
imply (&) € E.

Theorem 2 ([4]). If E is a solid AK-FK-space with an absolutely mono-
tone F-norm g, then E(f) is a solid AK-FK-space with an absolutely mono-
tone F-norm gy.

Let now A = (anx) be an infinite matrix with a,; > 0 and let ¢4 be the
summability field of matrix method A, i.e.

ca={z=(&): Alz) = liTanZankfk exists}.
k=1

Then, passing to strong summability,

[cal = {z = (&) : 3¢, lirrananklfk — ¢ =0}

k=1

[calo = {z = (&) : liTanZaankl =0}
k=1

are the spaces of strongly A-summable and strongly A-summable to zero
sequences, respectively.
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If we put E = [c4]o in (1) and f is a modulus, then
[ealo(f) = {z = (&) : im D _ anif(|€]) = 0.
k=1

In the case f(t) =7, 0 < p < 1, we have [calo(f) = [cal}, the space of the
sequences that are strongly A-summable to zero with index p. By taking
A = (C,1), the Cesaro matrix, and for 0 < p < 0o the space [calh is usually
denoted by wq(p), i.e.

o) = o = (6 lin 7 D e =0)

Let £, denote the space of bounded sequences. Thorpe (cf. [13]) gave the
following generalization of Kuttner’s theorem.

Theorem K ([13]). If 0 < p < 1 and X is a locally convex FK-space,
then X D Ly whenever X O wy(p).

Kuttner [5] proved this result in the case X = ¢4 where A is a regular
matrix method (Kuttner’s theorem).

The purpose of this paper is to give some extensions of Theorem K by
replacing wo(p) by [calo(f).

2. Extension of Kuttner’s theorem in the case of [calo(f)

For a sequence space E we denote by E* and F? the Kéthe-Toeplitz duals
of E, i.e.

[e.e]
B ={a=(ax): Y _loxlsl < oo forall (&) e E}
k=1
and
o>
EP = {o= (o) : Zakﬁk converges for all ({) € E}.
k=1
For an F-normed sequence space E we denote by E’ the topological dual of
FE and in the case ¢ C E, we use the notation

E? ={(pler)) : p € E'}.
If the matrix A = (ang) satisfies the condition
(F1) supayr >0 foreach k €N,
n

then [cao is a solid AK-BK-space with the norm

2l = sup > ankléx|
e
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(cf. [1]). Then, by Theorem 2, the space [calo(f) is a solid AK-FK-space
with the F-norm

95(x) = sup > ani f(IEx]).
" ok=1

Since for every solid AK-FK-space E we have
E* = EP = g¥, (2)

this is also true for £ = [c4]q(f).
For a positive matrix method A = (a,;) we define

B(4,p) = {z = (&) : im > apfPléx] = 0.
k=1

Theorem 3. Let f be a modulus and let A = (ank) be a positive regular
matriz method with finite rows satisfying the conditions (F1) and

o0
(F2) > ank =1 for each neN.
k=1

Then the following statements hold:
(i) B(A,p) is a solid AK-BK-space with the norm

o0
g(z) = sup > alP|é|.
n

k=1
(ii) If f is p-convez, then [calo(f) C B(A,p).
(ifi) Lo C B(A,p) if and only if lim, 52, a7 = 0.
Proof. (i) This is well known.
(ii) We use Jensen’s inequality: if f is a p-convex function and ap > 0,
kzn:1 of =1, tp >0, then

FOQ arte) < Db f(ty).
k=1 k=1

Taking oy = a,r%p and ¢ = |{| we have (note that the matrix A has finite

rows and satisfies (F2))

FO-aie) <3 anef ().
k=1

k=1

Then (ii) follows by the properties of modulus functions.
(iii) It is clear (cf. [2], Theorem 2.4.1 (of Schur)) that the matrix method

A, = (a%p ) sums all bounded sequences if and only if lim, ", ai{cp =
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The following theorem gives an extension principle of Kuttner’s theorem.

Theorem 4. Let X be a locally convexr FK-space. If the matriz method
A and the modulus f satisfy conditions of Theorem 3 and ([calo(f))¥ C

(B(A,p))¥, then the condition lim, > o, :L{cp = 0 is sufficient for the im-
plication

X Dlealo(f) = X D ly

Proof. Suppose that X D [calo(f), then X¥ C ([calo(f))¥ and by the
respective assumption of the present theorem also X% C (B(A,p))¥. Since
by (i) of Theorem 3 the BK-space B(4,p) is an AK-space and hence also an
AD-space (i.e. ¢ is dense in B(A,p)), X D B(A,p) follows from Theorem 4
of [10]. Thus, by Theorem 3 (iii), we have X D /. O

Remark 2. If [c4]o(f) is a closed subspace of B(4, p), then ([ca]o(f))¢ C
(B(A,p))? (ct. [15], 7.2.7).

We see that for extending of Kuttner’s theorem it is essential to know
the spaces ([calo(f))? and (B(A,p))?. But we have not much information
about these spaces. In the following part of this paper we give an extension
of Theorem K for a certain class of matrix methods.

3. Extension of Kuttner’s theorem in the special case N (f)

An increasing sequence © = (k,) of non-negative integers is called a lacu-
nary sequence if ky = 0 and lim, (k41 — kr) = co. We use the notation

kryi—1

hy = ( r4+1 7 Z Z %,?jx - k,gkmgiil—l'
The space N{ is defined as
.1
Ng = {z = (&) : lim— > | |&| = 0}.
T
(r)

Then N 9 is the strong null-summability field of the matrix method Ag =
(a8) where

Qpp == (T,kEN)

e 1/hy for ky <k <kpy —1,
0 otherwise

Since Ag fulfils (F1), N3 is a solid AK-BK-space with the norm
1
lzllo = sup Y 1&l.
T

In the special case © = (27), we have N9 = wy(1 ) and the norm ||z]g
is equivalent to the usual norm ||z|| = sup,(n+ 1)7'S°F_o1¢k] in wo(1)
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(cf. [6], Chapter 7). By Theorem 2 we get that NO o(f) is a solid AK-FK-
space with the F-norm

95(x )~suph > (gD
(r)
The space Ng was first studied in [3] and the spaces like N 9(f) are con-
sidered, for instance, in [9].
We define

Mo (p) = {a = (ay) Zh/pn(xaxlak|<oo} (3)
r=0

Theorem 5. Let f be an unbounded p-conver modulus function satisfying
the condition

(F3) f(t'/P) = O@), t— oo.
Then

(N (£))* = Mo(p).

Proof. 1) Let © = (&) € N3(f), a = (1) € Mg(p) and let £~ be the
inverse function of f. Let A,.k = ]ak|h7l«/p (r,k € N). Then

1
% lopéel| < max Ak =7 hl/” (z): €kl = max Arkf*l[f(;lﬁ % 1€k 1)]

Applying Jensen’s inequality we have

D lowdxl Sn(lf)'XArkf“ Zf (1€eD)] = ma)XArkf g5 ()]
(r) "

Do lar] = fontrl < £ gp ()] S hP max |ay| < oo.
r=0 r=0 (r) r=0

Hence a = (o) € (N3(f))® and thus Mg (p) C (NS ()=
2) Suppose that @ = (o) ¢ Mo(p). Then the series in (3) is divergent,
and therefore there exists a sequence (b,), 0 < b, — 0, r — 0o such that

zbh /pma.xlozk]—- (4)

r==0

Let n(la),x[ak] = |og, | and let Z = (¢;) be defined by
T

i = behi? for k =k,
"o for k&,

(r,k € N).
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Since b, — 0, r — oo, we have b, < 1 for sufficiently large r. Now by
p-convexity of f, by the condition f(0) = 0 and by (F3) we have

bpf( )

7”

" Zf(lékl) = -f(b he'?) <

=o0(1l), r— oo.

Hence z € N(f). But 3 |apés] = [akrlbrhi/p so that by (4) the series
()

> reo | €| diverges and therefore (o) & (N3(f))*. This completes the
proof. ]

Theorem 6. Let X be a locally conver FK-space and let [ be a p-convex
unbounded modulus satisfying the condition (F3). Then the following state-
ments hold:

() (VS(£)* C (B(4e,p))?,
(i) XDONY(f)=XDlw

Proof. (i) Since N3(f) and B(Ap,p) are solid AK-FK-spaces, their
o-duals and ¢-duals are equal and so it is sufficient to prove (N (f))®
(B(Ag,p))*. By Theorem 5 it is sufficient to show Mg(p) C (B(4e,p))®.
Let a = (o) € Mg(p), then for each z = (£;) € B(Ag,p) we have

Z o] = ZZ lonr| < Zhl/pmaxlak! 1/,, Z[fkl

r=0 (1)
o
<qlz) > ml? max o] < oo
=0 ’

which implies that (ay) € (B(Ae,p))?.
(ii) The matrix Ag = (a%,) satisfies conditions of Theorem 3, (N3 (£))¥ C
(B(Ag,p))? by (i) and lim, Z(afk)l/p = lim, h}_l/p = (. Consequently the

(r)
statement (ii) of the present theorem follows immediately by Theorem 4. [J

A generalization of the space N (f), namely the space

NQ(F) ={z = (&) : F(z) = (f(l&])) € N},

where F = (fi) is a sequence of modulus functions, was studied in [12].
According to the assumptions which are different from the assumptions of
Theorem 6 in the present paper, there have been proved some extensions of
Kuttner’s theorem in the case of N3 (F). Note that in the case fy(t) = 7
foreach £ € N, 0 < p < 1, Theorem 6 in the present paper and Theorems 7
and 8 in [12] give the same result.

20
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A generalization of Theorem K for non-constant p = (p;) was given by
Maddox [7]. In the case wy(1)(f) the extension of Theorem K was proved
by Maddox in [8].
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