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The Wishart distributions on homogeneous cones

STEEN A. ANDERSSON AND (3. GERARD WOJNAR

ABSTRACT. The classical family of Wishart distributions on a cone of
positive definite matrices and its fundamental features are extended to a
family of generalized Wishart distributions on a homogeneous cone using
the theory of exponential families. The generalized Wishart distributions
mclude all known families of Wishart distributions as special cases. The
relations to graphical models and Bayesian statistics are indicated.

1. Introduction

The classical Wishart distribution arises as the distribution of the max-
imum likelihood (ML) estimator of the covariance matrix in a multivari-
ate sample as follows: Let I be a finite set. Whereas the context always
precludes misunderstanding, I will also denote the cardinality of the set
I. Let the observable z € R follow the multivariate normal distribution
Ny(0,%) = N;(X) on R with expectation 0 € R! and unknown covariance
matrix ¥ € P(I,R), the open cone* of positive definite I x I matrices in the
vector space S(I,R) of symmetric I x I matrices with real-valued entries.
Thus one considers the statistical model®

(N/(Z) € P(RY)[Z € P(I,R)), (1.1)

where P(€2) denotes the set of probability measures on a sample space (2.
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"A cone is closed under addition, closed under multiplication with positive scalars, and
contains no lines.

TA statistical model (Py € P(Q)l0 € ©) is a family (not a set) of probability measures
Py, 8 € ©, on the same sample space Q, parametrized by the parameter set ©.
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Let N be a finite set and let z, € R!, v € N, be N independent identically
distributed (i.i.d.) observables from the model (1.1) indexed by N, where
again N denotes both an index set and its cardinality. Thus the statisti-
cal model under consideration consists of N independent repetitions of the
model (1.1), i.e., the normal model

(N(Z)®Y € P(RNY)|E € P(I,R)), (1.2)

where N7 (Z)®Y denotes the distribution? of the observable y = (z,|v € N) €
RN = R7*N = M(I x N,R), the vector space of I x N matrices with
real-valued entries.

The ML estimator 3 of & € P(I,R) exists with probability one if and
only if N > I.} In the case N > I it is uniquely given by S(y) = %yy' ,
where 3’ denotes the transposed matrix of y. The distribution of the ML
estimator 3 is the classical Wishart distribution with multivariate scale %E

and f = N degrees of freedom. This distribution of 3 was first derived by
J. Wishart (1928). The Wishart distributions are concentrated on the open
cone P(I,R). The family of Wishart distributions is usually parametrized
by the multivariate scale T € P(I,R) and the degrees of freedom f € {I, I+
1,I+2,---}. The expectation of the Wishart distribution is fY and the ML
estimator 3 is thus unbiased.

In the present work it is more convenient to replace the multivariate scale
Y by the expectation & := fY € P(I,R) and replace the degrees of freedom
f by the shape parameter X := ife {%, I—“Zﬂ, %2,} The Wishart distri-
bution with expectation ¥ and shape parameter ) is thus denoted by Ws
and is given by

A et (S 5 exp{—Atr(E7L9)}
dWE,/\(S) = TT1a-n -
i [T =52 =1,--- , T)det(X)A
where dS denotes the standard Lebesgue measure on P(I, R), det(-) denotes
the determinant of a square matrix, and tr(-) denotes the trace of a square
matrix. In fact, the right-hand side of (1.3) defines a probability measure
for any A > £51 and any © € P(I,R). This extension of the possible values
of the shape parameter reduces in the case I = 1 to the usual inclusion of

ds, (1.3)

iHere P®" is used for the product measure ®(Plv € N) = P®--- ® P (N times) on
Q¥ = x(Qr e N) =0 x--- x Q (N times) when P is a probability measure on a sample
space Q.

$Tn the opposite case N < I the ML estimator does not exist for any observation
y € RIxN.

YMore precisely: the restriction of the standard Lebesgue measure on the vector space
S(I,R) to the open subset P(I,R).
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the family of x? distributions with integer degrees of freedom and positive
scale within the family of gamma distributions.

Remark 1.1. It is, of course, also possible to define the Wishart distribu-
tions in terms of their Laplace transforms and/or their characteristic func-
tions. In these cases it could be argued that a further extension of the family
is natural. This extension corresponds to I extra values 1—5—1—, —1—5—2, - ,—;—,O
of the shape parameter A. In these cases there is no density with respect to
(wrt) to the Lebesgue measure on P(I,R) and for A = L% the Wishart dis-
tribution is concentrated on the positive semidefinite I x I matrices of rank

I —4,9=1,---,I. These I cases are therefore called the singular cases (as
opposed to the regular cases). For details of the Laplace transform approach
see Casalis and Letac (1996), Letac and Massam (1998), and their references.
Another possible approach to this classical extension to the singular cases
uses the existence of relatively invariant measures to define the extension.
The latter method of extension to the singular cases has a generalization to
generalized Wishart distributions in the present paper, cf. Remark 2.7 for a
brief description of the method. Nevertheless, the theory presented in this
paper concerns the regular cases only. O

The family of Wishart distributions on the sample space P(I, R) with a
fixed shape parameter constitutes a statistical model in its own right:

(Ws\ € P(P(L,R))|Z € P(I,R)), (1.4)
called the classical Wishart model. We emphasize that the shape parameter
A is considered as known and that the sample space and parameter set
are identical. Such families of Wishart distributions provide the basis for
construction of a very flexible class of Bayesian prior distributions!! on the
parameter set P(I,R) in the models (1.1), (1.2), and (1.4).

Any subset P C P(I,R) defines by restriction of the parameter set to P
in the models (1.1), (1.2), and (1.4), (a) the general normal model

(Nr(Z) € P(R)|S € P), (1.5)

(b) the N independent repetitions of the general normal model, i.e., the
model

WNr(2)®Y e P(RNY)|E € P), (L.6)
and (c) the restricted classical Wishart model (Wsx € P(P(I,R))|S € P),
respectively. The estimation of the parameter ¥ € P in such models is an
important part of what is usually called inference for the covariance matriz.**

IThrough the inverse Wishart distribution.

**Test procedures among such models are also included in the general terminology
“inference for the covariance”.

2
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We now present twelve examples of such models, i.e., examples of subsets
P. These examples also illustrate many of the classical covariance hypotheses
(models) in the literature.

In most of these examples P is an open subcone!™ of the open cone P(I, R).
However, in all the examples the subset P can be parametrized in a one-to-
one fashion by an open cone C, i.e.,

cC < P
c = 3 (1.7)
() « %

In all the cases where P is a subcone of P(I,R), the parametrization of P
by the open cone C is semilinear.}t When the parameter set C replaces P
in the model (1.5) we obtain the model

(N;(2(c)) e P(R)|c € O). (1.8)

Interest in the distribution of the ML estimator of ¢ € C' in the model (1.8),
generalization of the classical Wishart model (1.4) to the general Wishart
model with the cone C as sample and parameter space, and a flexible class
of Bayesian prior distributions on the parameter set C constitute the basic
motivations for our generalization of the Wishart distributions on P(I,R)
to the generalized Wishart distributions on more general cones.

(i) Real normal models. When P = P(I,R) one obtains the normal
model (1.1) and the classical Wishart model in (1.4). The classical Wishart
distribution is also called the real Wishart distribution. A cone isomorphic*
to P(I,R) for some finite set I is said to be of type R or of real type.

(ii) Complex normal models. Let P = Pc(I,R) be the subset consist-
ing of all & € P(I,R) of the form

2:(2 —?) (1.9)

That is, I = JUJ, where J is a finite set and U denotes disjoint union of
sets, I' € P(J,R), and A € K(J,R), the vector space of J x J antisymmetric
matrices with real-valued entries. The subset P is a subcone of P(I,R),
and can be parametrized by the open cone C := P(J, C) of positive definite
(Hermitian) J x J matrices in the vector space H(J,C) over R of Hermitian
J % J matrices with entries from C, the complex numbers!. The inverse
parametrization in (1.7) is given by ¢(8) = @ := I +iA. An observable

TtA subcone will be defined precisely in Section 2.
A semilinear mapping is a linear mapping of the enveloping vector spaces restricted
to the cones, cf. Section 2.

“Defined in Section 2.
tNote that the set of Hermitian matrices is not a vector space over C.
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from the normal statistical model (1.5) given by (1.9) is then equivalent to
an observable from a complex normal distribution on C’ with expectation
0 and unknown complex covariance matrix ® € P(J,C). Distribution of the
ML estimator & for & € P(J,C) for N > 1 = J independent repetitions of
this model becomes the well-known complez Wishart distribution. See for
example Goodman (1963), Khatri (1965a, 1965b), Andersson (1975a, 1975b,
1976, 1978, 1992), Andersson and Perlman (1984), and Andersson et al.
(1975, 1983). Thus the distribution of the ML estimator 3 of & € Pe(l,R) is
easily described through the reparametrization and is also called the complex
Wishart distribution, although it is concentrated on the cone Pg (I, R). The
complex Wishart distribution Wy, y on P(J, C) with expectation 3 € P(J,C)
and shape parameter A > J —1 is given by (6.3) with I replaced by J. The
complex Wishart model is then given by

(W € P(P(J,C))|E € P(J,C)). (1.10)

A cone isomorphic to P(J,C) for some finite set J is said to be of type C
or of complex type.

(iii) Quaternion normal models. Let P = Pg(I,R) be the subset
consisting of all ¥ € P(I,R) of the form

' —A, —Ay =Agjg

A} T —As AQ

A A, T A (1.11)
Az —Ay A r

That is, I = JUJUJUJ, where J is a finite set, I' € P(J,R), and A;, A,
Az € K(J,R). The subset P is a subcone of P(I, R), and can be parametrized
by the open cone C = P(J, H) of positive definite (Hermitian) J x J matrices
in the vector space #(J,H) over R of Hermitian J x J matrices with en-
tries from the quaternion numbers H. The inverse parametrization in (L.7)
is given by ¢(X) = ® := ' +iA{ + jAy + kAs. An observable from the
normal statistical model (1.5) given by (1.11) is then equivalent to an ob-
servable from a quaternion normal distribution on HY with expectation 0
and unknown quaternion covariance matrix ® € P(J,H). The distribution
of the ML estimator & for ® ¢ P(J,H) for N > ﬁ = J independent repeti-
tions of this model is the quaternion Wishart distribution. See for example
Andersson (1975a, 1975b, 1978, 1992) and Andersson et al. (1975). The dis-
tribution of the ML estimator 3 of 3 € Pr(l,R) is easily described through
the reparametrization and is also called the quaternion Wishart distribution.
It is concentrated on the cone Pg(J,R). The quaternion Wishart distribu-
tions Wy x on P(J,H) with expectation & € P(J,H) and shape parameter
A > 2J ~ 2 is given by (6.5) with I replaced by J. The quaternion Wishart
model is then given by

Y=
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(Wga € P(P(J,H))|Z € P(J, H)). (1.12)
A cone isomorphic to P(J,H) for some finite set J is said to be of type H
or of quaternion type.
(iv) Group symmetry normal models. Let H be a closed subgroupi
of O(I,R), the group of orthogonal I x I matrices, and let

P = Pu(I,R) == {T € P(I,R)|hTh = % for all h € H}. (1.13)

The subset P = P (I,R) is a subcone of P(I,R) and the general model
(1.5) given by (1.13) is called a (normal) (group ) symmetry model. The class
of symmetry models was first defined by Andersson (1975b). In the same
work the structure of the models and one form of the ML estimator were
presented. The theory and the complete likelihood analysis of symmetry
models are central parts of an unpublished general algebraic theory of normal
models developed by Andersson, Brgns, and Tolver Jensen in the years 1972-
1985. Several parts of this algebraic theory are reported in several sets of
unpublished lecture notes in Danish, Andersson (1975a, 1976), Tolver Jensen
(1973, 1974, 1977, 1983), Brens (1969), Andersson et al. (1975). These
notes contain a complete solution for the likelihood inference for symmetry
models, including ML estimation, distribution of ML estimators, likelihood
ratio (LR) statistics and their central distributions. A small but central
part of this work can be found in Andersson (1978, 1992) and Andersson
and Madsen (1998), Appendix A. See also Perlman (1987).

The interpretation of the symmetry model (1.5) given by (1.13) is that the
distribution of the observable z is invariant under each symmetry transfor-
mation h € H, i.e., z and hz have the same distribution. In many important
examples the symmetry group H is induced by a subgroup, denoted by S, of
the full permutation group S(I) of the index set 1. For ¢ € S, a symmetry
h = h(o) € H is given by h7lg = (z,;)li € I), where z = (zilieI) e Rl
and h~! denotes the inverse of h € H.

Note that P in (i), (ii), and (iii) are special cases of Py (I,R). In fact the
corresponding three types of models are the “building stones” of all symme-
try models, as described in Andersson (1975b). The main result therein is
that the symmetry model (1.5) given by (1.13), by an orthogonal change of
basis in R/, becomes an independent product of normal models? each con-
sisting of independent repetitions of a real normal model, a complex normal
model, or a quaternion normal model. This decomposition of a symmetry

fMore precisely, consider an orthogonal continuous representation on R’ of a compact
group H.

§A product of a finite family of statistical models (Pp, € P(0)|0u € Ou), p€ M, is
the statistical model (Py € P(Q)|6 € ©), where Q := x(Qpu|p € M), © = x(O,{p € M),
and Py := ®(Py, |lp€ M), 0= (Oulp € M).
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model is unique up to an uninteresting isomorphism9. In particular, it follows
from Andersson (1975b) that any group-symmetry cone Py (I, R) is isomor-
phic to a cone C' = x(Ck|x € K), where for each s € K, Cy; = P(I;,R),
Cx = P(Is, C), or Cx = P(I,,H). Thus when the parametrization by C is
used, the distribution of the ML estimator & of ¢ € C can be described as
a product of Wishart distributions on Cj, x € K, each being a classical, a
complex, or a quaternion Wishart distribution. Andersson et al. (1975) give
a simple definition and description of the family of Wishart distributions
on the cone Py (I,R), see also Andersson (1978, 1992). This definition is
the inspiration for the definition of the generalized Wishart distribution in
Section 3. The distribution of the ML estimator 3 of £ € Py(I, R) is then
obtained as a generalized Wishart distribution.

It should be mentioned that in the examples! of symmetry models in the
literature, the distribution of 3 is not described. We now list the classical
examples of symmetry models from the literature together with some com-
ments. For each example the generalized Wishart distributions will provide
a corresponding new family of Wishart distributions defined on the cone
defining the model.

(v) Multivariate complete symmetry models (multivariate inter-
class correlation). Let P be the subset consisting of all & € P(I,R) of
the form

A (1.14)

: . A
A A T

That is, I = JUJUJ - --UJ (say k times), ' € P(J,R), and A € S§(J,R). The
normal model (1.5) given by (1.14) is a group symmetry model with the the
group H induced by the group § = S({1,--- ,k}) of all permutations of the &
equal-sized J-blocks of I. For J = 1 this model was first defined and analyzed
under the name of complete symmetry by Wilks (1946). His student Votaw
(1948) defined and analysed this general model under the name of compound
symmetry of type II**. Votaw’s covariance matrix ¥ appears to be different
from the above, but this is only because his ordering of the coordinates is
different from the one presented above. It was probably because of this
superficial difference that the model reappeared again in Arnold (1973) in
the present form without any reference to Votaw. This history shows the

YTwo statistical models (Py € P(E)|6 € ©) and (Q¢ € P(F)|¢ € ) are called isomor-
phic if there exists a bimeasurable bijective mapping ¢ : E -+ F and a bijective mapping
¥ : © — E such that £(Pp) = Qyup), 6 € ©.

IExcept for the complex normal model in (i) above.

“*Votaw’s compound symmetry of type I is also an interesting symmetry model.
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importance of invariant formulation in statistics, in particular in multivariate
statistical analysis. It is well known that the normal model (1.5) determined
by (1.14) decomposes into an independent product of two models of the type
(1.2).

(vi) Multivariate circular symmetry models. Let P be the subset
consisting of all & € P(I,R) of the form

r AVEEEVACENERE Ap—g Apa
Ay T Ay EEEVAVA
n=| Sz Be . (L15)
. '.. T . - Al AZ
FACRE o DApy T Ay
Ay AV o Dpg Apg T

That is, I = JUJUJ---UJ (k times), I' € P(J,R), and A; = A}_; €
M(J,R) == M(J x J,R), 4 =1,--- ,k — 1. Thus, when k is odd there are

%l different restricting equations among Ay, -+, Ag—1, but when k is even
there are 12“- different restricting equations, the last one being Ay = A', i.e.,
2 3
A € S(I,R).
2

The normal model (1.5) determined by (1.15) is a symmetry model with
the group H induced by the group S = C(k) of all the cyclic permutations of
the k equal-sized J-blocks of I. For J = 1 this model was first defined and
analyzed under the name of circular symmetry by Olkin and Press (1968).
For J > 1 the multivariate circular symmetry model has yet to appear in
the literature. Nevertheless, Olkin (1973) did define and analyze a normal
model under the name circular symmetry in blocks: the covariance matrix
¥ was defined as in (1.15) but with the more restrictive condition that A; =
Ag_; € S(J,R),i=1,--- ,k—1. For J > 1 this model is a proper submodel
of the multivariate circular symmetry model. In fact a closer examination
shows that Olkin’s model is the dihedrallt symmetry model. Thus Olkin’s
model should properly not be called circular symmetry in blocks but rather
the multivariate dihedral symmetry model.

It can be established that when k is odd the multivariate circular sym-
metry model (1.5) given by (1.15) decomposes into an independent product
of one model of the type (1.1) and —’%l complex normal models, cf. (ii). In
the case when k is even there will be two models of type (1.1) and —’29 ~1
complex normal models in the decomposition. For the dihedral symmetry
model there will be, when & is odd, one model of type (1.1) and k—g——l— models

tThe dihedral group is generated by the cyclic group and the permutation that reverses
the order of {1,---,k}.
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of type (1.2) with N = 2. When £ is even there will be two models of type
(1.1) and £ — 1 models of type (1.2) with N = 2.

(vii) Multivariate block independence. Let P be the subset consisting
of all ¥ € P(I,R) of the form

rnh o
0 .

=:diag(l'k|k = 1,--+ , k). (1.16)
: .. 0
0 -~ 0 Iy

That is, I = J1U---UJ, where Jy is a finite set, and I'y € P(J,,R), x =
L,---,k. The normal model (1.5) given by (1.16) is a symmetry model
with the group H induced by variation-independent sign changes of the k
components of the observable (z1,--+,2;) = ¢ € R, The model is well-
known, cf. Anderson (1984), Chapter 9. Trivially, the model (1.5) given by
(1.16) decomposes into a product of k models of the type (1.1).

(viii) Multivariate spherical symmetry (the i.i.d. normal model).
Let P be the subset consisting of all ¥ € P(I,R) of the form

r o --- 0

I
Y= =diag(le =1, - , k). (1.17)

R T |

0 -«- 0 T

That is, I = JU---UJ (k times), where J is a finite set, and I' € P(J, R).
The normal model (1.5) given by (1.17) is a symmetry model with the group
H generated by the groups in (v) and (vii). The model is also the model
(1.2) with N = k. This shows that the model (1.2) is in fact also itself a
symmetry model. By further combining with a general group H from (iv) it
is seen that N independent repetitions of a symmetry model is itself again
a symmetry model.

(ix) The Jordan normal models. The model consisting of N indepen-
dent repetitions of the model (1.5) can be considered as a curved! expo-
nential family with 8 := £~} ¥ € P C P(I,R), as the canonical parame-
ter. Anderson (1969, 1970, and 1973) has studied the likelihood equation
when P is a cone, obtaining its solution via iterative procedures, and the
asymptotic distribution of the ML estimator. To obtain further and more
explicit results using the powerful theory of full regular exponential fami-
lies, it is natural to also require linearity in the canonical parameter, lLe.,
that P~! := {£7!|Z € P} is a cone. Under this requirement the likelihood

HThis requires at least that P be a differentiable manifold, for example a cone.
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equation becomes a linear equation and the solution (if any) becomes a lin-.
ear mapping of vy, y € RN, By assuming (without loss of generality)
that P contains the identity matrix 1y := diag(1|i € I), one obtains the
requirement that P is a cone and that P = P~1. These assumptions seem
to be rather general, but Tolver Jensen (1988) established that this class of
normal models is almost the same as the class of symmetry models in (v)
above*. He noted that the linear span J C S(I,R) of P is a formally real
Jordan algebral (see also Seely (1971,1972)) and that P is the set J + of pos-
itive elements in J, i.e., the interior of the set {A*|4 € J} of non-negative
elements in J. Using the well-known structure theorems for formally real
Jordan algebras and their linear representation, Tolver Jensen obtained the
structure of the so-called Jordan normal model as now described.

There exists a basis for R! such that the Jordan model becomes a product
of normal models, each factor in the product being one of the following four
types: independent repetitions of a real normal model, independent repeti-
tions of a complex normal model, independent repetitions of a quaternion
normal model, or almostt independent repetitions of the so-called Lorentz
or Clifford normal model. Bach of the models in the decomposition cor-
responds to a simple Jordan algebra together with a representation of the
simple Jordan algebra, cf. Tolver Jensen (1988), Section 4 and 5.

The sample space RY for a Lorentz normal model must have J = 27
for some integer n. Within this new class of Lorentz models Tolver Jensen
obtained explicitly the ML estimator with its distribution and the likelihood
ratio (LR) statistics with their central distributions.

The adjectives “Lorentz” or “Clifford” are justified as follows: the corre-
sponding simple Jordan algebra J is closely related to the Clifford algebra,
¢f. Braun and Koecher (1966), and the set of positive elements in this simple
Jordan algebra is often called the Lorentz cone, cf. for example Faraut and
Koranyi (1994), page 7.

Although the Lorentz cone, cf. (x) below, can be represented! as a cone
P of positive definite matrices and the Wishart distribution can be intro-
duced as the distribution of the ML estimator as in Tolver Jensen (1988),
in the present paper we shall define the extended class of Lorentz Wishart
distributions directly on the Lorentz cone itself, cf. Example 6.6, and in turn
obtain the Lorentz Wishart model. A cone is said to be of Lorentz type if it
is isomorphic to a Lorentz cone, i.e., a cone

C = {(o,z) e Rx Wl|a >0, o? — ||z||* > 0}, (1.18)

*Note that the symmetry models satisfy these conditions.

tSometimes called quadratic subspaces in statistical literature.

tSee Tolver Jensen (1988), Theorem 6, page 318.

$The representation entails the restriction of a representation of the simple Jordan
algebra to its positive elements.
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where W is a Euclidean space with inner product denoted by z - y, and
lz* ==z -z, m,y € W. In particular, it follows from Tolver Jensen (1988)
that any subcone P C P(I,R) with the properties 1; € P and P = P~}
is isomorphic to a product of indecomposable* cones, each of which is one
of the following four types: real type, complex type, quaternion type, or
Lorentz type.

(x) Symmetric cones. A self-dual homogeneous cone' is called a sym-
metric cone. Such cones are studied by Faraut and Kordnyi (1994). Any
symmetric cone is isomorphic to a unique product of indecomposable sym-
metric cones, each of which is one of the following five types: real type,
complex type, quaternion type, Lorentz type, or the so-called exceptional
cone P(3,0) of 3 x 3 positive definite! Hermitian matrices with entries from
the octonions O, cf. Example 6.8. Note that the fifth type consists of only
one cone.

The theory of symmetric cones is closely related to, indeed almost equiv-
alent to, the theory of formally real Jordan algebras. In a Jordan algebra
J one may consider the positive part J 7, the interior of the non-negative
part {a®|a € J}. This forms a symmetric cone, and all symmetric cones can
be realized in this way. But this realization of a symmetric cone requires
distinct status to an arbitrary point in the cone, thus the Jordan algebra
formulation is less invariant than the cone formulation. Casalis and Letac
(1996), Letac and Massam (1998, 2000), and Massam and Neher (1997)
have discussed many aspects of Wishart distributions on J+, in particular,
on the five types of indecomposable symmetric cones above, cf. also Faraut
and Kordnyi (1994), Chapter XVI, Section 1.

The name “symmetric” cone might be confused with a cone given by a
symmetry group H i.e., isomorphic to the cone Py (I,R), cf. (v) above. In
fact, from a structural point of view the difference between these two classes
is that the decomposition of the more general symmetric cones into the
product of indecomposable cones may contain indecomposable components
isomorphic to a cone of Lorentz type or the cone P(3,0), cf. (iv) above.

(xi) Marginal independence model. Let P be the subset consisting of
all ¥ € P(I,R) of the form

Eaa 0 Eal
S=| 0 Zw Zu |. (1.19)

Y. T X1
In particular I = I,ULUI, where I, Iy, and I; are finite sets, $,, €
P(la,R), By € P(I, R), 11 € P(I1,R), Tay = X¢, € M(I, x I, R), and

*Explained in Section 2.
"These properties will be defined in Remark 2.4.
¥This concept will be defined in Example 6.8
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Ty = ¢, € M(I, x I1,R). The subset P is a subcone of P(I,R). The
corresponding decomposition of an observable z € Rl is z = (z4,Tp,21) €
R = Rle x Rl x RI1. The interpretation of the normal model (1.5) given
by (1.19) is that z, and =z} are independent, i.e., the marginal distribution
on Rle x R’ is the product distribution N(Zz,) ® N(Zp). This model is
a special case of the lattice models introduced by Andersson and Perlman
(1993). In Example 6.14 it will be indicated that some of the general lattice
normal model is given by a homogeneous cone.

(xii) Conditional independence model. Let P be the subset consisting
of all ¥ € P(I,R) of the form

Zlaa anzaolzob Z:a()
Y= Dl Ll Sob Sho | - (1.20)
Zoa Yob oo
In particular I = I,ULUI,, where I, Iy, and Iy are finite sets, 240 €
P(Ia,R), Y € 'P(Ib,R), Yoo € 'P(I(),R), Y = 220 € M(I[) X IG,R),
and Sg, = B¢, € M(Iy x I;,R). However the subset P is not a subcone
of P(I,R). The corresponding decomposition of an observable z & R! is
z = (Tq,Zp, To) € R! = R x R x R0, The interpretation of the normal
model (1.5) given by (1.20) is that z, and ) are independent given o,
i.e., the conditional distribution on Rle x R’ is the product distribution
N(Se0Z5550, Sae) ® N (0 E 55 0, Spe), Where By 1= Tgg ~ 200250 Zoa and
Sbe = Zp — Z0 S0 Sob-
The parameter set P can be parametrized by the cone C of all arrays of
the form

z:aa, z;a.O
c= Yoo Lo
Loa op 200
where
Yoo a0 . (Ebb o .
€ P(I,UI,R) and € P(I,UL, R),
Yoa o0 ( o,R) an Zop oo P(LyIo, R)

j.e., two overlapping positive definite matrices. The parametrization ¢ —
$(c) is given in (1.20). The cone C is again an example of a homogeneous
coned and the normal model is again a special case of the lattice models of
Andersson and Perlman (1993).

In Section 2 we define cones and mappings between cones, in particu-
lar the dual cone. Homogeneous cones are defined and several simple facts

§In fact, a homogeneous cone that is not self-dual, i.e., not a symmetric cone.
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are stated. The exponential family based on a relatively invariant measure
on a homogeneous cone are presented in the same section. The general-
ized Wishart distribution is defined in Section 3 by changing the canonical
parametrization of the exponential family from Section 2 into the parametri-
zation by the expectation parameter. Several properties enjoyed by this new
class of generalized Wishart distributions are then easily obtained.

Homogeneous cones can be described in several different ways, all intro-
duced by Vinberg (1960, 1963). Vinberg’s original aim was to describe all
homogeneous convex domains (= a cut in a homogeneous cone) and their
automorphism groups, cf. also Vinberg (1962, 1965). We have chosen the
so-called T-algebras introduced by Vinberg as the instrument for the de-
scription of the homogeneous cones. These algebras have since been called
Vinberg algebras and we shall adopt this name. From a pure mathematical
point of view, Vinberg algebras do not provide the most efficient description®
of homogeneous cones, but lie close to one of the standard definitions of the
cone of positive definite matrices. Thus the classical Wishart distribution
on the cone of positive definite matrices becomes a straightforward special
case. The elements of a Vinberg algebra are arrays A = (ag](i,7) € I x I)
with entries a;; indexed by an index set of the form I x I, where [ is a
finite set. The algebra M(I,R) of I x I matrices is with standard matrix
multiplication a special case of a Vinberg algebra. Several of the standard
manipulations with square matrices used in classical multivariate statistical
analysis can then be generalized to a Vinberg algebra.

We have thus chosen clarity and familiarity of presentation over mathe-
matical efficiency of the formulation. Even with this choice, viz. Vinberg
algebras, a fair amount of abstract mathematics from different areas is re-
quired. In Section 4 we introduce Vinberg algebras in a manner slightly
different from Vinberg’s original formulation. The main result in this sec-
tion is that all homogeneous cones are cones of “positive definite matrices”
in a certain generalized matrix algebra. With this description of all homo-
geneous cones, the generalized Wishart distribution is described in complete
detail in Section 5. In Section 6 many examples are presented in detail from
the point of view of a Vinberg algebra and several new Wishart distributions
with their homogeneous cones are presented.

It then becomes obvious that the generalized Wishart distributions ap-
ply to many statistical models involving unknown covariance matrices with
structures defined by symmetry and/or graphical relations. In particular
many special cases are of interest in their own right and require a special
treatment beyond the present paper. This situation is analogous to the the-
ory of classical linear models, where special cases such as two-way analysis

TVinberg’s nilpotent N-algebras are most efficient.
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of variance, Latin square, etc., require special attention beyond the general
theory.

The paper also opens several new avenues to be investigated, for which
some results are already obtained, but beyond the scope of the present paper,
cf. Section 7.

2. Homogeneous cones and exponential families

Let Ry, Ry, Z, N, and Ny denote the positive real numbers, the non-
negative real numbers, the integers, the positive integers, and the non-
negative integers, respectively.

Definition 2.1. A finite-dimensional closed proper conver cone is a pair
(Cy, V') consisting of a finite-dimensional vector space V over R and a closed
subset Cg C V with the properties

(i) eyv1 + agve € Co, for all a, oz € Ryp and all vy, v € Ch.
(it) Co + (—Co) =V.
(it) Co N (—Co) = {0}-

Remark 2.1. In the literature it is customary to call a (closed) subset
Cp of a vector space a cone if it closed under multiplication by the non-
negative real numbers. A cone C, is then called convex if ajvy + a2 € Co
for all o1, 0 € Ryg with ; +a2 =1 and all v1,v2 € Cp. Condition (i) in
Definition 2.1 ensures that the subset Cp is a convex cone in V. Condition (if)
together with (i) ensures that the interior of the closed subset Cp, denoted
by C, is non-empty. A closed convex cone Cy is usually called proper if it
contains no line through 0. Condition (iii) ensures that the subset Cy is such
a proper convex cone in V. We shall abbreviate “finite-dimensional closed
proper convex cone” in Definition 2.1 to just closed cone and usually we
shall subsume the vector space V and refer to Cy itself as a closed cone. The
vector space is called the enveloping vector space. Finite-dimensional open
proper convex cones are also often considered in the literature. They are
defined by replacing “closed subset”, “Rio”, and (iii) in Definition 2.1 by
“open non-empty subset”, “R.”, and (iii)/, respectively, where (iii)’ states
that the open set, now denoted by C, contains no affine line. We shall again
abbreviate “finite dimensional open proper convex cone” to just open cone
or even just cone, and again we shall often subsume the vector space V and
simply refer to the (open) cone C. Note that the interior of a closed cone
is an open cone and the closure of an open cone is a closed cone. The zero
cone ({0},{0}) is an open and closed cone and the only cone where C = V.
For all other closed cones, Co C V. For all open cones C' except the zero
cone, 0 ¢ C. O
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Definition 2.2. A homomorphism from a closed cone (Cor, V1) to a closed
cone (Coz, V2) is a linear mapping f : Vi — Vi with the property f (Ca1) C
Choz-

Remark 2.2. Any mapping f : Cy; — Cpa with the property

flawvy + agws) = @y f(v1) + aa f (v2), (2.1)

for all aj,an € Ry and all vy,v9 € Cp; can uniquely be extended to a
homomorphism, also denoted by f, from (Cys, Vi) to (Coa, V). Furthermore,
the restriction of a homomorphism f from (Cyy, Vi) to (Coz2, V2) uniquely
defines a mapping, also denoted by f : Cp; — Cpg, with the property (2.1).
Thus there is a one-to-one correspondence between all homomorphisms from
(Co1, V1) to (Cog,V2) and all mappings from Cp; to Cos satisfying (2.1).
We shall therefore identify the homomorphisms and the mappings with the
property (2.1) and refer to the homomorphism as a linear mapping from Cp;
to 002.

If in the above, Cy; and Cjs are replaced by the corresponding open cones
Cy and Cy, respectively, and R, is replaced by R4 in (2.1) then a similar
one-to-one correspondence still holds. a

The set of all linear mappings from Cp; to Cgy is denoted by Homg(Cpy, Coz).
The subset Homg(Cly1, Cpa) € Hom(V4, Vo), where Hom(Vi, V3) is the vector
space of linear mappings from the vector space V; to the vector space Vs, is
itself a closed cone with Hom(Vy, V) as the enveloping vector space. The
interior of the closed cone Homg(Cy1, Cp2) is {f € Homg(Co1, Co2)|f(Cy) C
Cs} =: Hom(C1, C2), the open cone of homomorphisms from C; to Cy. A
composition of linear mappings of closed cones (open cones) is again a lin-
ear mapping of closed (open) cones and the identity mapping Id¢, (Id¢) of
the set Cy (C) is the identity mapping of the closed cone Cj (open cone
C). A linear mapping f from Cp; to Cga (C1 to Cs) is called surjective if
f(Co1) = Co2 (f(C1) = Cy) and is called wnjective if f is one-to-one. A
linear mapping f from Cp; to Cys is surjective if and only if f is a surjective
linear mapping from C} to Cy. A linear mapping is an isomorphism between
the closed cones Cy; and Cpy (open cones C; and C?) if it is surjective and
injective. A linear mapping from Cp; to Cpys is an isomorphism if and only
if it is an isomorphism between C; and Cy. Closed cones (open cones) are
isomorphic if there exists an isomorphism between them. Note that two
closed cones are isomorphic if and only if the corresponding open cones are
isomorphic.

A pair (Cgo,u) consisting of a closed cone Cyy with enveloping vector
space Vp and a injective linear mapping u € Homg(Cyg, Cp) is called a closed
subcone of the closed cone Cy. When Cypg C Cp, Vo C V is a subspace, and
u is the embedding mapping, we subsume u and call Coo € Cy a standard

5
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closed subcone. Note that if u: Vo — V is bijective, v~ : V — V; is not in
general an element in Homg(Cp, Coo)-

The corresponding concepts of open subcone and standard open subcone,
or simply subcone, are similarly formulated.

Let (Cy;|i € I) be a finite family of closed cones and let V; denote the
enveloping vector space for the cone Cy;, @ € I. The closed product cone of
this family is then the cone Cy := X (Cp;li € I), with the enveloping vector
space of Cg being V := x(V;|i € I). Note that C' = x(Ci|i € I).

A cone (open or closed) is called indecomposable if it is not isomorphic to
a nontrivial product of cones. Any closed (open) cone splits uniquely into a
product of indecomposable closed (open) cones.

The dual closed cone to a closed cone Cy is given by Cf := Homg(Ch, R40)
with enveloping vector space V* (the dual vector space). Note that Cj =
{z* € V*| z*(p) > 0, for allp € Cp} and C* := Int(Cy) = {z* € V*| z*(p) >
0, for all p € C\{0}}. Any linear mapping f € Homg(Co1, Co2) determines
the dual linear mapping *f € Homgy(Cpy, C4y) given by *f(p3) = p5o f,
ps € Ci. If f € Hom(Cy,Cs) then 'f € Hom(C3,Cy). Note that if f is
surjective then 'f is injective. But if f is injective we cannot in general
conclude that f is surjective.

Unlike the category of vector spaces and linear mappings, Cp and Cj
are not in general isomorphic cones. Nevertheless, the natural identification
(z ++ (z* = 2*(2))) of V and V** identifies the closed cones Cp and co*
(and the open cones C' and C**) by the natural cone isomorphism. The
natural identification

x(Vi*iel) « (x(Vi}i € I))* (2.2)
@liel) = (el (af(z)liel))

also identifies the closed cones x(Cg;|i € I) and (x(Coy;li € I))* (open cones
x(C#li € I) and (x(Csli € I))*) by the natural cone isomorphism.

The group of isomorphisms of a closed (open) cone Cp (C) is denoted by
Aut(Co) (Aut(C)). The group Aut(Cy) = Aut(C) is a Lie subgroup of the
Lie group GL(V), the general linear group of the enveloping vector space
V. The mapping f ~ {f ™! of Aut(C) into Aut(C*) is a group isomorphism.
Thus Aut(C) and Aut(C*) are isomorphic Lie groups. Note that Aut(C") =
tAut(C).

Let G(C) = G C Aut(C) denote the connected component in Aut(C) of
the identity mapping Idg of C. When C = x(C;|i € I) we have Aut(C) 2
x(Aut(Cy)|i € I) 2 x(Giji € I) = G, where G; denotes the connected
component of the identity in Aut(C;). The group isomorphism between
Aut(C) and Aut(C*) defines by restriction the group isomorphism
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G(C) « G
g = ‘gl
Note that G(C*) =*G(C). Consider the action

GxC — C (2.4)

(9,p) + g(p)=:gp

of G on C. The mapping (2.4) is differentiable, and induces an action of G
on the set of all measures 1 on C, denoted by gu, g € G.

Proposition 2.1. The isotropy subgroups (or stabilizers) G, := {g €
Glgp =p} C G, p € C, for the action (2.4), are compact.

Proof. From the first half of Proposition 1.1.8 in Faraut and Koranyi
(1994) it follows that the extended action

AM(C)xC - C (2.5)
(fip) = flp)=:fp

has compact isotropy subgroups. Since G C Aut(C) is a closed subgroup it
follows that the isotropy subgroups of G are also compact. See also Vinberg
(1963), Proposition 12. O

Definition 2.3. A cone C is called homogeneous if the action (2.4) is
transitive.

Remark 2.3. The action (2.4) is transitive if and only if the extended
action (2.5) is transitive, cf. Faraut and Koranyi (1994), page 5. O

Remark 2.4. A cone is said to be self-dual if there exists a Euclidean
isomorphism between C and C*, i.e., a bijective linear mapping f:V — V*
with the properties f(C) = C* and f(z)(z) > 0 for all z € V with z # 0.
Note that C and C* can be isomorphic cones without C' (and C*) being self-
dual. A homogeneous self-dual cone is called a symmetric cone. The study
of the special class of symmetric cones is the subject of Faraut and Koranyi
(1994). There are only five different types of indecomposable symmetric
cones, cf. (x) in our Introduction. a

Proposition 2.2. Let C be a homogeneous cone. Then the action (2.4)
is a proper action, i.e., the mapping

GxC — COxC (2.6)
(9,p) — (9p,p)
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18 pmpeﬂ'.
Proof. See Bourbaki (1963), Appendice I, Lemme 2**, and Bourbaki (1971),
Ch. III, &4, Corollaire to Proposition 5. I

Remark 2.5. By the same argument, the action (2.5) is proper when C
is a homogeneous cone. Also, a cone C is homogeneous if and only if C* is
homogeneous.

]

Let C be a homogeneous cone with enveloping vector space V and let G
be the connected component of the identity in Aut(C). Let x : G — R,
be a multiplier on the group G, i.e., x is continuous, x(Idg) = 1, and
x(g192) = x(g1)x(g2) for all g1,92 € G. Since G is a Lie group, x is also
differentiable. Since the action (2.4) is transitive and proper (cf. Proposi-
tion 2.2) there exists for each multiplier x one and (up to multiplication by
a positive constant) only one relatively invariant measure X on the open
subset C C V with multiplier x under the action (2.4), ¢f. Bourbaki (1963),
Ch. 7, §2, Theorem 3. That is,

g% = x(g)v¥ (2.7)
for all g € G. The integral
70 = [ expl=p ) 0) (2.8
is well-defined for all p* € C* (in fact for all z* € V*) and, by (2.7),
(g7 ") = x(9)¢X (@), (2.9)

g € G, p* € C”. Since C* is homogeneous it follows from (2.3) that con-
vergence of the integral (2.8) does not depend on p* € C* but only on x.
Thus either ¢X(p*) < oo for all p* € C* or ¢X(p*) = oo for all p* € C*. If
x = |det(:)], i.e. x(g) = |det(9)|, g € G, where det(g) denotes the determi-
nant of the linear mapping ¢ € GL(V), then v14¢t0)l ig the restriction of a
Lebesgue measure to the open set C and (2.8) converges for all p* € C*, cf.
for example Vinberg (1963), §2.

From Bourbaki (1963), Ch. 7, §2, Proposition 7 a), it follows that for any
multiplier x : G — R there exists a positive continuous function nX : C —
R, with the property

n*(gp) = x(g)n*(p), (2.10)

"A mapping is proper if it is continous and the inverse image of any compact set is
compact

**This result shows that ¢’ is a homogeneous space under the action (2.4) (and the
action (2.5)) and thus the cone C deserves the adjective “homogeneous”.
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g € G,p € C. Since the action (2.4) is transitive, such a function is unique up
to multiplication by a positive constant. The measure dv(p) = ﬁ%@dyx (p)

is thus an invariant measure on C. The integral in (2.8) can then be re-
expressed in terms of the invariant measure as

%) = /C exp{—p"(p) ¥ () (p). (2.11)

From the standard theory of multivariate Laplace transforms, cf. for

example Barndorff-Nielsen (1978), we can obtain the following collection of
facts:

Proposition 2.3. Let x : G — Ry be a multiplier on the Lie group G
and assume that (2.8) converges. Then

C* ={a" € V*| ¢$*(z") < o0}
and $X(p*) — co when p* € C* converges to a boundary point of C*. The
positive function ¢X : C* — Ry is an analytic and strictly logarithmic-
convez function on the open cone C*, and its derivatives can be obtained by
differentiation under the integral sign in (2.8). In particular

* 1 *
~Dlog@ ) = | psen(-r @t ec, ()
p* € C*, under the natural identification of V and V**, and

Dlog(¢*(5")) (a*, ") = /C #*(p + Dlogg* (p*))Za;,;éo—*)exp&p* (p) b X(p),
(2.13)

p* € C*, x* € V*, defines a positive definite form on V*.
¥4

Remark 2.6. Note that dE,-(p) = ¢X(p*) lexp{—p*(p)}dX(p) is a
probability measure on V' concentrated on the cone C, —Dlog(¢X(p*)) is
its expectation, and D?log(¢X(p*)) is its variance!!, p* € C*. These depend
of the choice of the relatively invariant measure vX on C only through x.
The statistical model (Ep. € P(V)[p* € C*) is thus a regular canonical full
exponential family. Except for the parametrization by p* € C*, this is the

family of generalized Wishart distributions on C to be defined in Section 3.
1

Remark 2.7. The extended action of G on the closed cone Cy(5 {0}), is
no longer transitive and C' C Cy becomes one of the orbits. Let O C Cy be
another orbit and consider the restriction of the action to this orbit, i.e. the
transitive action,

"The variance of a probability measure on V is a positive semidefinite form on V*.
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Gx0O — O
(g,c) = gec:=g(c)
The above considerations could then be repeated with C replaced by O, but
the action is not proper when O # C. In particular, a relatively invariant
measure vX on O only exists for certain multipliers x, cf. Bourbaki (1963),
Ch. 7. §2, Theorem 3. This leads to a definition of generalized singular
Wishart distributions. In the classical cases where C = P(I,D), D =R, C,
or H, the above definition of singular Wishart distribution yields the usual
singular Wishart distributions corresponding to the discrete part of the Gy-
ndikin set, cf. for example Letac and Massam (1998). Further consideration
of the singular case is beyond the scope of the present basic introduction to
generalized Wishart distributions. 0O

For p* € C*, define
(p*)X == ~Dlog¢*(p") (2.14)

and call (p*)X the x-inverse of p*. Under the natural identification of V**
with V, (p*)X € C. The mapping

c* - C (2.15)
Pt (@)X

is a bijection and has the property

(Cgp™)* = g~ H((P)Y),
g € G, p* € C*. The inverse mapping to (2.15) is denoted by

c - Cc*
p — p ¥
and has the property

(g7'p) ™ ="gp7™, (2.18)
g € Gandp € C. It follows from (2.18) that the positive number o := p~X(p)
is independent of p € C. The value of « is given below in (3.14).

Proposition 2.4. If (2.8) converges, then it also converges when x 18
replaced by any multiplier of the form X, A > L

Proof. This follows from Remark 5.5 below. O
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Remark 2.8. Conversely, let ¢X : C — R, satisfy (2.9) and suppose that
(2.15) (defined by (2.14)) is a bijection. Then it also a bijection when X is
replaced with x*, A > 0. a

Proposition 2.5. If (2.8) converges for two multipliers X1 and X2, then

it also converges for x = Xi\lxé\z, where A; > 0,1 =1,2, and A\; + Ay = 1.

Proof. Consider the alterate form of (2.8) given in (2.11). Then

00 > ¢X1 (Ai‘lp*)/\l ¢X2 ()\glp*))\z

> [ exp{= () ) (exp (o () o)

= [ exp{=" Gl )b ) = $:(6"),
where the inequality follows from Holder’s inequality. E]

Corollary 2.1. If (2.8) converges for two multipliers x1 and x2, then it
also converges for x = x1xo.

Proof. The result follows from Proposition 2.4 and Proposition 2.5 and
11
the relation x = (x? x3)? O

Remark 2.9. Because of the isomorphism g <> tg~! between the groups
G(C) and G(C*) and the bijection between C' and C* given by (2.15) and
(2.17), several natural questions arise. For example, what is the connection,
if any, via the isomorphism G(C) and G(C*), between the set of multipliers
on G = G(C) that make (2.8) convergent and the set of multipliers on G (C*)
that make the “dual” integral to (2.8) convergent? This question and other
related questions are resolved and important for the further development of
this theory, but are beyond the scope of the present introductory paper. O

3. Wishart distributions on a homogeneous cone

Let C' be a homogeneous cone with enveloping vector space V, G the
connected component of the identity mapping in Aut(C), x : G — R, a
multiplier on the Lie group G, and vX the relatively invariant measure on
C with multiplier x wrt the action (2.4). (The measure vX is unique up
to multiplication with a positive constant.) Assume that the integral (2.8)
converges and set
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nX(o) = /C exp{—0X(s)}dvX(s), (3.1)

o € C. Then the positive function nX : C — Ry has the property

n*(go) = x(g)n*(0), (3.2)
g€ G, o€, cf (2.8) and (2.18). The property (3.2) determines the posi-
tive function nX on C uniquely up to multiplication by a positive constant.
Thus the notation in (3.2) is consistent with the notation in (2.10).

The probability measure W ,, on C' defined by

1
AWy (s) = mexp{—o”x(s)}dvx(s) (3.3)
is called the (generalized) Wishart distribution on C (or Cyp) with parameter
o € C and maultiplier x. Note that the definition of the Wishart distribution
We,x only depends on vX through xH. From the standard properties of the
Laplace transform it also follows that the parametrization of the Wishart
distributions on C' by the pair (o,x) is one-to-one, i.e., Wy, 4, =
implies that (o1, x1) = (02, X2)-
The measure dv(s) := nX(s) " dvX(s) is invariant under the action (2.4)
and independent of the choice of the relatively invariant measure vX. The
Wishart distribution in (3.3) can thus also be represented as

T2;X2

W (s) = 2 exp (-0~ (s)Jav(s) 3.4
o\x ——nx(a)exp o X(s) }dv(s). (3.

Since nX(s)/nX(c) only depends on vX through x and W, is a probability
measure, the invariant measure v in (3.4) is unique.

When x(g) = |det(g)|, ¢ € G, the positive function n/4¢t0) defined by
(2.10) is denoted simply by n (and is unique up to multiplication by a positive
constant). The measure dA(s) := n(s)dv(s) is then relatively invariant with
multiplier g + |det(g)| under the action (2.4) and is thus the restriction of a
Lebesgue measure on V to the open subset C C V. The Wishart distribution
in (3.3) can thus also be be represented as

_ nX(s)n(s)” —x
AW (s) = Wexp{——a (s)}dA(s). (3.5)
Finally, if V' 2 C is a Euclidean space, i.e., is equipped with an inner
product, then the Lebesgue measure A can be chosen such that the unit

ball in V has the standard measure 7% /T'( gi_ir_n_z(_‘f_) + 1), where dim(V') is the

Hle., any other relatively invariant measure with multiplier ¥ will yield the same
Wishart distribution.
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dimension of V' and T' denotes the gamma function. In this case dA(s) i
simply denoted by ds.

Remark 3.1. It is well known that the interior of the closed cone Cy =
P(I,R)o of positive semidefinite I x I matrices is the homogeneous cone
C = P(I,R) of positive definite  x I matrices, The classical Wishart distri-
butions on P(/, R) have the form (1.3). Thus in this case n¥X(X) = det(%)*
and n(¥) = det(T)U+D/2 5 ¢ P(I,R) (up to multiplication by positive
constants). A detailed description of this classical case can be found in Ex-
ample 6.2 below. It is standard in multivariate statistical analysis to call
the positive function det(X), & e P(I, R) the generalized variance. Nev-
ertheless, in the present work on the generalized Wishart distribution we
will call nX(c) the (theoretical) generalized variance. When s € C follows
the Wishart distribution W, we will call nX (s) the (empirical) generalized
variance wrt the Wishart distribution Wo a

The mapping = — x(z -1d¢) of Ry into itself is a multiplier on R... Thus
it has the form z + 2° for some o € R, ie.,

x( - 1de) = 2°, (3.6)
T e R+.

Proposition 3.1. Let Wy be o Wishart distribution on C. Then
0 X(Woy) is the gamma distribution on Ry with shape parameter a given
by (3.6) and scale 1, i.e., the distribution P given by

dP(z) :=T'(a) 'a* texp{—z}dz. (3.7)
Proof. The density of the Wishart distribution We,x on C with respect to

an invariant measure v on C is given by

nX(s)
nX(a)

~exp{—0"X(s)} = —-————(U_X(S))aexp{_g-X(s)} ._"(s)

nX(o) (o x(s))*

The first factor depends on s € C only through o7X(s) € R, and the
second factor is invariant under the action of Ry on C given by ordinary
scalar multiplication. The result then readily follows from Andersson et al.
(1983), Lemma 3, page 397, with X, Y, ¢, G, v, vy replaced by C, Ry, 07X,
R4, v, and %dm, respectively *. O

“In the notation of the referenced Lemma the Wishart distribution takes the form
f(t(=))r(m(z))dv(z), where f and r are positive functions on Y and X /G, respectively. The
distribution of (¢, 7) is then F@)r(2)dvo(y)dr(z), (y,2) € Y x X/G. Thus the distribution
of ¢ is proportional to f(y)dvo(y).

7
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Let (C;)i € I) be a finite family of homogeneous cones indexed by the finite
set I and let G; be the connected component of the identity in Aut(C;). Then
C := x(C;li € I) is again a homogeneous cone, and G := x(G;|i € I) is the
connected component of the identity of Aut(C). Every multiplier x on G
has the form

x(9) = [[Calg:)li € D), (3.8)
g = (¢g;]i € I) € G, where x;, © € I, are multipliers on G; uniquely deter-
mined by x through (3.8). Conversely, if x; is a multiplier on G, i € I, then
x defined by (3.8) is a multiplier on G, denoted by x = ®(xsli € I). Any
relatively invariant measure vX on C with multiplier x thus has the form
VX = @(vXili € I), where vXi is a relatively invariant measure on Cj, with
multiplier x;, i € I and x = ®(x;|¢ € I). Conversely if vXi is a relatively
invariant measure on C; with multiplier ; then the product measure on C
is relatively invariant with multiplier x = ®(x;|t € I). The integral (2.8)
over C' converges for x = ®(x;l¢ € I) if and only if for all ¢ € I the inte-
gral over C; converges for x;. In this case we have (p*)X = ((p})Xili € I),
p* = (pli € I) € C* = x(Crli € I), ef. (2.2) and the definition (2.14). Thus
we have that

07X = (o7 Nii € I), (3.9)

o € C. Note that o7X(s) = Y (0; " (si)li € I), s = (s3]t € 1) € C, cf.
(2.2). The following two propositions now follow directly from the above
considerations.

Proposition 3.2 (Product of Wishart distributions). Let W, , be Wishart
distribution on the cones C;, 1 € I, respectively. Then

O(Wo, xili € 1) = Wy, (3.10)
where W, is the Wishart distribution on C = x(Cjli € I) with multiplier
x 1= ®(xili € I) and parameter o := (o;li € I) € C.

Conversely:

Proposition 3.3 (Decomposition of a Wishart distribution). Let Wo,y
be a Wishart distribution on C = x(C;li € I). Then

Wox = ®(Ws, xli €1), (3.11)
where o; € C; and x; are determined by o =: (0;}i € I) and x = ®(x;li € I).

Let C be a homogeneneous cone, (FP;|i € I) a family of probability mea-
sures on O, and P := ®(P;|i € I) the product probability measure on ol
The transformation of P by the addition mapping (sili € I) = > (sili €
I) =: s, of C' onto C is usually called the convolution of the family (i € 1),
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denoted by *(F;|i € I). If (x;|i € I) is a family of multipliers on G, the
function x : G — Ry defined by x(9) = [I(xi(9)li € I), g € G, is also
a multiplier on G, usually called the product multiplier, and is denoted by
x = [I(xil¢ € I). If (3.1) converges for x;, i € I, then (3.1) also converges
for x = [1(xslé € I), cf. Corollary 2.1.

Proposition 3.4 (Convolution of Wishart distributions). Suppose that
(3.1) converges for x;, i € I. Let o € C and define o; := (c™XXie(C,iel,
where x = [[(xilt € I). Then the convolution

*(ngnxi]i € I) = W‘T,X' (3'12)

Proof. The density of the Wishart distribution ®(Wox: i € I) on CT with
respect to v®!, where v is an invariant measure on C, is given by

m(50) ot omxgenyy. LNl € D)
= (o) PP

The first factor depends on (s;i € I) € CT only through s, € C and
the second factor is invariant under the action of G on C! given by g(s;li €
I) = (gsili€I), g € G, (s;li € I) € C!. As in the proof of Proposition 3.1
the result readily follows from Andersson et al. (1983), Lemma 3, page 397,
with X, Y, ¢, G, v, 1 replaced by C¥, C, the addition mapping, G, v®! and
v, respectively. 0

From (2.12) and the definition of o™X, cf. (2.17), it follows that the
expectation E(W, ,) is given by

E(Ws,y) = /C s AWy (s) = o, (3.13)

o € C. From (3.13) and Proposition 3.1, 0™X(o) is the expectation of the
gamma distribution (3.7), i.e.,

o X(o) = «, (3.14)
where « is given by (3.6). It follows by Vinberg (1963), page 347, (or from
(5.6) together with (5.2)) that the integral (2.8) converges for y = |det(-)].
For this multiplier we thus obtain o = dim(V/).

A generalized Wishart model is the statistical model, with observation
space C and parameter space C, given by

(W, € P(C)|o € O). (3.15)
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It follows from (2.18), (3.2), and the representation (3.4) that the Wishart
model is invariant under the action (2.4) on the observation space and pa-
rameter space, i.e.,

IWorx = Wyoxs (3.16)
geG, o€ C.
From the standard theory of exponential families it follows that the ML
estimator 6 of ¢ € C in the model (3.15) exists for all observations s € C'
and is given by

G(s) =s. (3.17)
The ML estimator & for ¢ € C is thus complete, sufficient, unbiased (cf.
(3.13)), and follows the distribution Wy ,. The variance V(W ) of Ws, is
calculated explicitly in Andersson et al. (2001), and it is in general a rational
function of o.

In Remark 5.7 we shall describe the distribution of the empirical gener-
alized variance nX(&), i.e., the ML estimator of the theoretical generalized
variance nX(o), o € C, in terms of all its r*® moments, 7 > 0.

The maximum of the likelihood function based on the representation (3.3)
is

ﬁ_l(éje}(p{*%}’ (3.18)

where « is given by (3.6) or (3.14).

Remark 3.2 (Bayesian inference). Consider the model (3.15) and the
integral

m6 = expl —o 1/50
‘ (0) /C p{~o"X(p)}dr (o),

where ¢ is a multiplier on G, »? is a relatively invariant measure on C
with multiplier § under the action (2.4), and p € C. As for the integral
(2.8), it follows that m®(gp) = d(g)m’(p), cf. (2.18), and convergence of the
integral does not depend on p € C, but only on §. Suppose that the integral
converges. The probability measure 1 W,Z(,(s on C defined by

1

dIW X5(0) = Wexp{——a"‘(p)}dﬁ(a)

is called the x-inverse Wishart distribution with parameter p € C' and mul-
tiplier 4. It is routine to establish that o € C follows the distribution I W;‘:J
if and only if o™X € C* follows the Wishart distribution on C* with mul-
tiplier v : G(C*) — R, given by v(*g) := §(g™'), g € G, and expectation
parameter p7, cf. (2.14), (2.18), and (2.3).
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If we now let T W;f s be a prior distribution for the statistical model (3.15),
then the joint distribution of observable and parameter (s,0) € C x C is

mexp{~a‘x(s + p)YdvX(s)d (o).

Since dv%/x ;= nX(0)~*dv® (o) is relatively invariant with multiplier 6/, the
marginal distribution of s € C becomes

m?/X(s + p)

m(p)
from which it follows that the posterior distribution is I st+p 5/x° the x-
inverse Wishart distribution with parameter s+ p and multiplier 6/x. Then

the expectation E(7 st+p P /x) is a Bayes estimator of o € C. The existence
of this expectation depends on §/x only. a

dv*(s),

4. Vinberg algebras

Vinberg algebras, described below with some alternative formulations,
were introduced by Vinberg (1960, 1962, 1963, 1965) with the aim of de-
scribing all homogeneous cones and homogeneous domains together with
their automorphism groups.

Let I be a partially ordered finite set (poset), i.e., a set equipped with a
relation denoted < which is
(i) reflexive; Vie I': 4 <1
(ii) antisymmetric; Vi,j € I: i < j and j < 4 implies that i = j
(iii) transitive; Vi,j,k € I: 4 < j and j < k implies that ¢ < k.

We write: < jifi < jand i # j, 4,5 € I. Forall pairs (i, 5) € IxI withj < 1,
let E4; be a finite-dimensional vector space over R with n;; 1= dim(E;;) > 0.
Set

R for ¢=3
) By for j<i
A” - Eji for i<y (1)
{0} otherwise
and A := x(A;;|(4,5) € I x I). Thus A is a vector space of I x I “matrices”
with entries from vector spaces according to (4.1)1
Let fij : Eiyj — Eqj, 1> j, be involutional linear mappings, i.e., fi;1 = fij.
These induce an involutional mapping (A + A*) of A given as follows:
A" = (aj;|(i,7) € I x I), where

TA purer approach is to eliminate the “{0} otherwise” statement in (4.1). Then A4
becomes I x I “matrices with voids”.

8
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ai; for i=7
fij(aji) = a;fi for 57 <1
fji(aji) : a;-i for i <j
0 otherwise,

A = (aij|(4,7) € I x I) = (ai;) € A. Note thus that
(I)VAe A: (A*)* = A,

and thatt (A;;)* = Ay, (4,5) € I x 1.
We may now define the following subspaces of A:
the upper triangular matrices T, == {A = (ai;) € AVi,j € I : i £ j
= ai; = 0};
the lower triangular matrices T, = {A = (a;5) € AVi,j € I :j £ i
= Qi = 0};
the hermitian matrices H := {A € A|A* = A}; and
the skew-hermitian matrices K := {A € AJA* = —A}.

Note that A = H+K and that the sum is direct, i.e., HNK = {0}. The sets
of upper and lower triangular matrices with posttive diagonal elements are
denoted by 7. and ’7?“, respectively. The sets of upper and lower triangular
matrices with all diagonal elements equal to 1 are denoted by 7, and 7;1,
respectively. The set of diagonal matrices and the set of diagonal matrices
with positive entries on the diagonal are denoted by D and D7, respectively.

Define n;. := > (ny|v < i), ng = > (nuli <v), n; =1+ %(nl + n.i),
i€ I, and n. =Y ()t € I) = dim(H) . Also define nj; := ny; for ¢ > j and
ni; =0 when 7 £ j and j £ 1.

Let tr(A) := > (asli € I) be the trace of A = (ay5|(i,7) € I x I) and note
that

(TR) VA € A: tr(A) = tr(4%).

We now equip the vector space A with a “multiplication”, denoted by
(A,B) — AB, A, B € AFor this purpose we need to define bilinear mappings
-Aij X -Ajk - A;x, denoted by (aij,bjk) — aijbjk, 4,7,k € I, and then define
AB = C = (¢5(3,5) € I x I) by cij := > (aiby;|v € I) (similar to ordinary
matrix multiplication). In all cases other than i > j > k, 1 > j < k,
1< j<k,and i < j >k, the desired bilinear mappings are obtained from
the structure of A: if ¢ 2 j, ¢ £ 4,7 2 k orj £ k then a;;b;, = 0; if i = j
and/or j = k then a;;b;x is simply multiplication by R. The multiplication
is required to satisfy the following properties:

(TP) VA€ A: A# 0= tr(A4*) >0

tAs usual A;; also denotes the subspace of A given by the natural embedding of Aj;
into A.
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(IP) VA, B € A: (AB)* = B*A*

(TC) VA,B € A : tr(AB) = tr(BA)

(TA) VA, B,C € A: tr(A(BC)) = tr((AB)C)
(AT) VS, T,U € T, : (ST)U = S(TU)

(LT) VT,U € 7} : T(UU*) = (TU)U*.

The abbreviations (TP), (IP), (TC), (TA), (AT), and (LT) stand for trace
positivity, involution anti-commutativity, trace commutativity, trace associa-
tivity, associativity for (lower) triangular matrices, and linearity for (lower)
triangular matrices (cf. Remark 4.1 below), respectively. An algebra A with
the above structure and properties is called a Vinberg algebra.

The defining properties of a Vinberg algebra determine interplay between
and properties of the bilinear mappings Eijj X Ejp, = By, k < j <. It
follows for example that (AT) implies the following associativity condition:

(A) Vaij € Eij, bjk < Ejk, crr € By : (aijbjk)ckl = aij(bjkckl), <k <
J <zt

The conditions (TP) and (TC) define inner products (-, Jij on By, 0> g
by HaUHZQJ ‘= a4; fij(ai;), a;; € E;j. Thus instead of specifying the bilinear
form (a;5,b5:) aijbj; on E;; one can equivalently specify an inner product
()ij on By, i > j. Tt can then be established that the following two
conditions also must hold:

(B) Vaij € Eij, bk € Eji « llaijbjelld, = lag 1ol & <j <,
and

(C) If ay € Eyy, bjr € Ejr with k < j, k < i and (aik’cijbjk)ik =0 for all
¢ij € Ejj, then (dliaik,cljbjk)lk =0foralll €I withi<l, j <, and
all
dj; € FEy;, and all Cly € Elj.

On the other hand, if (Ej;|i,j € I with ¢ > j) is a family of Euclidean
spaces together with a family of bilinear mappings E;j X Ej — Ey, k <
J <1, satisfying (A), (B), and (C), then this algebraic structure, called an
N-algebra (N for nilpotent) by Vinberg, induces a Vinberg algebra, i.e., all
other bilinear mappings needed to define the Vinberg algebra exist and are
uniquely determined by the conditions defining an N-algebra. Thus it is
enough to define a;;b;y, for k < j < i, such that the properties (A), (B), and
(C) are satisfied. The details can be found in Vinberg (1965), Chapter III,
§7.

Definition 4.1. The subset P := {TT* € A|T € T,*} C H C A will be
called the set of positive-definite matrices in A.
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Proposition 4.1. a) The positive-definite matrices P form a convex
homogeneous cone with enveloping vector space H.

b) The mapping
" - P
T — TT"

s a diffeomorphism.

¢) The mapping ©(T) : P — P given by n(T)(S) := (TU)(U*T*), where
S=U0U"e€P,Uc¢€ 7;+, 1 well-defined, an automorphism of the open cone
P, and 1(T) € G=G(P), Te T, .

d) The action

TrxP = P
(T,8) — =(T)(S)

s well-defined, transitive and free.
Proof. These results follow from Vinberg (1965), Chapter III, §2. 0

Remark 4.1. Condition (LT) in the definition of a Vinberg algebra is
used in ¢) to show that 7(T) is linear. The results c) and d) in Proposition
4.1 show that = : 7, — G(P) is an injective group homomorphism, in
particular we have that 7(7,") is a subgroup of G(P). O

Remark 4.2. The definition of P could be changed to the equivalent
definition

P :={TDT*c AIT €T}, D€ D*}. (4.5)

Note that (T'D)T™* = T(DT*) for any triangular matrix 7" and any D € D.
Thus it is meaningful to write 7DT* in this case. The diffeomorphism (4.3)
can then replaced by the diffeomorphism

T'xDt o P (4.6)
(T,D) + TDT*
(T(5), D(S)) 1 S =(s4l(1,9) € I x D).

This version is more important for statistical applications. Note that the
connection between the two unique decompositions S =TT*, T € 7?’, and
S = T\DTy, Ty € T\, D € D, is given by T = T\VD, where VD :=
diag(v/d;]i € I) € DT with D = diag(d;}i € I) € D™
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The positive functions S Siije = D(8)s; € Ry are rational functions in
S € P. We will furthermore define

Siive = T(S)p> == (T(S)aulv < i) € x(Bulv <4) = Eys, S€P, i€ 1.

The one to one correspondence (4.6) can then be restated as

((S[i>.,8[i].)|'l: €el) ««+ S= (Si]‘]’i,j e,

where Sj;5, = (ti v < 4) and S[ije = di, © € I, can be found by step-wise
solving the equation system

D o@ltlPlv <i)+dj = sy, jel (4.8)
D athdlv < §) +tyd; = s5, 6§ €I withj <i. (4.9)

as follows: Choose a never-decreasing listing j1, 42, - , 55 of the elements in
1. Solve (4.8) for j = ji, then solve (4.9) for alli > j = jp, k=1,--. .
This solution can of course be carried out formally even for S € H S
P to define the real-valued rational function expressions, also denoted by
Siije = 5, i € I on . The cone P C H can then be characterized as
P ={5 € H|spje > 0,7 € I}, where 8(e > 0 means the rational function s,
is defined and is positive at the point S € #. This characterization is directly
useful for our purpose. Moreover, one can avoid the problem of undefined

points in the rational functions by only considering polynomials: If the above
equation system is solved in the new variables p; := H(dﬁ(u’] )[1/ < j)d; and
Cij =ty H(dﬁ(u’j)ll/ < j)d;j, where n(v,j) is the number of elements in the
set {4 € Ilv < p < j}, then p;, j € I, are polynomials in S € H and the
characterization of S € P now becomes pj >0, j € I; cf. Vinberg (1963),
3. O

Let N be a finite set with a partial ordering also denoted by <, and let
B = x(Bu|(#,v) € N x N) be a Vinberg algebra over N, where

R for p=v
) Fu for v<p
B, = T, for p<v (4.10)

{0} otherwise.
and g, : Fp,, — F,, 1> v denote the involutional mappings for B.
Definition 4.2. An isomorphism between two Vinberg algebras .4 and
B is a family of mappings (¢, (¢:;](4,5) € I x I, j <)), where ¢ : [ — N is
9
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an isomorphism between the two posets and ¢;; : Eij — Fy),), § <1, are
vector space isomorphisms such that

bik(aijbik) = dij(aij)ix(bje), k < <4
and

bij © fij = Guiy(s) © Pig» T <1
Two Vinberg algebras are called isomorphic if there exists an isomorphism
between them.

Remark 4.3. Note that an isomorphism between A and B uniquely
defines a bijective mapping ¢ : A — B with the properties ¢(A*) =
P(A)", trg(d(A)) = tra(4), ¢(AB) = ¢(A)¢(B), #(Ti(A)) = Ti(B),
O(Tu(A) = Tu(B), $(H(A) = H(B). $(K(A)) = K(B), #(T,7(4) =
T (B), $(T,H(A) = T,(B), (THA) = T'(B), ¢(T./(A) = T,(B),
and ¢(P(A)) = P(B), where P(A) and P(B) denote the positive definite
matrices in A and B, respectively. Thus ¢ constitutes an isomorphism be-
tween Vinberg algebras in the standard sense. [

Proposition 4.2. The Vinberg algebras A and B are isomorphic if and
only if the homogeneous convex cones P(A) and P(B) are isomorphic. For
every convex homogeneous cone C there exists a unique (up to an isomor-
phism of Vinberg algebras) Vinberg algebra A such that C and P(A) are
1somorphic cones.

Proof. The two results can be found in Vinberg (1965), Chapter III, §2
and §9. O

Let A =: A(L) be the Vinberg algebra as defined in the beginning of this
section. Denote P(<) := P, ;7 (<) == T;*, and T;H(L) := T;F. We shall
now construct a Vinberg algebra A°P corresponding to the dual cone, i.e.,
the homogeneous cone P(A°P) of the positive definite matrices in A is a
representation of (isomorphic to) the dual cone of P(<).

Let <P be the opposite ordering on the index set I, i.e., 4 <P j & 7 <.
In the definition of A replace < with the opposite ordering <°P and define
the vector space AP := ><(.A§’JP (i,7) € I x I), where

R for i=j

Ej for j <P
Ey; for i<
{0} otherwise.

It follows that the Vinberg algebra A% =: A(<°P) differs from the Vinberg
algebra A = A(<) only in the ordering of the index set I. In particular,
T (<) = TH(<). Thus

AP = (4.11)
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P(<P) = {T*T € AIT € T ()} (4.12)
is the homogeneous cone of positive matrices in A(<°P). From Vinberg
(1965), Chapter III, §6, it then follows that P(<L°P) is the dual cone of

P(<). The enveloping vector space for both cones is of course H. The inner
product (4, B) — tr(AB) on # identifies H with its dual H*, ie.,

H & H (4.13)
A = (B tr(AB)),

and this isomorphism identifies P(<°P) with the dual cone P(<)* of P(L).
Let (I,|v € N) be a finite family of finite posets and let V, CI, x1I, be
the partial ordering relation on I, v € N. Then constructing the disjoint
union I = U(I,|v € N) also gives a poset in a natural way under the partial
ordering relation V = U(V,|v € N) C I xI. f A, = X(Ai |Gy 50) €
I, x 1,) is a Vinberg algebra over the poset I, then A := x (A3, 5) € 1),
where A;; = {0} wheni € I, and j € Iy withv # ', 1,1/ € N, is a Vinberg
algebra called the product of the family (Avlv € N) of Vinberg algebras
indexed by N, and we will write A = x(A,|v € N )- It then follows that

P = x(P,lv € N), (4.14)

where P is the homogeneous cone of positive definite matrices in A and =
is the homogeneous cone of positive definite matrices in A,,veN.

Remark 4.4. The center of a Vinberg algebra A is important for a more
specific description of the automorphism group G(P), c¢f. Remark 5.3, and
assists the understanding of a Vinberg algebra. We shall only sketch the
construction of the center and leave the details to the reader. Because of our
reformulation of Vinberg algebras, the description of the center is different
but equivalent to Vinberg (1962), §4.

Consider the relation on I defined by: ¢ ~ j iff i is comparable to j, i.e.,
i<gjorj<i, and ni = njs for all s € I with s # ¢,j. This is clearly an
equivalence relation on I. Now define a refined equivalence relation given
by i =~ j iff ¢ ~jandi~s~jforallsEIbetweeniandj, ie.,
¢t < s <jorj<s< i Theequivalence relation = induces the decomposition
I = U(I|x € K) of T into its equivalence classes. Note that n;y = e for
all 2 € I and 7' € Iy, k,x' € K. This decomposition of I induces the
decomposition A = x(Age|s, s € K), where A = X(Agli € I.,i' €
I). Set Ag. =: Ay and note that A, itself is a Vinberg algebra based on
the totally ordered index set I;. The Vinberg algebra A, := x(Agklk € K)
is called the center of A. Note that A, corresponds to the block diagonal
matrices in A with respect to the above decomposition of I.
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The cone of positive definite matrices P, corresponding to A, is called the
center cone of P and is a subcone of P, since P, = {S € P|S € A.}. Note
that the center is the same for the opposite ordering <°P. In particular,
it not difficult to establish that P, = P; is a symmetric cone and that
P, = x(Pxls € K), where each P, is the cone of positive definite matrices
in the Vinberg algebra A,.

We shall use the notation |Sie| = [[(selé € Ik), & € K, S € P, in
accordance with standard notation in multivariate statistical analysis, cf.
Remark 4.2. a

5. Representations of Wishart distributions

The aim of this section is to use the representation of a homogeneous cone
C' as the cone P of positive definite matrices in a Vinberg algebra A (over
the poset I), cf. Proposition 4.2, to obtain an explicit and general expression
for the Wishart distribution in (3.3).

Since the homogeneous cone P is represented in terms of matrices we
shall in the present section use uppercase letters for the observations S =
(s31(4,7) € I xI) € P and for the parameters £ = (0;;](4,5) € [ xI) € P in
accordance with standard notation in the literature on the classical Wishart
distribution.

The first step is to establish a one-to-one correspondence between the set
of multipliers x : G — R, on the connected component G in Aut(P) and a
subspace of RY, cf. Remark 5.3 below. In other words a multiplier ¥ on G
can be described by its corresponding point (\|i € I) € R'.

The restriction of x to the (lower) triangular group in G, i.e., yor : 7;+ —
R,, cf. Remark 4.1, is a multiplier on 7;+.

Lemma 5.1. Any multiplier 7 : ’7? — R, has the form

(1) =[N ie D, T= (G5 €lxI)eT, (5.1)
where (\ifi € I) € RY. Any 1 of the above form is a multiplier on T

Proof. Since 7 is differentiable, its derivative D7 (at Idp) is a Lie al-
gebra homomorphism D7 : 7; — R, where 7; and R are the Lie algebras
corresponding to the Lie groups 7? and Ry, respectively. The problem
is thus to find all Lie algebra homomorphisms f : 7, — R. The sub-
space N C 7; of upper triangular matrices with zeros on the diagonal is
an ideal with [7;, N] = N. Thus f(N) = f([7T;,N]) = 0. Any Lie alge-
bra homomorphism f : 7; — R thus has the form f(T) = > (2\iti}i € I),
T = (ti5{(4,7) € I x I) € T;. The corresponding multiplier then has the form
(5.1). The converse statement in the lemma is trivial. O

Remark 5.1. From the definition of « in (3.6) one obtains that
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a=> (\li€I)=:A,.

]

Remark 5.2. For the special case x(g) = [det(g)], ¢ € G, we obtain
directly

x(x(T)) = [ i € 1), (5.2)
cf. also Vinberg (1963), Chapter III, §4 (32). This multiplier thus corre-
sponds to (| € I) = (n;fi € I). O

Remark 5.3. Note that in general not every multiplier 7 on Tt is a
restriction of a multiplier y on G, i.e., T = yon. The necessary and sufficient
condition on (A;|i € I) to ensure that 7 is a restriction of a multiplier ¥ on
G is as follows: Let I = U(I,|x € K) be the decomposition of I established
in Remark 4.4. Note that this decomposition only depends on the partial
ordering of I and the integer constants n;j, 4,7 € I. A family (N} € 1)
then corresponds to a multiplier on G if and only if there exists a family
(Akle € K) € RE such that \; = )\, i € L, k € K, ie., the \;’s are
constant on the subsets I, k € K.

'This result can be established using the almost complete description of the
Lie algebra g of G established in Vinberg (1965), §4, in particular Theorem
4. The Lie algebra g decomposes as g = go® gc@ﬂ%, where each component
is a Lie subalgebra of g corresponding to a subgroup of G, gy is a compact Lie
algebra, g. is naturally isomorphic to the Lie algebra of the center cone P,,
and 7,3 is the Lie algebra of lower block triangular matrices in A with respect
to the decomposition I = U(I;|s € K) and with zero blocks in the block
diagonal. Furthermore, 7,3 is an ideal in g with [g,, 7% = T,%, and go and g
commute. From these facts it follows that the derivative Dy of any multiplier
x : G = Ry has the property that Dx(go ® 7,%) = 0 and thus is uniquely
determined by its restriction, also denoted Dy, to g.. Thus it follows that
there is a one-to-one correspondence between multipliers x : G — Ry and
Lie algebra homomorphisms Dy : g, — R. The Lie algebra g. decomposes
mnto a direct sum g, = ®(gx|x € K) of commuting Lie algebras g,, x € K,
each corresponding to the connected component G, for the indecomposable
symmetric cone Py, cf. Remark 4.4. Thus it is enough to describe the Lie
algebra homomorphisms from g, into R, x € K. In Examples 6.2, 6.3, 6.4,
6.6, and 6.8 these homomorphisms will be described and it will be established
that each homomorphism naturally corresponds to a real number ). O

The second step is to find a necessary and sufficient condition, (5.6) below,
on the multiplier x : G — Ry (or equivalently on the corresponding family
(Aili € I)) to ensure that the integral (2.8) converges.

10
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Let xyour: 7Z+ — Ry be induced from a multiplier x on G. (In fact the
derivation below will work for any multiplier on 7;+, but the distribution in
(5.15) will not in general be a Wishart distribution on P in the invariant
sense of Section 3.)

The measure vX is also the unique (up to multiplication by a positive
constant) relatively invariant measure with multiplier y o under the action
(4.4). Thus it is enough to establish conditions for convergence of the integral
(2.8) for p* = 1; € P*, ie,

d*(17) = 7)exp{——tr(S’)}dz/X( ) (5.3)

Since the diffeomorphism (4.3) commutes with the left multiplication on the
group 7,7 and with the action (4.4), the integral (5.3) is equal to

. exp{—tr(TT™*)}dv¥(T), (5.4)
!

where I/?f- denotes the corresponding left relatively invariant measure on 72+
with multiplier y o .

We now want to express I/%C— in terms of a density with respect to the
restriction of the Lebesgue measure dT" = [](dts;{(¢,5) € I x 1,7 <i) on T;
to the open subset 7# C 7Ti. Note that dt;; denotes the standard Lebesgue
measure on E;j, 4,7 € I, j < i, and dt;; denotes the standard Lebesgue
measure on Ry. The Lebesgue measure is relatively invariant under left
multiplication in 7;* with multiplier 7' + |det(L7)|, T = (t;5](4,§) € IxI) €
7;"’, where Ly : 7;+ — 7;+ is given by L7 (U) := TU. Thus an invariant
measure vy under left multiplication is dv(T) = det(Lr) 'dT, and the
relatively invariant measure v} is thus proportional to x(m(T))det(Ly) ™ dT.
Now choose v} (and thus also vX) such that dv¥(T") = x(m(T))det(Lr)dT.

It is easy to obtain that det(Ly) = H(t;f"’” i € I). Furthermore tr(T7™*) =
S22l € I) + 30 (3(tijty;li € 1,5 < i)|i € I). The integral (5.4) can now be
rewritten as

/+ I |(t?i)‘i""i' lexp{wt?i}{z’ el I |(exp{~ti]~t’{j}|(i,j) e€IxlI,j<i)dT.
T
l (5.5)

This integral converges if and only if

(5.6)

(5.7)
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cf. Remark 5.3. O

Remark 5.5. The condition (5.6) establishes a proof of Proposition 2.4
since the family (ahili € I) e R! corresponds to x* when (\;]i € T ) e RI
corresponds to y. ' 0

Note that when the multiplier is g [det(g)], g € G, we have Ai=n; =
1+ 2(n;. + ng) >in, ie I, cf. Remark 5.1, so (5.5) converges in this case.

The third and final step is to derive an explicit form, (5.15) below, of the
Wishart distributions on P.

When y satisfies (5.6), the value of (5.5) is

T | (NOEESTE) (5.8)

The following is therefore, cf. (5.5) and (5.8), the density of a probability
measure on 7;+ with respect to the standard Lebesgue measure:

2O/ IO - B e D [ ep-2)ic 1y (59

x ] (exp{~tiit}166,5) € Tx 1,5 < 4).

Suppose that the observable T' = (til(5, 7)) e Ix T ) follows the distribution
given by the density in (5.9). Since (1F)7% = 17 the distribution of S =TT*
is the Wishart distribution Wix, on P.

Remark 5.6. Thus all tij, 1,5 € I with § < 1 are independent, t2. follows
a gamma distribution with shape parameter )\; — M-, 1€ I, and ti; follows
a njj-dimensional normal distribution on E;; with expectation 0 € E;; and
precision Lij 2tijt§‘j on By, 4,5 €1, 7 <. 0

From Remark 5.6, it follows that the expectation of § = 77+ is given by

]E(W]x’x) = diag(A; |i € I)eP. (5.10)
Thus we obtain that

1X = diag(); i € I) and 17 = diag(); lieI)~x, (5.11)
Since x(n(diag(v/A]i € I))) = [T(\M[i € 1) it follows from (5.11) that

nX(1F) =TI € Dnxy). (5.12)
For ¥ € P we then obtain, cf. Remark 4.2, that

o li €1)
%ﬁnm;). (5.13)

(%) = [T(opili € Dnx(1y) =
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The Jacobian of (4.3) is easily calculated to be T+ 27 [J(t;;7™|i € I),
T = (t;5|(4,5) € I x I) € T,;". The measure 2! [1(t5™i)i € I)dT is thus by
(4.3) transformed into the standard Lebesgue measure on P, denoted by dS.
Thus, cf. Remark 4.2, (5.9) is transformed into the probability measure

T(sg ™l € 1)
[T =)l e D)
on P. From (5.13) and (5.12) it then follows that (3.5) takes the form

AWy, (8) = (vm) ™™ exp{—tr(S)}dS (5.14)

L TIN e D sy ™li € I)exp{~tr(E“XS)}dS
1T (s = &)l € DT(op,li € 1)

AW, (8)= (V')

(5.15)
Since H(s['lf]."lz' € I)dS is an invariant measure on P it follows from (5.15)

that (3.4) takes the form

(s,li € )
dWs (S) = -Iﬁlzgif\%]i——lzj—e——[—iexp{%r(Z—XS)}du(S), (5.16)

Mg
dv(S) = (Vm)' ™ ¥ (FI(TA(?"_ Iﬂ;é)e 7 [1(sgiti € Dds (5.17)

is the unique invariant measure on P.

Remark 5.7. When S follows the Wishart distribution Wy, in (5.15),
the distribution of the normalized empirical generalized variance nX(S)/nX(X)
does not depend on ¥ € P, by (3.2) and (3.16). It is thus enough to find
the distribution when & = 1¥. From (5.13) and Remark 5.6 it follows that
nX(S)/nX(X) has the same distribution as H(()‘%XI)A‘l’L € I), where X;,
i € I, are independent positive stochastic variables and where X; follows a
gamma distribution with shape parameter A; — %+, 4 € I. The distribution
of the empirical generalized variance nX(S) therefore may be represented as
nX (%) H(‘z‘}\'iX%Ai—ni.li € I), where ﬂx% denotes a x? distribution with scale

B and f degrees of freedom, G, f > 0. The r* moment of nX(S) is given by

By ) = [Jor ™ o2 e, (sag)
O

From (5.11), (2.16), and (2.18) it follows that
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7% = (T*) " diag(\li € DT = (T*) " L1;X71, (5.19)
where ¥ = TT* € P, and

EX = T diag(\ili € I)(T*) ™! = T~ 11%(T*) ™, (5.20)
where E=T*T € P*, T € 7#.
We will also use the notations &~A=Ik€K) .— »—(Ailiel) . 27X, cf. Re-
mark 5.3. For A\; = 1,4 € I, cf. Remark 2.8, we write 3~ := y-(en
LeP.

6. Examples of Wishart distributions

Example 6.1. Let I be a one-point set {1}. Then A = R and under
standard multiplication R becomes a Vinberg algebra. In this example we
shall use lower case letters for elements in .A. Note that ny. = mg = 0,
n1=1,n.=1,’H=IC=7]:7;=R,and7;+=7;+:P:P*=R+.
The function S[1]e = 8, 8 € Ry, cf. Remark 4.2. Furthermore, the connected
component G (in the automorphism group Aut(P)) is isomorphic to the
multiplicative group R, according to g — (s+gs), 9 € Ry, s€P =R,.
The injective, in fact bijective, group homomorphism = : 7?* - (G is thus
given by n(t) = 2, t € 7,f = Ry. Every multiplier ¥ on G has the form
x(g) = ¢* for some \ € R, so we can replace x by A whenever ¥ is used as an
index or parameter. The condition (5.6) takes the form A > 0. From (6.19)
it follows that o=X = % and the Wishart distribution (5.15) takes the form

AgAa—1

AW, 1 (s) = ;—(;T);Xexp{—g-s}ds. (6.1)

The Wishart distribution Wy » on Ry is thus the gamma distribution with

scale £ and shape parameter A > 0. The 7" moment of the normalized

generalized variance is given by, cf. (5.18), A™"AT(\ +7)/T(A), r > 0.

Example 6.2. Let I be a finite set with any total ordering. Thus we
can assume that I = {1,---,I} with the usual ordering®. Set E; =R
and fi; = Idg, j < 4. Thenn; =1-4,n. =i~1n; = & and

= I-(l;-ll The vector space A is M(I,R), the vector space of all T x |
matrices with the involution A* = A’, A € M(I,R). Note that the center
Ac = A, cf. Remark 4.4. In particular K is a one-point set. The subspaces
Ti; Tu, and H, of lower triangular, upper triangular, and hermitian matrices
become the usual lower triangular I x I matrices Ti(I,R), the usual upper
triangular I x I matrices 7, (I,R), and the usual symmetric I x I matrices

S(I,R), respectively. With the standard multiplication and inner product on

SRecall that I denotes the set J and also its cardinality.

11
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R the vector space M(I,R) becomes a Vinberg algebra. The multiplication
becomes the standard matrix multiplication of I X I real matrices. (The
special case I = 1 is the previous Example 6.1.) The groups 7?‘ and T, are
the usual groups 7, (I, R) and 7,7 (I, R) of lower and upper triangular I x I
real matrices with positive diagonal entries, respectively. The homogeneous
cone P in this Vinberg algebra is the usual cone of I x I positive-definite
matrices P(I,R) and P* =P = P,.

It is well known, cf. for example Vinberg (1965), §3, that the connected
component¥ is G = {g4]A € GL(I,R)}, where GL(I,R) is the general linear
group, i.e., the group of non-singular elements in M(I,R), and g4 := (S +
ASA"). The parametrization of G by GL(I,R) is not injective and G =
Aut(P). The Lie algebra of G is g = g. = L ® R, where L = s{(I,R) is the
simple Lie algebra of I x I real matrices with trace zero, cf. for example
Faraut and Kordnyi (1994) page 97. Every multiplier x : G — R, induces
a Lie algebra homomorphism Dy : L @ R — R. Since [L,L] = L and
[R,R] = {0} it follows that every Lie algebra homomorphism f: L&R — R
has the form f(l,z) = oz for some « € R. Therefore every x : G — R4 has
the form x(g) = |det(g)|®. Thus \; = ozI—'Qtl =: A\ does not depend on ¢ €
and A can replace xy whenever y is used as an index or a parameter. The
conditions (5.6) thus reduce to the single condition A > I—g——l-

From (5.19) it follows that 37X = AX ™!, where ! is the usual inverse of
an I x I real matrix. The Wishart distribution (5.15) takes the form (1.3),
since det(S) = [[(sfilé € I), S € P. This distribution is the usual Wishart

distribution on P(I,R) with shape parameter A > %‘—1— and expectation 2.

The 7" moment (r > 0) of the normalized generalized variance is then given
by, cf. (5.18),

I = % + )i
[T =5 =

Example 6.3. As in Example 6.2 let I = {1,---,I} with I > 1. Set
E;j =C and fij(2) = Z, z € C, where Z denotes the complex conjugate of z,
j < 4. Then n; = 2(I —1), n;. = 2(i — 1), n; = I, and n. = I%. The vector
space A is now the real vector space Mg(I,C) of I x I complex matrices
with real-valued diagonal entries. The involution in A is given by A* = A7,
A € A. Note that then A4, = A and in particular that K is a one-point
set. The subspaces 7, Ty, and H, of lower triangular, upper triangular, and
Hermitian matrices become the lower triangular 7'x I complex matrices with
real-valued diagonal entries, denoted by 7; (I, C), the upper triangular I x I
complex matrices with real-valued diagonal entries, denoted by T, r(I,C),
and the Hermitian I x I complex matrices denoted by #(I,C), respectively.

-

(6.2)

YWe subsume “of the identity in the automorphism group Aut(P)”.
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With the standard multiplication and standard inner product z + ||z]|? on
C the vector space Mg(I, C) becomes a Vinberg algebra. The Vinberg mul-
tiplication becomes standard matrix multiplication of I x I complex matrices
followed by taking the real part of diagonal elements. The groups 7;+ and
7. are the usual groups 7,7(I,C) and T;}(I,C) of lower and upper trian-
gular I x I complex matrices with positive diagonal elements, respectively.
'The homogeneous cone P in this Vinberg algebra is the usual cone of I x T
positive definite (Hermitian) complex matrices P(I,C), and P* =P = P,.

It is well known, cf. Vinberg (1965) §3, that the connected component
is G = {ga|A € GL(I,C)}, where GL(I, C) is the complex general linear
group, and g4 := (S — ASA’). The parametrization of G by GL(I,C) is
not injective and G C Aut(P). The Lie algebra of G is g = g. = L@ R,
where L = s[(I,C) is the simple Lie algebra of I x I complex matrices with
trace zero, cf. for example Faraut and Kordnyi (1994), page 97. Similar
to Example 6.2 we obtain that every multiplier ¥ : G — R, has the form
x(g9) = |det(g)|®, so A\; = ol =: X\ does not depend on 7 € T and ) can
replace x whenever y is used as an index or a parameter. The I conditions
(5.6) reduce to the single condition A\ > I — 1.

From (5.19) it follows that % = AX L, where £~! is the usual inverse

of an I x I complex matrix, and the Wishart distribution (5.15) takes the
form

MAdet(S)*Texp{-Atr(219)}
dWs; A(S) = ds, 6.3
2a(5) r T =i+ Di= 1, -+, I)det (X)) 03

where det(5) = [[(sp.li € I), S € P(I,C), is the usual determinant of an
I'x I complex matrix. This distribution is the complex Wishart distribution
on P(I,C) with shape parameter A > I — 1 and expectation 3. The rth

moment (r > 0) of the normalized generalized variance is then given by, cf.
(5.18),

—~Ir H(P()\“—Z‘l—].‘f"l‘),’l::l,,f)
S V(e i i (64

Example 6.4. As in Example 6.2 let I = {1,--- I} with T > 1. Set
E;; = H, the quaternion division algebra over R, and let f;;(h) = h, h € H,
where h denotes the quaternion conjugate of h, j <i. Then n; = 4(I — 1),
;. =4(i — 1), n; = 2I — 1, and n. = 2I2 — I. The vector space A is now the
real vector space Mg (I, H) of all I x I quaternion matrices with real-valued
diagonal entries. The involution in A is given by A* = A’ A € A. Note
that A. = A and in particular that K is a one-point set. The subspaces
Ti, Tu, and H of lower triangular, upper triangular, and Hermitian matrices
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become the lower triangular I x I quaternion matrices with real-valued di-
agonal entries, denoted by 7, (I, H), the upper triangular I x I quaternion
matrices with real-valued diagonal entries, denoted by 7, r(I,H), and the
usual Hermitian I x I quaternion matrices denoted by #H(I,H), respectively.
With the standard multiplication and and standard inner product g + |lg|*
on H the vector space Mg(I,H) becomes a Vinberg algebra. The Vinberg
multiplication becomes standard matrix multiplication of I x I quaternion
matrices followed by taking the real part of diagonal elements. The groups
7," and T, are the the groups 7,5 (1, H) and T, (I,H) of lower and upper
triangular I x I quaternion matrices with positive diagonal elements, respec-
tively. The homogeneous cone P in the Vinberg algebra is the cone of I x1I
positive definite (Hermitian) quaternion matrices P(I, H) and P* =P = P.

It is well known, cf. again Vinberg (1965), §3, that the connected compo-
nent is G = {ga|A € GL(I,H)}, where GL(I,H) is the quaternion general
linear group, and g4 = (§ — ASA"). The parametrization of G by GL(I, H)
is not injective and G' = Aut(P). The Lie algebra of G is g =g = LOR,
where I = sl(I,H) is the simple Lie algebra of I x I quaternion matrices
with trace zero, cf. for example Faraut and Kordnyi (1994), page 97. As
in Example 6.2 it is seen that every multiplier x : G — Ry has the form
x(g) = |det(g)|* and thus X; = a(2] — 1) =: A does not depend on 1 € I, s0
)\ can then replace x whenever x is used as an index or a parameter. The I
conditions (5.6) reduce to the single condition A > 2I — 2.

From (5.19) it follows that ¥7X = AX™!, where ¥1 is the usual inverse
of an I x I quaternion matrix. The Wishart distribution (5.15) takes the
form

M det(S)A 2 exp{ - Atr(B719)}

d =
WorlS) = DT~z + D= L, D)det (D)

ds, (6.5)

where det(S) := [](s};.1# € I) does not depend of the specific choice of a total
ordering of T and thus could be called the determinant of 5 € P(I,H). This
distribution is the gquaternion Wishart distribution on P(I,H) with shape
parameter A > 2/ — 2 and expectation . The r* moment (r > 0) of the
normalized generalized variance is then given by, cf (5.18),

oG =2+ 24n)li=1,---,])
e —2i+2)fi=1,---,1)

(6.6)

Example 6.5. Let E be a vector space over R, GL(E) the group of
bijective linear mappings of E onto itself, and P(F) the open cone of positive
definite forms ¢ : E x E — R on E, i.e., inner products on E. Set §(z) =
§(z,z), z € E. Since the classical action
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GL(E) xP(E) — P(E) (6.7)
(f,0) = do(f xf)=(z+ d(f(z)))

is transitive P(E) is a homogeneous cone. (By choosing any basis for E we
obtain an isomorphism between P(E) and P(I,R), where I = dim(E), cf.
Example 6.2.)

Let H be a compact group, and p : H — GL(E) a continuous group
representation. Denote p(h)(z) =: hz, h€ H, z € E,

GL(E, H) = {f € GL(E)|f o p(h) = p(h) o f, h € H}

and

P(E,H) := {6 € P(E)|§(hz) = §(z), = € E,h € H}.

Then P(E, H) is not empty and it is a homogeneous cone since the restric-
tion of the action (6.7) to the subgroup GL(E, H) C GL(E) and to the sub-
cone P(E, H) C P(F) also is transitive, cf. Andersson and Madsen (1998),
Lemma Al. (By choosing an orthonormal basis for E wrt an inner product
b € P(E, H) we obtain an isomorphism between P(E, H) and Pu(l,R),
where H also denotes the group of orthogonal matrices for the mappings in
p(H), cf. (iv) in Section 1.) From Examples 6.2, 6.3, and 6.4 and from (iv) in
Section 1, it follows that the connected component G = {971f € GL(E, H)},
where g7(0) 1= § o (f x f), and that P(E, H) decomposes into a product of
homogeneous cones each being one of the three types in Examples 6.2, 6.3,

and 6.4. Thus one has a complete description of Wishart distributions on
P(E, H).

Example 6.6. Let I be a set with I = 2 and with any total ordering,
e.g., I = {1,2} with the standard order. Let Ey = V, where V is a vector
space with m — 1 := dim(V) > 0, and let f; = Idy. The vector space A is
thus the vector space My(V) of all 2 x 2 generalized matrices of the form

a1 V2
(o), (6.9

where a1, a2 € R, and v1,v2 € V. The involution is given by transposition,
denoted by A* = A, A € My(V), of the array. The vector space of Her-
mitian matrices # C My(V) is all matrices of the form (6.8) with v; = vs.
Note that the center A, = A and in particular that K is a one-point set.
Thenng =m—-1=no, ng=0=mn1.,n =nyg = 1"—;—1, and n. = m + 1.
Since I = 2, we only need to specify an inner product, (v1,v2) = vy - v9, On
V' to establish the Vinberg multiplication given by

12




STEEN A. ANDERSSON AND G. GERARD WOJNAR

o v B us a1 Fv2-ur oqug + Bavn
vy o )T\ ur B Bivi + aouy  onfe v - ug

(6.9)
With this multiplication My (V') becomes a Vinberg algebra.

(For m = 2, m = 3 and m = 5 this example is covered by Examples 6.2,
6.3, and 6.4, respectively. It is thus natural to demand I > 2 in these exam-
ples, to obtain five non-overlaping different types represented in Examples
6.1-6.4 and the present example.)

The homogeneous cone P determined by A is given by

ty 0 t1 &

P = t o 0

[t1 >0, 12 >0, teV (6.10)

or equivalently

|s1 >0, s2>0, s€V, s152 — Isl* >0

(6.11)
Again P = P* = P.. In Remark 6.1 below it is established that Py(V) is a
Lorentz cone, cf. (1.18). For

s=( ; P (6.12)

we define det(S) := 8[1)eS[2Je = S152— l|s||* and call it the determinant. Note
that det(S) does not depend of the choice of the total ordering of I.

The Lie algebra of the connected component G is g = g. = L ® R, where
L = o(1,m), one of the classical simple Lie algebras, cf. Faraut and Kordnyi
(1994), page 97. By a similar argument as in Example 6.2, every multiplier
has the form x(g) = |det(g)|*, so A1 = dg = ’—”—Qﬂa =: X does not depend on
i € {1,2} and X can replace x whenever x is used as an index or a parameter.
The two conditions (5.6) reduce to the single condition A > -"—‘-Qﬂ From (5.19)
it follows that ©~X = AX~!, where

(TH7IT1 = det(D)! ‘127 ;17 (6.13)

s = (20T =71, TeT™
Y 02

The Wishart distribution (5.15) then takes the form

AP det(S)2 "2 exp{—tr(271S)}
A T PT(A — 25L)det(£)A

dWs A(S) = ds. (6.14)
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This distribution will be refered to as the Lorentz Wishart distribution on
Py(V) with shape parameter \ > m—;l and expectation X. An equivalent
form for this family of Lorenz Wishart distributions was obtained by Casalis
and Letac (1996), page 772. The r*® moment (r > 0) of the normalized

generalized variance is given by, cf. (5.18),

\em T+ T+ 25+ )
TC(A+ 27
In the special case where 4)\ € N this distribution was obtained by Tolver

Jensen (1988), cf. Remark 6.1 below, as the distribution of the ML estimator
in his Clifford normal models.

(6.15)

Remark 6.1. Set W := R x V and define the inner product on W by
(, w)||? :== &® + ||v||?, (@, w) € W. The homogeneous cone Po(V) is then
isomorphic to the (open) Lorentz cone C given in (1.18) according to the
isomorphism

H - RxW (6.16)
hi h hi+hy h1—hy
(hh) o gt fugte

restricted to and corestricted to P2(V) and C, respectively. In Tolver Jensen
(1988), formula (29), a distribution on C with parameters
(Aw) = (A (a,v)) € C and N € N with —12! > m — 1 is presented. This
distribution on C' is transformed by (6.16) into the Lorentz Wishart distri-
bution on Py(V') with shape parameter \ = %’ and expectation

[ Ata v
Eﬁ( v A——a)'

Example 6.7. Let E be a Euclidean space with its inner product ( , )-
The vector space S(E) of all symmetric forms s on E is identified with
the vector space of symmetric linear mappings (also denoted by s) through
s(z,z) = (s(x),z), z € E. The homogeneous cone of positive definite forms
P(E) then corresponds to the positive mappings. Following Tolver Jensen
(1988), let L C S(E) be a subspace of symmetric linear mappings with
Idg € L. Set Pr, := LNP(E). Thus Py, is an open cone (in L) with L as
enveloping vector space. Then (Pr)™! = Py, for some subspace M C S(E)
if and only if L is closed under Jordan multiplication (%(AB +BA) € L, for
all A,B € L) and in this case L = M, cf. Tolver Jensen (1988), Lemma 1.

Consider, therefore, cones P = P, with the essential properties Idg € P
and P! = P. As described in (ix) in Section 1 the cone P decomposes into
a product of homogeneous cones each being of one of the five types each

O
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described in the Examples 6.1, 6.2 (I > 2), 6.3 (I > 2), 6.4 (I > 2), and
6.6. In particular, P is a homogeneous cone whose connected group G is a
product of the connected Lie groups each one being from one of these five
examples. Thus one has a complete description of Wishart distributions on
all cones P of positive mappings with the properties Idg € P and P~! = P.

Example 6.8. Let I be a set with I = 3 and any total ordering, e.g.,
I = {1,2,3} with the standard ordering. Let E;; = O, j < ¢, where O
denotes the division algebra over R of octonions, and f;j(q) = g, where g
denotes the octonion conjugate of ¢ € O. Let Re(q) := (¢ + g) denote the
real part of ¢ € O. The vector space A over R is Mg(3,0) of all 3 x 3
octonion matrices with real-valued diagonal entries. The involution on A is
given by A* = A’ A € A. Note that the center 4, = A and in particular
that K is a one-point set. Then n.; = 16, no, =8, n3 =0, ny. =0, ne. = 8§,
n3y. =16, n; =9,1=1,2,3, and n. = 27.

The subspaces 7;, Ty, and H become the lower triangular 3 x 3 octo-
nion matrices with real-valued diagonal entries, denoted by 7;k(3,0), the
upper triangular 3 x 3 octonion matrices with real-valued diagonal entries,
denoted by T,g(3,0), and the Hermitian 3 x 3 octonion matrices denoted
by H(3,0), respectively. With the standard (nonassociative) multiplication
and inner product g — ||g||?, Mg(3,0) becomes a Vinberg algebra. Since
we only consider 3 x 3 matrices the “associative” condition (A) in Section
4 becomes vacuous and the nonassociativity of the multiplication in @ does
not come into play. The Vinberg multiplication becomes standard matrix
multiplication of 3 x 3 octonion matrices followed by taking the real part of
diagonal elements.

The groups 7," and 7" are the groups 7,%(3,0) and 7,"(3,0) of lower
and upper triangular 3 X 3 octonion matrices with positive diagonal entries,
respectively. The homogeneous cone in this Vinberg algebra is

'P = P(3,@) = {TTIIT € 77’_(37@)}7 (617)

and P = P* = P,. (The definition (6.17) provides a definition of a positive
definite 3 X 3 octonion matrix.)

The Lie algebra of the connected component G is g = g, = L @ R, where
L = eg(26) is one of the exceptional simple Lie algebras, cf. for example
Faraut and Koranyi (1994), page 97. Thus by our now standard argument,
every multiplier x : G — Ry has the form x(g) = |det(g)|®, so A1 = A2 =
A3 = 9a =: A does not depend on i € {1,2,3} and A can then replace
x whenever x is used as an index or a parameter. The three conditions
(5.6) reduce to the single condition A > 8. From (5.19) it follows that
YX = AS7L where £ = (T)"17"!, when ¥ = TT’. The Wishart
distribution (5.15) then takes the form
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A3 det(S) exp{—Atr(-18)}
TEL(AT(A — 4)T(A — 8)det(X)A

AWy A(S) = ds, (6.18)

where

det(S) := 5(1]eS[2]e S[3]e (6.19)
= 511522833 — 511|[532]|2 — 820531 )% — saslls21]]® + 2Re(s32591513)

could be called the determinant of S = (sijli,j = 1,2,3) € P(3,0). Note
that det(S) does not depend of the choice of the total ordering of I. This
distribution is called the octonion Wishart distribution on P(3, 0) with shape
parameter A > 8 and expectation ¥. The octonion Wishart distribution is
also defined in Casalis and Letac (1996), page 772. The r*® moment (r > 0)
of the normalized generalized variance is given by, cf. (5.18),

|3 PA+r)TA+4+7r)T(A+8+71)
CAT(A+ 4T (A + 8)
Example 6.9. Let V # {0} be a Euclidean space with inner product (-, ).

Let C C V be a symmetric cone, i.e., a homogeneous cone with C = C* un-
der the identification of V with V* through (-, -). It is established in Faraut
and Kordnyi (1994) that a symmetric cone is isomorphic to the cone J+ of
positive elements in a formally real Jordan algebra J, c¢f. (x) in Section 1.
Through the well-known classical structure theorem for such Jordan algebras
one obtains the structure theorem for symmetric cones, or equivalently, for
the homogeneous cones consisting of the positive elements in a Jordan alge-
bra. Every symmetric cone decomposes into a product of indecomposable
cones each being one of the six non-overlapping types from the Examples
6.1,6.2 (p > 2), 6.3 (p > 2), 6.4 (p > 2), 6.6, and 6.8. Note that the last
type consists of only one cone. Thus again the Wishart distributions on sym-
metric cones are completely described. The reason for the extra exceptional
type in Example 6.8 compared to the result by Tolver Jensen (1988) is that
he also require that the Jordan algebra should be represented as a Jordan
algebra of symmetric linear mappings on a vector space. This excludes the
exceptional cone. Tolver Jensen thus uses the structure theorem for formally
real Jordan algebras together with the structure of their representations as
symmetric linear mappings in an Euclidean space.

(6.20)

Example 6.10. Let 7 = {a,b,1} with partial ordering given by a < 1
and b < 1. Set By, = Ey, = R and J1a = fip = Idg. The vector space A
is thus the vector space of all I x I real matrices with zeroes at the (a,b)
and (b,a) entries. The involution is given by A* = A’, A € A. Note that
A, consists of all the diagonal matrices in A and in particular that K = J.
Thenn, =1, ny =1, ny = 0, ng. =0, np. =0, n1. =2, ng =mny =

j [)

H

13




50 STEEN A. ANDERSSON AND G. GERARD WOJINAR

ny = 2, and n. = 5. With the standard multiplication and the standard inner
product on R, the vector space A becomes a Vinberg algebra. The Vinberg
multiplication is given by the standard matrix multiplication except that the
entries corresponding to (a,b) and (b, a) are by definition forced to be zero.
The homogeneous cone P becomes

taa 0 0 taa 0 tla
P 0 tey O 0 oy L1
tia ti t11 0 0 in

€ Altag, ton, 111 > 0, t1a,t1p €ER .

Since TT', T € 7?“, in this case corresponds to standard multiplication for
lower triangular matrices we obtain

P := {5 € A|S is positive definite in the classical sense}. (6.22)

The mapping 7 : T+ -+ G is in this case a group isomorphism , c¢f. Vinberg
(1962). In fact its Lie algebra is g = g, ® 7,0 with g. = R{&:»1} where 7,0 is
the Lie algebra of lower triangular ma’cmces in A with zeros in the dlagonal
Therefore every multiplier x : G — Ry is given by x(n(T)) = t?lA“tbA”tz)‘l
T = (tij|(4,5) € I x I) € T, for some (Mg, Ap, A1) € RI®O1} 50 (Mg, Ay, A1)
can replace x whenever x is used as an index or a parameter. The three
conditions (5.6) become

Aa >0, N>0, N\ >1. (6.23)
The generalized Wishart distribution (5.15) takes the form

dWE ()\a’)\b,)\l)(S) (624)

3
/\Aa/\’\b/\)\c -5 Ap— 7 '\l“2

Saa Sbt (1] . ~(ahpA1)
()T A)T (e~ Dot oy o3 exp{—tr(Z S)}dS,

where S = (s45]i,5 = a,b,1) € P, & = (04,7 = a,b,1) € P, 8[1Je = 811 —
_ -1 . -1
S1aSpq Sal — S16S5 Sp1, and Olt]e = 011 — 01400 Oal — 010y, Op1, cf. Remark

4.2. This distribution is new and has expectation ¥. The r*" moment (r>0)
of the normalized generalized variance is given by, cf. (5.18),

e e BN LQa + )T + )TN —147)

¢ PA)T (A)T(A1 — 1)
From (5.19) it follows that ©=X = $~(A«XM) ¢ P* can be obtained
explicitly, but as with standard matrix inversion the formula is complicated.

(6.25)
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For the special case of A, = Ay = A; =: A > 1 we obtain 3~ = AZL
where X1 = (T") 7171 when S = TT', T ¢ 7"

Example 6.11. The dual cone P* to P from Example 6.10 is obtained by
reversing the ordering of the index set I. In the light of the reverse ordering
we will also rename the index 1 to 0, and consider I = {a,b,0}, with partial
ordering given by 0 < a and 0 < b. This yields a new Vinberg algebra
with the same underlying algebra, with the same involution, with the same
Vinberg multiplication, but whose lower triangular matrices are the upper
triangular matrices from the previous Example 6.10. If the elements in the
index set I are placed in a never decreasing sequence, for example 0, a, b,
the lower triangular matrices will again appear to be lower triangular in the
traditional sense. Nevertheless since the appearance does not matter we will
continue to list indices in the same order as before, namely a,b,0, in order
to make comparisons with the previous example easier. Thus

P =
taa 0 th taa 0 0
0t top 0 4w O € Altaa, topy tee > 0, tog, top € R
0 0 too toe Top too

Saa 0 Sa0
0 Seb Spo € Alsgo > 0, S[aJe > 0, Sle > 0 2, (6.26)
Sa0  Sh0  S00

where S[aJe = Saa — saoso"ols()a and Spje 1= Spp — sbosaolso;,, cf. Remark 4.2.
The defining conditions in (6.26) express that the {a,0} x {a,0} submatrix
and the {b,0} x {b,0} submatrix are positive definite in the traditional sense.

The group G in this “dual” example is isomorphic to G in the previous
Example 6.10, in particular, the mapping 7 : 77" — G is again a group
isomorphism. Therefore every multiplier y : G — Ry is given by x(m(T)) =
tgﬁ‘“tz{f"tggo, T = (tijli,j € {a,b,0}) € T, ", for some (11q, pp, o) € R{@:00},
Thus (p1a, 416, p10) can replace x whenever x is used as an index or a parameter.
The three conditions (5.6) become

1
Lo > 50 Mo > 50 Mo > 0. (6.27)

The general Wishart distribution (5.15) on this dual homogeneous cone
P* takes the form

AWS: (g yap 120) (5) (6.28)

3 3
Hta By MO Ha=F - E po—l

Ha u‘b Hp S[a]u S[b]a 500 \ ——(u 7 )
= exp{—tr (X~ \Hatit:Ho) Y14 G
T (e~ DT (45— )T (uo)o?_ ol o2 p{=tx( )}
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where S = (si5[i,5 = a,b,0) € P*, & = (0y4]i,j = a,b,0) € P*, and where
Ola]e and o), are defined similar to Slaje and spje- This distribution is
new and has expectation ¥. The 7! moment (r > 0) of the normalized
generalized variance is then given by, cf. (5.18),

—Tpg , —THp , —THo F(P'a — % + 7‘)P(/‘l'b - % + T)P(:U'O + T)
Ho Hy Ho

e — DXGis — Do) (029

From (5.19) it follows that ©X = ©~(e:ek0) € P can be obtained ex-
plicitly. The special case pg = pp = o > % reduces in a way similar to the
case Ay = Ay = A1 > 1 in the previous Example 6.10.

Example 6.12. This example generalizes Example 6.10, cf. Remark 6.2
below. Let I; be a set and (Ix|x € K) be a family of sets indexed by the
set K. Let I = U(Ix|s € K)UI; with a partial ordering given by i,, < iy for
any ix € I, k € K and any i; € I, together with any total ordering of the
elements within each I, k € K, and I. Set Eyj =R and f;; = Idg, 4,5 € [
with 4 > j. The vector space A is thus the vector space of all real I x [
matrices A blocked according to the decomposition of I and having the form

diag(Axxlr € K)  (Aals € K) (6.30)
(A'mllﬁ‘, & K) All ? ’
where Agx € ML % I, R), Ag1 € M(Ix x I1,R), Ay € M(I; x I, R), and
Ay; € M(I; x I1,R). The involution is A* = A’, A € A. The decomposition
of I into equivalence classes, cf. Remark 4.4, is the above decomposition and
the center A, is the set of all matrices A of the form (6.30) with A, = 0 and
A =0, 5 € K. For any i € I define Ioo;> = {1’ € I;|i' <i}, k € K and
for any 1 € I define I1<;» = {i' € L1]i’ <i}. Thenn,; =1 + I — Ieci> — 1,
i€ l, r € K,n; =11 —Leis— 1,1 € 11, ng. = Teeis, 1 € I, k € K,
N = Z(I,{!K, € K) + Iicis, 1 € 11, ng = %(Il + I + 1), 1€ l,, k€K, and

n; = %(Il + Z(I,;ilﬁ‘, € K) + 1), i€ 1.

With the standard multiplication and inner product on R the vector space
A becomes a Vinberg algebra. Since the Vinberg multiplication 77", T € 7,*
in this case is standard matrix multiplication, the homogeneous cone is

A=

P := {S € A|S is positive definite in the classical sense}. (6.31)

The center cone is

P. = x(P(Ic,R)|x € K) x P(I1,R).
The Lie algebra of G is g = g, ® 7;%, where 7?}3 is the Lie algebra all
matrices of the form (6.30) with Ax, =0, Ax1 =0, & € K, and Ay =0.

If (A;]i € I) corresponds to a multiplier x : G — Ry then there exists
((Aels € K), A1) € RE X R, such that A; = Mg, i € I, & € K, and X; = Ay,




THE WISHART DISTRIBUTIONS ON HOMOGENEOUS CONES 53

¢ € I, cf. Remark 5.3. Thus ((As|s € K), 1) can replace X whenever y is
used as an index or a parameter. The I conditions (5.6) become the K + 1
conditions

I, —1 I K)+5L -1
A > =, KEK, A > 2 |m62)+1 ,
The generalized Wishart distribution (5.15) takes the form

(6.32)

AWs; ((lrek) A (S) (6.33)

TIAF2s IKEK)/\ilAl TI(S s~ %—(11+1K‘+1)!K'€K)]SD].I)\l"‘%‘(ll"‘Z(I}ilNEI())
I N (T ey T Per= 5 TI(CQa =5 ) i€ 1) TT( Swn P (k€K [0 11

><exp{-—tr(E‘(()‘NIEEK)”\l)S)}dS,

where 5 = (S [b, 0" € KU{1}) € P, & = (Suy|b, b € KU{1}) € P, Spje =
S11 = 328168t Sk1lk € K), and 21je is defined in a similar way. Thus
| -| = det(-), cf. Remark 4.4. This distribution is new and has expectation

2. The r** moment (r > 0) of the normalized generalized variance is then
given by, cf. (5.18),

. Te—2847), .
[T T H(%ﬂ__gl__;).l]z € I)|k € K)

. (6.34)
X/\;Th)‘l H(%{%@IZ S Il).
For the special case of A\, = A\; =: A > M’%IQ{)H—‘"I, K& € K, we obtain
S OREE)A) = Ax-1) where 571 = (T') 171, for £ = T'T", T e 7"

Remark 6.2. Two special cases of Examples 6.12 should be pointed out.
One case is K = 2 and the other case is Io=5=1,k€ K. Ifboth K = 2,
eg, K ={a,b}, and I, = I, = I; = 1 Example 6.12 reduces to Example
6.10. O

Example 6.13. This example generalizes Example 6.11, c¢f. Remark 6.3
below. The dual cone P* to P in (6.31) is obtained by reversing the ordering
of the index set in the previous Example 6.12. In the light of the reverse
ordering we will again as in Example 6.11 rename the index 1 to 0, ie.,
consider I = U(Ix|s € K)Uly. Then n; = I, — Iocis — i€l x € K,
ni =3 (Il € K)+ Iy~ Ipcis — 1,4 € Iy, ng. = Iy + Licis, 1 € I,
k€ K, nj. = Tocis, 1 € Iy, n; = %(Io + I+ 1), 1 € I;, k € K, and
ni = (I + (Il € K) +1), i € I. A direct investigation using the
characterization of the positive definite matrices in a Vinberg algebra in
Remark 4.2 shows that

14
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p— g = Diag(Sxxls € K) (Skols € K)
= (Soxlx € K) Soo
S ?‘[lSo() > 0, S['i]’ >0,k € K5, (6.35)

where H denotes the Hermitian matrices in A, Sjge = Skx — KQS&)]'SQK,,
k€ K, and “> 0” means that the matrix is positive definite in the classical
sense. The defining conditions express that the (I,,Ulp) x (I,Uly) submatrices
of S, k € K, are positive definite in the classical sense. Again ((ux|x €
K), o) € RX x R may replace multipliers x : G — Ry. The I conditions
(5.6) become the K + 1 conditions

Ip+1I.—1 I—1
—0——2—-, keK, > —05— (6.36)

The generalized Wishart distribution (5.15) takes the form

Wi >

AW, (uelre k) o) (5) (6.37)

B H(y{;"”"INEK)u(I)O“O H(ISM'IM—%(Io-{-lm—l)lne[(),sooluo—%(Io+2(1nlfc€K)+l)
T an T TI(IT(T (w — )€ 1) (K€ K) TIT (o~ =4 )1i€ o) [T([Spege |15 € K ) [ Too]#0

x exp{—tr(L~(uxls€K)n0) §Y1 45

where 3 € P* is partitioned similarly to S € P* and ¥}, is defined similarly
t0 Sjxle, & € K. Again |- | = det(:), cf. Remark 4.4. This distribution is
new and has expectation ©. The r*" moment (r > 0) of the normalized
generalized variance may be obtained using (5.18).

For the special case p, = po =: p > max(lﬂ—té—”——l[n € K), sk € K, the

Xx-inverse - ((#elr€XK):0) reduces in a way similar to the previous Example
6.12.

Remark 6.3. Two special cases of Examples 6.13 should be pointed out.
One case is K = 2 and the other case is I, = Ip = 1, k € K. If both K = 2,
e.g., K = {a,b}, and I, = I, = Iy = 1 Example 6.13 reduces to Example
6.11. O

Example 6.14. Let I be a partial ordered set and let Ej; = R, 4,5 € [
with i > j. The vector space A is the vector space of all A = (as;|(4,7) € I %
I) € M(I,R) with a;; = 0 when ¢ and j are not related. The multiplication
C =A-B, A B € A, defined as standard multiplication of I x I matrices
except that entries (7,7) in C, where i and j are not related (or equal) in the
partial ordering, are forced to be zero, will not define a Vinberg algebra in
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general. Nevertheless, if I has the four element property: i.e., there do not
exist 4 different elements 4y, 14,13,%1 € I with the property that ig < 44 < i1,
19 < %y < 11, %9 < 41, with 4, and 7, being unrelated then the multiplication
defines a Vinberg algebra. On the other hand if the multiplication defines
a Vinberg algebra then I has the four element property. We now have the
one to one correspondences

P e T & PU,S)
T-T¢ «~ T w— TTY

where “ T'- T* ” in this example indicates the Vinberg multiplication, 77"
is the standard multiplication of I x I matrices, and P(I, <) := {TTHT €
7,7}. Note that P(I,<) is the set of I x I covariance matrices 3 for a
normal distribution on R’ satisfying the set of conditional independences
(CI) given by the poset I or equivalently by the transitive acyclic directed
graph (ADG) I, cf. for example Andersson and Perlman (1994), §4, with
V =TI and I, = {v}, together with Proposition 11.2. In fact it is well-
known and trivial that all (CI) restrictions in §4 of this reference can be
reformulated such that V = I and I, = {v}. Normal models of this type were
first introduced and analyzed by Andersson and Perlman (1993) as lattice
conditional independence (LCI) models. Thus the set of unknown covariance
matrices P(7, <) for a normal distribution with CI restrictions given by a
transitive ADG with the four element property can be parametrized in a one-
to-one fashion by a homogeneous cone P C A. The inverse parametrization
replaces with a zero any entry o;; in ¥ = (oy;li,5 € I) € P(I,<) where i
and j are not comparable in the partial ordering. The parametrization itself
is given explicitly by the Reconstruction Algorithm given by Andersson and
Perlman (1994), §5.

Let I = U(Ix|s € K) be the decomposition given in Remark 4.4. Note
that the decomposition in this case only depends on the poset I (all non-
zero n;; equal to 1) and thus its construction and description is a purely
graphical problem. This description is addressed in the doctoral thesis by
Wojnar (2000). The ordering of I can always be described in terms of an
ordering“ of K, total orderings of all elements in Iy, x € K, and in addition
1< jifi€ly, j€ Ly, with k < K.

Set Iewis = {i’ € L)' <i},i € I;, k € K. Then n;. = Y (Iy|s' <
K’) +Iﬂ<’i>7 i € Iy, ny = Z(IK'!K/ > H) + I — K<i> T 1,1 € Irm ng =
s(CUwlw < k) + D(Lols’ > k) + I +1) = ng, 1 € L.

Let the multiplier x correspond to (\;}i € I) € R, Then there exists
(Ax € K) € RX such that A\; = )\, i € Iy, cf. Remark 5.3. Thus (A, € K)
can replace (\;|i € I) as an index. The conditions (5.6) are

(6.38)

IThe possible kinds of orderings of K in the present example are described in the
doctoral thesis by Wojnar (2000).
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SIolw’ < k) +I,—1
2 3

The generalized Wishart distribution takes the form

AW (AlrveK) (6.40)

[T [Syuge =" e K)
T TSP T Ow—Fnili=L - L)€ K)

xexp{—tr(L-([k€K) 5)145,

Ae k€ K. (6.39)

where |Sje| == [[(se i € Ix), s € K. The distribution on P is new and has
expectation ¥ € P. The ' moments (r > 0) of the normalized generalized
variance are given by

DA — ng + 1)
INAK K 21 .
[T(21] o Tn el |lkeK). (6.41)

For the special case X, =: A > hg), k € K, where h(I) denotes the height™
of the poset I, we obtain DREK) = A51=1 where £~ = (T%)~1.T~!, when
EzT-TtE’P,TEﬁJ“.

The distribution (6.40) can be transformed to a distribution on P(I, <).
The dual cone P* and its Wishart distributions are obtained by reversing
the order in I. The Examples 6.12 and 6.13 are both special cases of this
example.

Example 6.15. This example contains 3 subexamples, denoted (i), (ii),
and (iii}. The details will be omitted since they are trivial and by now
routine. In all three cases, let I = {1,2,3} with the usual total ordering.
Consider

Case (i): E12 = E23 =R and E13 =C
Case (ll) E12 = R and E23 = E13 =C
Case (iii): Fo3 = R and E19 = E13=C.

In all three cases, standard conjugations, standard multiplications, and
standard inner products on R and C are used. The Vinberg multiplication
in A becomes standard multiplication of 3 x 3 matrices followed by taking the

real part of entries whenever needed to have a well-defined multiplication.
All three cases constitute Vinberg algebras.

**The maximal obtainable length n of a sequence of the form 73 < -+ < iy.
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Let
011 091 031
Y= 091 092 032 € H.
031 032 033

The homogeneous cones P are given by the condition that 3 € # belongs
to P C H if and only if, c¢f. Remark 4.2:

. o2
Case (1): a1 > 0, Of2]e *= 022 — —c?% > 0 and

1 _
op3le := 033 — (Re(031), 032) ( o on ) ( Re(031) ) _ Im(oy)?

o921 0929 032 71

-1,
o11 091 031 Im(o31)%02
= - ________%_

033 (031’032) ( 021 a99 > ( 032 ) 11(011022 0'2 > 0
where Re(:) and Im(-) denote the real and imaginary part, respectively.
The two expressions for o(3}s show that the real part of &, Re(X), is positive
definite in the classical sense, and that the positive definite complex 3 x 3

matrices ¥ (in the classical sense) with 091,032 € R form a proper subset of
P.

Case (ii): o1 > 0, O[2Je i= 022 — ;ﬁ' > 0 and

-1 -
. o1 021 031
O[3)e := 033 — (0’31,0'32) < oo O ) < . ) >0

This shows that P is the cone of positive definite 3 x 3 complex matrices ¥
(in the the classical sense) with o1 € R.

Case (iii): o1 > 0, O[2)e := 022 — “021” > 0 and

Ofgle = 033~ (031, 032) (

o1l 091 >—1 ( 031 )+ Im(o31591)2

o921 099 032 o11(o11092 — ||oa1 ||2)

The constants are:

Case('): n.=0,n2.=1,n3=3,n1=3,nyg=1n3=0n =

n3—§ and n. =7

Case (ii): nq 0,y =1, n3. =4, ny =3, n 2, ng =0, n
g = %n3-3 and n. =8
Cas()n1:0,n2—2,n3=3,n1:4,n 1TL3~«07L1
HQ—% ngzg,andn =

—
h
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The decompositions and the center cone P, become:
Case (i): T = {1}U{2}U{3} and P, = R,
Case (ii): I = {1,2}U{3} and P. = P({1,2},R) x R,
Case (iil) I = {1}U{2,3} and P, = Ry x P({2,3},R).
The conditions (5.6) are:
Case (i): A\ >0, X2>3, A3>
Case (il): A1z > 3, Az > 2
Case (iii): A1 >0, g3 > %—

NG

The Wishart distributions are:

Case(i) : AWz (0 aera) (5)

5 5
A1y X243 A1 F Ap-2 Ag—
)\11/\22/\3 173 A2 377

_ 37511 513l S[3le - exp{——tr(E'(Al’)‘z”\ﬁs)}

Al Az

720 (A1) T (Mg~ )T 031 91216 % (3je

Case(ii) : dWE,(/\m,)\g)(S)

2 A -2 A3—3
_ R T R

- 5
70 (M2)T (2= 5T e —2)[T a2y P20,

Case(iii) : dWE,()\l,)\za) (S)

5
Ay 2X03 A1—3, 23—
,\11)\ 237179672877

exp{ —tr(£~(*2:23) 5)}

_ 237 51 Opa3le exp{_tr(z—(x\l)\%)g)}’

. 5
T2 T(A1)0 (A2 —1)I'(A2s —-g‘)di\ll E[}\22?3-

where |S(19}] is the determinant of the {1,2} x {1,2} submatrix of § € P,

and similarly for X € P.

IST23jel = sp2703p3)

7. Conclusion and further research

The basic theory of the general Wishart distributions on homogeneous

cones presented in the present paper opens several interesting new areas in

multivariate statistical analysis.

a) The general solution to testing problems arising within the class of Wishart
distribution on homogeneous cones is under preparation, cf. Andersson
(2001). The results contain a classification of the test problems, the ab-
stract central distribution of the maximal invariant statistics, the explicit
likelihood ratio (LR) statistics, and the central distribution of the LR sta-

tistics in terms of its moments.




cases leads to new eigenvalue problems, the 1nterpretat1
ues; and their central distribution. , , ;

The non-central distribution of the maximal invariant statlstlcs in - gen-
eral expressed as an integral will probably in several special cases lead to
new hypergeometric functions and their expansion into sums of new zonal
polynomials.

b) Further properties of the general Wishart distributions are under in-
vestigation. One result is a generalization of the following well-known re-
sult for the classical Wishart distribution: Let S follow the Wishart dis-
tribution (1.3). Let I = I{Ul, be a decomposition of the set I, and let
S = (8ijli,j = 1,2) be the corresponding partitions of S. Then it follows
that Sgoe1 := Sog — 52151—11512 and (SmSﬁl, S11) are independent, Sgg41 fol-
lows a Wishart distributions, the conditional distribution of So1 577" given
S11 follows a normal distribution, and S;; follows a Wishart distribution.
The parameters in these distributions are simple expressions in £, A, I, and
Si1.

c) The result in b) leads to a new and natural unique representation of
homogeneous cones and their Wishart distributions. This representations
arises from a generalization of (4.5) into block matrices. In particular D
is replaced by block diagonal matrices where each diagonal block is an inde-
composable symmetric cone, i.e., one of the five types in Examples 6.2, 6.3,
6.4, 6.6, and 6.8. The generalization of (4.7) then gives the new represen-
tation of a homogeneous cone. This induces a natural decomposition of any
generalized Wishart distribution into Wishart distributions on symmetric
cones (only five different types), and conditional normal distributions.

d) An interesting subclass of Vinberg algebras occurs under the added re-
quirement that all non-trivial entries in the arrays are real numbers. As
mentioned in Example 6.14 the corresponding homogeneous cones arise from
the set of covariance matrices in the lattice models introduced by Andersson
and Perlman (1993). These special Wishart distributions are under investi-
gation.

e) The decomposition of the Wishart distribution mentioned in c¢) and the
restriction of the theory mentioned in d) together suggest another general-
ization of Wishart distributions to cones arising from the set of unknown
covariance matrices given by conditional independence restrictions induced
by acyclic directed graphs or more generally by chain graphs, cf. Anders-
son and Perlman (2001) and Lauritzen (1996). These topics are also under
investigation.

f) From Remark 3.2 it is seen that the role of the classical inverse Wishart
distribution as a prior distribution can be generalized to the Wishart mod-
els in the present paper. Thus it is interesting to evaluate the solution to
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Bayesian inference with conjugate prior distribution in the many new ex-
amples. Furthermore the generalized inverse Wishart distribution may give
new contributions to the so-called Bayesian networks. The latter requires
that the extension mentioned in e) be used.
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