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Applications of resampling approach to statistical
problems of logical systems

ALEXANDER ANDRONOV AND MAXIM FIOSHIN

ABSTRACT. The resampling approach to the problem of confidence in-
terval construction is considered. An efficiency of this approach is in-
vestigated for logical system characteristics. Proposed method allows
to calculate the probability that obtained interval covers true value of
characteristic. Empirical results show that true covering probability is
close to appointed value.

1. Introduction

Confidence intervals are main subject of mathematical statistics and re-
liability theory. Last years the bootstrap approach has been applied for
confidence interval construction (Davison and Hinkley, 1997; DiCiccio and
Efron, 1996). In this paper the resampling approach is used for this aim (see
Andronov and Merkuryev, 2000; Andronov, 2001). As an example, a confi-
dence interval calculation for characteristics of logical system is considered.
Such system can be described in the following way.

Let M = {1,2,...,m} be a set of integers, let [; and I", [,r € {1,2,...},
be subsets of M. Let fy(z;:i € L)), 1=1,2,..., be real-valued functions of
real variables {z; : 4 € I}, which define the s({)-th order-statistics (s(l) =
L2,..)of {z;:i € I;}:

Silziri € ) = min{z; € {z;:ie L} : #{z; € {zj:j € I} : 2 > 2;} > s(1)},

where # A is the cardinal number of a set A.
In particular, if s(I) = 1 then fillz; : 4 € I}) = min{z; : i € oL} if
s(l) = #1I; then Jilz; 11 € L) = max{:ci 1 E Il}.

Received October 26, 2003.

2000 Mathematics Subject Classification. 62G09, 62G15, 62G30, 62N05.

Key words and phrases. Resampling, nonparametric estimation, simulation, confidence
intervals. )

63




64 ALEXANDER ANDRONOV AND MAXIM FIOSHIN

Let us also define predicates P{*, Py?, ..., where upper index r; means that
the range of definition of F; is R™ : PJT(mi 11 € I7). We consider predicates
of the following types:

“less (greater) than”: P?(z1,29) = “z1 < 227; Pz, zq,.. . z,) =
“r < min{zi, z9,. a:r}”-
e “equal”: P2(£I}1,E2) “gy =29y Pz, .., Zp) = 1 =20 = ... =
T
Note that we are allowed to use constants from R, real variables z,zy,...
and functions f1, fa2, ... as arguments of the predicates.

Also, we consider logical functions over predicates, for example, disjunc-
tion V, conjunction &, negation — and “at least ! from k”:

1 fyp+y2+...+ye =1,
e R A 8

where y; € {0,1}.

Now we construct formula Q(z1,72,...,%m). It is a complex predicate
that can contain primary predicates and logical functions.

In fact, arguments of the formula are independent random variables
X1, Xo, ..., X, with unknown distribution functions Fi, Fy, ..., Fm. Our
aim is to estimate expectation of the formula Q:

merwxﬂ:/”/@u“”@m&wmndmmm 2)

on the basis of sample populations {X; = {X y), Xéz),. . ,XT(fi) Li=1,...,m}.

Note that various problems of logical control, reliability etc. are described
by this model. We use resampling approach for our aim. The point esti-
mation of parameters of interest has been considered in previous papers of
authors. Now we consider the problem of interval estimation. We use the
approach discussed in (Andronov, 2002).

Our aim is to construct a confidence interval for the expectation
0 = E Q(X1,Xa,...,Xm), that corresponds to the confidence probability
4. A usual resampling approach realizes the following procedure (Gentle,
2002). We produce a series of experiments. Each experiment includes k

trials. During the v-th trial, v = 1,2,...,k, an element X (@ 2,/) is selected

at random, with replacement or without replacement from each sample X;,

i=1,2,...,m. After k trials we calculate empirical mean for the current,
for example, [-th, experiment:
x1  x@ (m)
kZQJm’mm’%wﬂ 3)

Then we return all extracted elements into corresponding sample popula-
tions and repeat the described experiment r times, obtaining the sequence
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01,04, ...,0,. It gives order statistics 8(1),0(2), - - -+ 0(r) and corresponding a-
quantile 8| of their distribution, where [or| = max{¢ = 1,2,...: £ < ar}t.
We set @ =1 — +y and accept (0¢{ar), 00) as upper y-confidence interval for
the true value of 6.

Note that a confidence interval bound can depend on several order statis-
tics, not only on one. For example, Giirtler and Henze (Giirtler and Henze,
2000) propose to use a0(jar)) + (1 — @) (|ar)—1) as upper (1 — a)-confidence
interval bound.

In this paper the efficiency of described approach is investigated. More
exactly, our aim is to calculate the true value of the covering probability
R = P{0(|ar}) < 0}. For this we need to know the joint distribution of
01,02,...,6,. We suppose that 0k and ar are integer numbers. If mentioned
numbers are not integer, the randomization can be applied to calculate in-
termediate values.

2. General approach

The function of our interest is described by the formula Q(X1, X, ., Xom).
It depends on m real arguments X1, Xs,..., X, and has two possible re-
sults only: one and zero. In fact, the value of the function depends only
on the ordering of the arguments. For each m-dimensional real vector x =
(21,22, ..., Zm) let us define an ordered vector (Z(1): Z(2)s - - - » T(m)) and corre-
sponding permutation p(x) = (ji, jo, - . . jm). Here 1) S 22) <o STy,
{371,.’132, e ,iL‘m} = {:v(l),z(z), . ,x(m)}, and if _71 =V, then Ty = JJ(U) Now
we are able to consider our function Q(z1, 7, ..., ) as a function of permu-
tations p € II, where IT is the set of all permutations of elements L,2,...,m.
In order to illustrate the dependence of the formula on p, we will write Q(p).
We denote IT; = {p € I : Q(p) = 1}, Iy = {p € II: Q(p) = 0}. Therefore
our parameter of interest can be written as

6 = P{p € I, }. (4)

Our aim is to construct an upper confidence interval (é, 1) for @ on the
basis of sample populations X; = {Xl(z),X;), et ,Xgi)}, 1= 1,2,...,m.
Note that the total sample space is R"™ where n =n; +ng + ... + ny,.

How can we describe the total sample X;UX5U. . .UX,, after its ordering?
Let Xy < Xy <... < X(n) be ordered sequence of elements of X; U X, U
... UXp. It is possible to use n-dimensional vector W = (W7, Wo,. ..., Wp)
where W; € {1,2,...,m}, and W; = i means that the element X(;) belongs
to X;. It is possible that neighboring members of W, say W; and Wiy,
have equal values. Therefore we can optimize this representation if we use
a vector V = (V1,V5,...) instead of W. Each element V; of the vector V
is a pair (V},V]"), where Vj is the same as Wj, and V" is the number of
consequent repeatings of value V}’ .

17
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For example, let m = 3, X; = {2.5,6.3,1}, Xy = {0.5,2.1,5.3,5.2,0.9},
X3 = {6.1,23}. Then n = 10, and ordered sequence is
{0.5,0.9,1,2.1,2.3,2.5,5.2,5.3,6.1,6.3}, W = {2,2,1,2,3,1,2,2,3,1}, V =
{(27 2), (17 1)= (27 1)7 (3a 1)’ (19 1), (2) 2)7 (37 1)7 (17 1)}

Another way to describe this ordering is the protocol notion introduced
n (Andronov, 2002). The definition below generalizes the protocol notion
for our case.

Definition 1. Let (mgl),mg), 17(111)) (a:§2), é) :1:%22)) e

(z gm) (2)),. o wﬁ{j‘n)) ?2(; real-valued vectors), a?d) X = (( %g, gg, ..,g;&)l))’
X9 = (:1:(1), @ (nQ)) vy X = (z g’;, (g)L, ..,:v(nmm)) corresponding

m
ordered sequences: :z:g)) < :EE )) < ... < acgn) , 1 =1,2,...,m. We call
(ng + 1)-dimensional vector C(1) = (ep(1),e1(1),...,cn, (1)), co(1) + 1 (1) +
.+ ¢y (1) = ny, a subprotocol of the first level, where ¢;(1) = #{azf,l) €
X1:x E ; (1) < q,-(2 i~ },7=0,1,...,n9, mggg = —00, J:E?Q_H)
protocol of the [-th level C(l), 1 =2, 3 ...,m — 1, is determined analogously
using the union x; Uxe U... Ux instead of x1, and x4, instead of x3. We

call a sequence of subprotocols a protocol C = (C(1),C(2), ..., C(m —1)).

=o0. A sub-

For the previous example we have C(1) = (0,0,1,1,0, 1), C(2) = (4,3,1),
C = (C(1),C(2)). Obviously, there is an one-to-one correspondence between
the protocol C and vector W (or V). Often we prefer the protocols, because
they can be recursively calculated. In general, we use both notions.

Also each point (x1,%2,...,Xpn) of the sample space R™ can be described
by vectors W and V or the protocol C.

Now we must find the following:

e the algorithm for enumeration of all protocols,

e the probability Pc to get a fixed protocol C,

e the conditional probability g¢ of the event {Q(Xy, Xa,...,Xy) = 1}
given the protocol C,

e the conditional probability pc of the event {6, < 6} for the I-th
experiment with fixed protocol C,

e conditional cover probability R¢ given the protocol C.

Then the unconditional coverage probability can be calculated as follows:

R= ZPCRC- (5)
C

The first problem is a standard combinatorial problem (Brualdi, 1999), so
we do not consider it. The other problems are considered in the following
sections.
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3. Probability distributions of protocols

Our task is to calculate the probability to get a fixed protocol C. We
assume that X, Xs,...,X,, are independent continuous random variables
with distribution functions F(z), Fo(z),. .., Fn(z).

To solve this problem, it is convenient to consider the vector
W = (W, W,,...,W,) instead of the protocol C. Let Xpy < X <
... < X(n) be ordered sequence of the original data. We denote via S;(j) =
#{W, € {W1,Wy,...,W;_1} : W, = i} the number of elements from X;
that are less than X(j)- We consider the extraction procedure in different
time moments. The time moment X(;y 1s called j-th point of the protocol.
Let Uc(4,t) be the probability that at the time moment ¢ the protocol C is
realized till the j-th point, where ¢ € (0,00), j = 1,2,...,n. Note that the
probability to get C-protocol is equal to Pg = Uc(n, 00).

The probabilities Uc(j,t), 7 = 1,2,...,n, are calculated recurrently. Ob-
viously,

UC(lvt) =nw, / H (1 _E(z))ni(l - FW1 (Z))nwl~ldFW1 (Z), t>0. (6)
o Wy

Other values of Uc(j,1), j = 2,3, ...,n, t > 0, are calculated by the formula

t t 1
. o[ 1— Fy(y)\™ 50
Uc(4,t) = (nw; — Sw; () 1= F(z)
o/g/i%vjl<1“ﬂ(z)>
L (1= Ry )\
Xl ——FWJ.(Z) (1 ’_FW](’Z))

If the exponential case takes place then it is possible to get an explicit
formula for the probability of the C-protocol. Let

Fz)=1—-eM z£>0, i=12,...,m.

(7)

dFw; (y)dUc(j — 1,2).

Then, by using memoryless property of the exponential distribution, we
have

(8)

4. Conditional probability of unit value for fixed protocol

The protocol C corresponds to sample populations X1, Xs,...,X,, that
contains n1 elements from Xy, ny elements from X, ..., 7, elements from
Xm. During resampling procedure we extract elements from X1, Xs5,... X,
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one by one, and form a resample (subsample) (X3, Xo,...,Xm). Some re-
samples give unit value of the formula, Q(X1, Xs,..., X,;;) = 1, other resam-
ples give zero value. We will calculate the probability of event {Q(X;, Xs,
., Xm) = 1} for a fixed protocol C.
Resamples are formed at random, therefore the conditional probability is
equal to the ratio of two numbers: the number h;(C) of resamples, which
give unit value of formula, and the number Ay (C) of all resamples:

h1(C)
C=T—= - 9
9C = 35(C) (9)
If each variable X;, 2 = 1,2,...,m, enters into formula Q one time only,
then the number of all resamples hx(C) = nyns ... n;,, and therefore
hi(C
. C) (10)
ning ... Ny

The calculation of h;(C) is more difficult. In general, it is necessary to
consider each permutation from IT; = {p € IT : @(p) = 1}. If p € II;, then
we must calculate the number hy(C) of resamples that correspond to this
permutation. Then

hi(C)= > hp(C). (11)

pell;
Direct use of this formula requires a huge amount of calculation, therefore
we consider a special case where the amount of calculation can be decreased.

5. Special case

The general case considered above can only be realized for small dimen-
sions of the problem because the number of protocols is too large. We will
consider a partial case, where the dimension can be decreased. In this case
separate predicates do not depend on all variables but only on a part of
them. It allows us to use another type of protocols which are shorter than
those given in Definition 1.

Let us consider a predicate P™ = “X,;, < min{X;, Xo,...,Xpn-1}". We
can interpret it as follows {Gertsbakh, 2000): X,, is the operation period
of a system, X1, Xo,..., X, are lifetimes of system elements. Considered
inequality means reliability of the system during its operation period. In this
case the ordering between X1, Xs, ..., X;,-1 is not important. It allows us to
use shorter protocol that contains only one subprotocol of the (m—1)-th level.

Let X(py = (:):87;), mgg), ... ,w%nmi)) be ordered sequence of the values of the

variable X,,. We now define a protocol as (n,, + 1)-dimensional vector C =
C(m —1) = (co,€1,..-,Cn,,), Where ¢; = (Cj.’l,Cj’z,.,.,Cj,m_l) is (m — 1)-

(m)
<aiinh

(m) o .

dimensional vector with elements c;; = #{x,(f) € zi iz <y
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§T"nrr)z+1) =00, Cpi + Clyi+ ...+ Cpy i = T4,

i=1,2,...,m — 1. The total number of such protocols is equal to

rjzjl < nanir T ) . (12)

=1

J=0,1,...,npn, mgg)l) = —00, T

Let us consider a fixed protocol C = C(m — 1) = (g, ¢y, ... ,Cn,, ). For

a fixed value zg.r)b), J = 1,2,...,ny,, of the random variable X,, we have

Zf/;}) v values of X; that are less than 9387;) . Therefore, if the value of X,,
equals :vg;), then the number of resamples (X1, X3, ... , Xm) which give unit
value of predicate P™ is calculated by the formula:

m—1 Nm
H Z Cui |} - (13)

1==1 v=j

Finally, we have
N M—1 Timn
@) => 1] (D ewi]- (14)
j=1 =1 \v=j
Now it is possible to calculate the probability gc by the formula (10).
In order to calculate the probability Pc of the protocol C we can modify
a formula from (Andronov, 2002). Using notations from Section 3, we have
the following formula for the first point of the protocol:

1

11

=1

t
Uo(l,t) = / Mon(1 — Fy ())"m—"
0

(o) )= - Ry —am, @),

Let Co,i = N4, Ej,i =n; —5;(j
have for j = 2,3,...,n,,:

Uc(j,1) =/t(nm—j+1)/t (1_ M)nm*j 1
0

— . =l a L
) - n'L - ZV:O CV)Z - cj——l,’L Cjﬁlﬂ' Then we

1 — Fp(x) 1 - Fp(z)

A
-1 ~ j— 1,4
<1 (& e )
i1 \ G-l 1 — Fi(z)
. A Cjm1,i™Cj~1,i
o (1 Fily) — Fif) \ 17

1 - Fi(z)

Remind that the probability Pc = Ug(nm, 00).

dFn(y)dUc(j - 1,2).

18
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If elements have exponential distribution, then Pc can be calculated using
the following formula:

m—1 .
. — — Cis . e N F s -
Pc = (nm——j)Ame Am (m—J)t ]:E ( c;:j ) (1——6 A’“t)cwe Ait(E5,i CJ,z)dt.
=

6. Conditional coverage probability

The conditional probability of the event 8; < 8 can be calculated by the

formula
Ok—1

k -
po=Polti<oh =Y. ( § ) dbli-a0)<. (15
£€=0
Now we can find conditional probability to cover the true value of 8:

T

Re = Pc{f(arp <0} = Y ( 2 ) pe(l—pc) ¢, (16)
{=lar]

7. Numerical example

As  formula @ from (2) we consider a  predicate
P™ = “X,, < min{X;,Xo,...,Xm-1}". Let m = 3, which means that
we have a predicate P3 = “X3 < min{Xj, X2}”. Let variables X;, X2 and
X3 have exponential distribution with parameters A1, Ao and A3. Then
- AL+ A2+ Az

Let X1 = 3, s = 3, A3 = 2. In this case true value of § = 0.25. Let
also the number of experiments » = 10 and the number of trials in each
experiment k = 16. We will use a protocol described in Section 5 for the
calculation of the coverage probability R according to the formula (5).

The results are presented in Table 1.

9 = P{X3 < min(XlaXz)}

Coverage probability R

(n1,ng,n3) | v=0.5 | y=0.6 | y=0.7 | v=0.8 | v=0.9
(3,3,3) 0.533 | 0.576 | 0.625 | 0.686 | 0.770
(9,9,3) 0.519 | 0.571L | 0.630 | 0.701 | 0.793
(4,4,4) 0.521 | 0.578 | 0.640 | 0.709 | 0.797
(6,6,4) 0.516 | 0.576 | 0.642 | 0.715 | 0.807
(5,5,5) 0.515 | 0.579 | 0.646 | 0.722 | 0.817
(3,3,8) 0.516 | 0.581 | 0.651 | 0.728 | 0.823
(4,4,7) 0.512 | 0.580 | 0.652 | 0.732 | 0.830

TABLE 1. Actual coverage probabilities
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8. Conclusion

In this paper we applied the resampling approach to construct a confidence
interval for logical system characteristics. The precision of constructed inter-
val has been investigated. The numerical results show that actual coverage
probability is close to appointed value even if sample sizes are small.
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