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Alternative constructions of skewed multivariate
distributions

BARRY C. ARNOLD AND ROBERT J. BEAVER

ABSTRACT. A review of the construction of skewed multivariate nor-
mal distributions is presented. The review considers construction via
(1) hidden truncation, (2) threshold models, (3) additive components
and (4) a location and scale change for k variables beginning with k — 1
independent standard normal variates and one univariate skew normal
density. Extensions to non-normal distributions have mainly used the
hidden truncation approach. Unlike the normal case, the use of the
three remaining techniques in constructing non-normal multivariate dis-
tributions leads to models distinct from those found using the hidden
truncation approach. Examples of several tractable multivariate distri-
butions using methods (1) and (3) are also presented.

1. Introduction

The Azzalini skew-normal density is a univariate density of the form

[z 2) = 2p(z)2(Az) 1)
where ¢ and ® denote the standard normal density and distribution func-
tions, respectively. A variety of univariate and multivariate extensions of
this distribution have been considered in the literature. A recent survey
may be found in Arnold and Beaver (2002a). The usual probabilistic gene-
sis of variables with such skewed distributions involves a scenario in which
random variables (and/or vectors) are observed only if they satisfy certain
linear constraints or equivalently if some linear combination of the variables
exceeds a given threshold. Arnold and Beaver (2000a) refer to those as dis-
tributions that are skewed via hidden truncation. In the normal case an
equivalent representation of these models involves an additive component
structure. The present paper is concerned with several alternative construc-
tions of skewed distributions (including the additive component models) in
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both normal and non-normal cases. We will confirm their identification with
hidden truncation models in the normal case and will observe that new fam-
ilies of skewed distributions (distinct from hidden truncation models) arise
in non-normal settings.

2. Skew normal models

Begin with k-1 independent identically distributed (i.i.d.) standard nor-
mal random variables Wy, Wa, ..., Wy, U. Consider the conditional density
of W = (W, Ws,...,W}) given that for some Ag and Ay, Ag + A]W > U.
Here )\o € R and A; € RE. If we define the event 4 by

A={X+NW > U} 2)

then elementary computations yield
k
Favpa(w) = [[ ] pwil@ (o + Xw)/P(A) . (3)
i=1

It is easy in this case to evaluate P(A) since U — XMW ~ N(0,1 + X A1),
Thus
Ao

e (4)
Thus our family of k-dimensional densities skewed by hidden truncation
takes the form

P(A) = P(U = XW < Xp) = &

k
; = w; fw -—~—-—-—>\0
f(w,/\o,é\x)—[ilzﬂlw( D]12(No + Mw)/® o) (5)

A few representative examples of densities (5) are displayed in Figure 1.

N

Figure 1. Skewed bivariate normal distributions via hidden truncation in
(5). (a) Ao = ——2, )\12 = 3; (b) )\0 = -2,)\11 = *—1, >\12 = w3;
(C) )\0 == 1, >\11 o= 2,)\12 = 3.

The case in which Ag = 0 in (5) corresponds to the Azzalini and Dalla
Valle (1996) skewed k-variate normal density. The more general threshold
situation, i.e. the case in which Ay can be non-zero, was discussed in some
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detail in Arnold and Beaver (2000a).

The full k-dimensional skew normal model is obtained by introducing
location and scale changes in (5). Thus we consider a random vector X
which admits the representation

X = p+2Y°W (6)

where pu € R, $1/2 is positive definite and W has density (5). It may be
verified by elementary computations (see e.g. Arnold and Beaver (2002a))
that if X has the representation (6) then all of its marginal densities and all
of its conditional densities are of the same type.

There are other routes available for arriving at the model (6). In the
normal case, “all roads lead to Rome”; in the sense that all of the different
modelling scenarios lead to the same class of distributions represented by
(6). In non-normal cases the different modelling scenarios lead to interesting
but distinct models as we shall see.

The second genesis for our hidden truncation model (6) begins with k4 1
random variables (Z1, Zs, ..., Zg, V) which have a (k + 1)-dimensional mul-
tivariate normal joint density. Now consider the joint density of Z given
V' > vg. This clear hidden truncation construction will again lead to our
model (6).

A novel third scenario involves an additive component and it is not so
transparently obvious that we are again led to the model (6). For it, we
begin with X, X4,..., X}, i.i.d. N(0,1) random variables. For an arbitrary
c € R, we define Xy(c) to be Xy truncated below at ¢. Next define a random
vector Y by:

Y; = 6;Xo(c) + 1-53?Xj 16,1 <1, 1=1,2,...,k. (7)

(The special case of this model with ¢ = 0 is equivalent to the model de-

scribed in Azzalini (1986) since X(0) L | Xo|, where £ denotes equal in
distribution.) It is readily verified that the moment generating function of
Xo(c) is given by

My, (8) = e 28(c — 1)/ &(c), 8)

2

where here and henceforth, for any distribution function F, we denote the
corresponding survival function 1 — F by F. Consequently, since Mx, (t) =

et’/ 2 j=1,2,...,k, we can write the joint moment generating function of
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My(t) = E(eZthj(Jon(c)Jr 1—~5J2Xj))

k

k
= Mx,o(O_ ti65) [ Mx; V16
J J=1

-1

k k k
= exp [ () 407+ Y 21 -83)| Blc— ) ;6;)/®(0)
=1 j=1 =1
k
= exp[t'Qt](—c+ Y ;0;)/P(~c) . (9)
i=1
The elements of the matrix Q in (9) are given by
gi = 1, i=1,2,...,k,
qj = 0ibj, 1Fj. (10)

It is then evident that a linear transformation will lead to a random variable
W with joint density (5) and joint moment generating function

Ag +)\/1t /@ Ao
V1+ AT VI1+ A

Consequently our additive component model (7) again eventually leads to
the full family of k-variate skew normal variables defined in (6).

My (t) = e¥'*/%9 (11)

It may have become apparent to the reader by now that the skewing or
hidden truncation can actually be applied to just one of the coordinate vari-
ables prior to making linear transformations to arrive at the family (6). This
approach was apparently first explicitly stated by Jones (2002). (For earlier
discussion see Azzalini and Capitanio (1999).) We sketch the development
in the following paragraph.

Begin with k£ independent random variables 51,5, ..., S, where S has a
univariate skew normal density of the form
U
Fs1(51) = @(s1)@ (v + v151)/B(——s5) (12)
VvV 31+vg
and where Sy, ..., Sk are standard normal random variables. Now consider
the family of random variables of the form
X =p+3%8, (13)

It is not difficult to verify that the family (13) coincides with the family (6)
(though the parameters p and ri/2 appearing in the two expressions are
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different but related). For completeness we will present the Joint moment
generating function of random variables of the form (6):

Ag + (21/2A)It Ao

Vi )

We thus have enumerated four alternative routes for arriving at the model
(6) using normal components. It is perhaps surprising that all four routes
lead eventually to the same model. As we shall see in the next section, this

phenomenon is not encountered when we consider non-normal variants of
the four constructions.

Mx () = expft's + %t’Z‘.t]@( (14)

3. Non-normal skewed multivariate models

In our first (hidden truncation) development of a k-variate skew normal
model we began with % + 1 independent standard normal variables Wi, Wa,

-, Wi, U. We now consider the consequences of allowing these basic vari-
ables to have other distributions.

We thus now suppose that Wy, W, ..., W), and U are independent ran-
dom variables with densities given by )1, s, ..., 9 and 1y, and distribution
functions Wy, Uy, ..., Ty and ¥y respectively. Again consider the joint den-
sity of W given A = {Ag + A]W > U} where ) € R and A; € R*. We may
verify that

&
Fova(w) = [T &j(w;)]@o (Ao + Mw)/P(4) . (15)

i=1
The quantity P(A) appearing in (15) will typically be difficult to evaluate.
One case in which it can be easily evaluated is that in which all the joint
densities @, ¢1, ..., ¢y are symmetric about zero and \g = 0. In that case
P(A) = 1/2. The other scenario which will allow relatively easy computation
of P(A) is one in which the density of AW — U is known and tractable.
This would occur if all the ¢,’s correspond to (possibly different) Cauchy
densities. Such skew-Cauchy densities are discussed in some detail in Arnold

and Beaver (2000c). The usual transformation

X =p+ 22w (16)

can be used to extend the model (15) to enhance its flexibility. Sample

graphs of densities corresponding to (15) (via hidden truncation) are given
in Arnold and Beaver (2002b).

The second approach used to arrive at (6) began with k& + 1 multivariate
normal random variables (not necessarily uncorrelated). We then consid-
ered the conditional distribution of & of these variables given that the other

20
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variable exceeded a threshold value. The key reason why this led to the
same model (6) is that a general (k + 1)-variate normal random vector is
just a linear function of £ + 1 independent normal variables. In our more
general non-normal setting we would begin with (Z1, Z,, ..., Z;, V) having
an arbitrary (k + 1)-dimensional joint distribution and consider the condi-
tional distribution of Z given {V > vy}. This will lead to models distinct
from (15) (extended by transformations of the form (16)), unless the random
vector (Z1,...,2Zk, V) admits a representation in terms of linear functions
of k + 1 independent variables (as it does in the classical normal case). In
more general cases the conditional density of Z given {V > vy} will depend
in a complicated way upon the conditional distribution of V' given Z. Only
very special cases can be expected to lead to tractable models.

Let us turn now to our third route (the additive component route) to the
model (6). In our more general setting we will begin with &+ 1 independent
random variables Yp, Y3,..., Yy with corresponding densities 1,11, . .., ¥g.
As in the normal case we will consider Yj(c) defined to be the random variable
Yo truncated below at ¢. We then define the & dimensional random vector
Z by

Z; =Yo(c)+13Y;, j=1,2,...,k. (17)
Since the density of Yy(c) is given by

Fyoe)(Wo) = %o(wo)I(yo > ¢)/To(c)

where Vg is the distribution function corresponding to v, we can write the
joint density of Z in the form

~ k g _
fatwim) = [ ] -0 oo/ Tofe) . (19

g=1 J J

Typically the integration in (18) will be difficult to perform. It can be done
when the 9);’s are normal, Cauchy, Laplace and logistic densities. In general,
models obtained from (18) will be distinct from those obtained from (15).
Some specific examples of such distributions skewed by an additive compo-
nent (when k = 1,2) can be found in Arnold and Beaver (2002b).

What if we consider non-normal variants of our fourth construction? For it
we consider k+1 independent random variables Uy, Uy, . . ., U, with common
densities 19,1, ...,%, and distribution functions ¥y, ¥q,..., ¥;. We may
then define

T/Vl =U1+U0(c) (19)

where Uy (c) denotes, as usual, Uy truncated below at ¢, and fori = 2,3, ..., k,
define W; = U;. Alternatively we could define Wi to be a random variable
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whose distribution is that of U; conditional on the event Ao + MU > Uyp.
Finally we define

X = p+3?W
to complete the construction. It is only in the case in which all +;’s are nor-

mal that we can expect these models to coincide with those derived using
the previous 3 constructions.

An interesting alternative construction involving skewing only one of the
coordinate variables was proposed by Jones (2002). He begins with a rather
arbitrary joint distribution for (Wi, Ws,..., W}) and considers a new dis-
tribution obtained by replacing the marginal density of W; by a skewed
version and retaining the original conditional structure of Wa, ..., Wy given
Wi. This construction leads to old friends in the case in which W has

a classical multivariate normal density but produces new models in other
settings.

4. The Balakrishnan Extension

Motivated by order statistics concepts, Balakrishnan (2002) suggested

that the Azzalini skew-normal density (1) can be extended to comprise the
class of densities

f(@; X, ) o p(z)[@(Az)] (20)
where A € R and o € R". Analytic expressions for the normalizing con-
stant needed in (20) are only available when @ = 1,2 or 3. Nevertheless
the family admits easy simulation (via a rejection algorithm, for example)
and parameter estimation techniques, including maximum likelihood, can be
implemented numerically. This idea can be also used to extend our hidden
truncation k-variate normal model (5) or, for that matter, it can also be used

to extend the non-normal model (15). The extended form of the density (15)
will be:

k
fw(w) o< [JT 85(w)[@o(Xo + Ajw)]® (21)

i=1
where Ay € R, A\; € R* and o € RY.

5. Multiple constraints and multiple additive components

Multiple hidden truncation can be envisioned. We also can envision more
complicated additive component structures. Without going into details we
merely describe how such models might be formulated. In most cases, they

will involve a surfeit of parameters and this can be expected to limit their
practical utility.
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For a multiple constraint model we envision only retaining observations if
linear combinations of the variables exceed certain random thresholds. The
resulting k-dimensional density is of the form

k £
Fow) o< [T sl [T 20§ + A0w) (22)
i=1 7=1
where 9;,...,9 are densities and ¥, ... ¥, are distribution functions. A
Balakrishnan extension of such densities would take the form
k 2
Fow) o ([T sl T 22 OF + 20w)] . (23)
1=1 j=1

The normalizing constants for these densities will usually be analytically
intractable. An exception occurs if all densities and distributions are normal
and if the skewness vectors, the Agj )’s, are mutually orthogonal.

We will illustrate the concept of a multiple additive component model
by considering a 3-dimensional example. For it we begin with 7 inde-
pendent random variables Vi, Va, Va3, Vi, Vs, Vg, V7 with corresponding den-
sities 11,19, ..., %7. For variables V4,. .., V7, we consider truncated versions
W; = Vi(ei),i = 4,5,6,7 (W is V; truncated below at c;). Now define the
3-dimensional random vector (X, X, X3) by

X1= Vi + Wy + W3 + W,y
Xo= Vo 4+ W1 + Wy + Wy (24)
X3= V3 + W + W3 + Wy

Observe that W contributes only to X7 and X5, Wy contributes to X, and
X3, etc. while Wy contributes to all X;’s. The analysis of models such as
(24) will be easiest when all the component densities (the 1);’s) are normal.

References

Arnold, B. C. and Beaver, R.J. (2000a). Hidden truncation models. Sankhya 62, 23-25.

Arnold, B. C. and Beaver, R. J. {2000b). Some skewed multivariate distributions. Amer.
J. Math. Menagement Sci. 20, 27-38.

Arnold, B.C. and Beaver, R.J. (2000c). The skew-Cauchy distribution. Statist. Probab.
Lett. 49, 285-290.

Arnold, B.C. and Beaver, R.J. (2002a). Skewed multivariate models related to hidden
truncation. Test 11, 7--54.

Arnold, B.C. and Beaver, R.J. (2002b). Alternative construction of skewed multivariate
distributions. Technical Report 270, Department of Statistics, University of California,
Riverside, California.

Azzalini, A. (1986). Further results on a class of distributions which includes the normal

ones. Statistica XLV, 201-208.




ALTERNATIVE CONSTRUCTIONS OF SKEWED DISTRIBUTIONS 81

Azzallini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Bio-
metrika 883, 7T15-726.

Balakrishnan, N. (2002). Discussion of: Skewed multivariate models related to hidden
truncation and/or selective reporting. Test 11, 37-39.

Jones, M. C. (2002). Marginal replacement in multivariate densities, with application
to skewing spherically symmetric distributions. J. Multivariate Anal. 81, 85-99.

UNIVERSITY OF CALIFORNIA, RIVERSIDE, USA
E-mail address: barry.arnold@ucr.edu
E-mail address: robert.beaver@ucr.edu




