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Estimating parameters of stochastic differential
equations using a criterion function based on the
Kolmogorov—Smirnov statistics

DARIA FILATOVA, MAREK GRZWACZEWSKI AND DAVID MCDONALD

ABSTRACT. We introduce a method for the estimation of stochastic dif-
ferential equation (SDE) coefficients from panel data. The method in-
volves matching the distribution of the experimental/field data with a
panel of simulated data generated by a Monte Carlo experiment. The
fit between the two distributions is assessed by means of Kolmogorov—
Smirnov goodness-of-fit statistic leading to a confidence function com-
puted from an incomplete gamma function. A numerical optimization
algorithm then optimizes the choice of parameters to maximize this func-
tion,

1. Introduction

Deterministic mathematical model can be used as an explanation of some
physical phenomenon as, for example, dynamic characteristics of a frame
structure, technological process dynamics, resource management, popula-
tion dynamics, or economical systems behavior. This approach provides
good results only if input signal is free of noise or noise influence is insignif-
icant. However, in most of these cases noise influence is considerable and
such a description brings along the following problems: presence of stochastic
parameters leads stationary system into unstable state with respect to mo-
ments of a phase vector; decrease of stability region; essential differences in
the trajectory’s behavior of “noise free” system and “noise” system in spite
of coincidence in the sense of mean square error. In order to avoid these prob-
lems it is recommended to use stochastic mathematical models and somehow
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to identify parameters of these models. One possibility is to use stochastic
differential equation (SDE). The problem of SDE parameters identification
has been studied extensively for both continuous and discrete data. We focus
our research to provide a numerical method, based on maximum likelihood
principle, for the estimation of SDE parameters using discrete panel data.

2. Stochastic differential equations

Let us consider the SDE with an initial condition of the form Y (0) = yq
(t > 0) of the type

dY (t) = a(t,Y (1)) dt + b (4, Y () dW (1) (1)

where Y (t) is the solution to be determined, a (t,Y (¢)) and b (¢,Y (¢)) are
the given functions, called the drift and diffusion, respectively, and dW () is
the increment of a standard Wiener process. In integral notation, solution
Y (t) can be written as

t t
Y (1) :Y(s)+/a(r,Y(r))dr+/b(r,Y(r))dW (r), @)

where on the right-hand side of (2) the first integral is Riemann and the sec-
ond integral is stochastic one. Moreover, the solution of (1) can be difficult
to determine explicitly because it appears on both, the left- and right-hand
sides of equation (2). As it is possible to see, the main difference between
ordinary differential equations and SDE is determined by the Wiener pro-
cess, W (t), which can be defined as a continuous Gaussian process with
independent increments and the following properties:

W(0)=0, EW )] =0, Var[W(t) =W (s)]=t—s, 0<s<t. (3)

Suppose that interval [s,t] is divided into subintervals (not nessesarily
uniformly) by points &;: s = ¢ty < 1 < ... < t, = t. Then the value of an
integral is defined conventionally to be the limit of a sequence of sums over
the subintervals [¢, t,41], 0 <7 <n — 1, as n tends to infinity. Specifically

t

n-1
/ b(r,Y (0)dW (r) = Tim 3" b(re, Y (r) (W (brs2) = W ()}, ()
s r=0

where 7, € [tr,t,41] and the location of 7, is unimportant. We will use
Ito definition of stochastic integral, which has the martingale property, but
unfortunately does not obey the rules of ordinary calculus. Let U (¢,Y (1))
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be a continuous deterministic scalar function, then Ito’s formula connecting
U(t,Y(t) and U (s,Y (s)) (¢t > s) gives us

t

t
ou  dU 180%U ou
Y =U (: et e+ ——— | d h——
000 =Y @)+ [ (Gl 128 e [19 ),
S S
(5)
where Y’ (¢) is the solution of the SDE (2) and U (¢, Y (t)) is at least twice dif-
ferentiable so that all the integrals in (5) exist. This result can be presented
in Ito’s lemma,

ou ou 1.,8°U
dU = Edt + E‘Y—dY (t) + “Z*b é?fdt’ (6)
where U can be sometimes interpreted as a probability density function.
One of the simplest cases of SDE is the linear Ito stochastic differential
equation
dY (t) = aY (t) + bY (t)dW (t), (7)

where a and b are constants. If we take U = log (Y'), it may be verified from
Ito’s formula (5) that (7) has a stochastic solution

Y (£) = ¥ (0) exp [ (a - -21-1)2) E+ bW (t)J . (8)

So, we have sketched the basic ideas of solving SDE. Notice that very few
specific SDEs have known explicit solutions and hence the task of finding
Y (1) is much more complicated as it seems. One of the possible solutions
of this problem is to identity the process parameters on a basis of observa-
tions and their numerical computation. We wish to develop a method for

estimating the parameters of SDE of type (1) based on the main properties
of SDE and to get a numerical solution.

3. The SDE models examined

We examine SDE of type (1) in the general form, where a and b are
constant parameters to be estimated. Using subscript ¢ to denote time, the
specific equations are

(A) dY; = aYidt + bY;dW,;

(B) dY: = Y (1 - Y;) dt + bY2dWy;

(C) dY; = a¥; (1 - ;) dt + bY,dW;;

(D) dY; = a¥; (1 - Yy) dt + LbY; (1 - V) dW;

(E) dYy =Y, (1 — ;)" dt + Ly2baw,.
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These equations were chosen because they are of the form used frequently
for modeling renewable resource systems. Obtaining point and interval es-
timates of the drift and diffusion parameters of such models is important in
applied work because these estimates provide a tool for testing hypotheses
about the state of the system and the relative importance of stochastic influ-
ences on it. Observed data for stochastic processes are recorded in discrete
time, regardless of whether the system is described better by a continuous
or a discrete model. One advantage of using a continuous model is that,
in principle, its solution can be used for any time interval, without alter-
ing the meaning or interpretation of the model parameters. Estimation of
the SDE parameters requires the solution or an approximation to it. We
concentrate on two methods for finding discrete-time approximations to the
solution of Equations (A)-(E); namely the strong Euler scheme that attains
convergence of order 0.5 (Kloeden et al. (1994), pp. 140-142) and the strong
Taylor scheme that attains convergence of order 1.5 (Kloeden et al. (1994),
pp. 162-163).

4. Parameter estimation using a criterion function based on
the Kolmogorov—Smirnov statistic

The Kolmogorov—Smirnov statistic adapted to a two-sample problem pro-
vides the basis for goodness-of-fit method for SDE parameter estimation.
The two-sample Kolmogorov—-Smirnov goodness-of-fit test is used to compare
the empirical distribution functions of two samples. In the present paper one
of these samples is generated as if observed from a fully-specified SDE and
the other one is generated from the same SDE but under the assumption
that the coefficients are unknown. Parameter estimation in practice requires
one of the samples Y to be observed and the other Y to be generated by the
SDE that is used to model the data-generating process. Let us denote by
Fy ., and Ff/’ ., the empirical distribution functions of ¥ and Y with n and m
sample paths respectively. In this case the Kolmogorov-Smirnov two-sample
test statistic

D =mmax | Fyn (y) = Fy 1 (y) (9)

is the maximum absolute difference between the two empirical distributions.
This statistic can be used to test the (null) hypothesis that the population
distributions are identical and, therefore, both samples have been drawn
from the same population. The two-sample Kolmogorov—-Smirnov statistic
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has an asymptotic null distribution given by
lim P (Mﬂpnng) = KS (D) (10)
n+m

+00
KS(D)=1-2> " (~1)""exp (-252D?).
g=1

where

A large value of D, and therefore a small value of KS (D), indicates that
the null hypothesis is unlikely to be true, whereas small values D support
the null hypothesis. In the present paper we are concerned with replicated
time series data. This provides the opportunity to evaluate the Kolmogorov—
Smirnov statistic for each time period, D,. Because we are dealing with a
stochastic process that we assume to be modeled adequately by an equation
of the general form (1), we must estimate the drift and diffusion parameters
so that the entire time series is taken into account. We do this by analogy
with maximum-likelihood estimation, taking the product of Kolmogorov--
Smirnov statistics computed at each time point as our criterion function.
Using the asymptotic null distribution, this yields
: .
o =]] KS(Dy) — max. (11)
t=to
Given a set of observations or simulated observations giving rise to Fy,, (y),
this criterion function is maximized with respect to the drift and diffusion
parameters of an SDE that is used in the evaluation of Ff/,m ().

5. Empirical results

Estimation of the drift and diffusion parameters of equations (A)~(E) was
conducted using the above criterion functions. Fifty realizations of eleven
“observed” data points (i.e. n = 50, T' = 11) were generated for each model
using the initial value yo = 0.5 and true parameters a = 1.0 and b = 0.5.
The derivative-free simplex method of Nelder and Mead (1965) was then
used to estimate a and b with starting values of @ = 1.3 and b = 0.4, initial
value 3y = 0.1, number of simulated replications m = 50, and time-series
length T = 11. Both, the Euler and Taylor SDE solver schemes, referred
to above, were used. Parameter estimation was carried out 500 times for
each equation and solver scheme. The mean and standard deviation of the
parameter estimates are reported in Table 1. It should be noted that, because
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of the heavy computational burden associated with enumerating K .S(D) in

(10), we used the approximation

which is the asymptotic distribution of the one-sided two-sample test out-

KS (D)~ 1—exp (-2D?)

lined by Gibbons (1985), pp. 130~131.

Table 1. Mean and standard deviation of parameter estimates

Model | Scheme | Mean value | Standard deviation
A Tor| 52000 [ e
Euler %:égig; 22288333

B | Taylor | b=0.5189 sp = 0.0211

O| Tayior| FZ1OER | = 00MT
o r | £20998 | s =00
E | Taylor %:é:ggég iZigfgﬁg
ey R

The results presented in Table 1 reveal a small bias in the estimates of a
and b over the 500 replications of parameter estimation. In all cases, however,
the mean of the point estimates is well within 1.5 standard deviations of the
true value. Interestingly the lower order of convergence of the Euler scheme is
associated with smaller bias and standard deviation estimates for Equations
(A) and (E). This is likely to be a result of the use of intermediate time steps
with the equation solver to improve the SDE simulations.

In practice we can use only approximation of statistics XS (D).In one of
the experiments the maximum value j = 7 were applied when estimating
the parameters of Equation (E). This gave mean and standard deviation of
0.998 and 0.038 for @ and of 0.499 and 0.013 for 3, what means an apparent
reduction in bias, as well as an improvement in precision. On the basis of
these results it seems that there is room for further investigation of the form
of criterion function used for parameter estimation.
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6. Conclusion

Estimation of the parameters of five linear and nonlinear SDE using a cri-
terion function based on Kolmogorov—Smirnov statistic has been examined.
Although the method used is demanding computationally, the results are
satisfactory with respect to both point and interval estimation.
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