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Fitting parametric sets to probability distributions

MEELIS KAARIK AND KALEV PARNA

ABSTRACT. We consider the problem of approximation of distributions
by sets. Given a probability P on a metric space (5,d) and a class A of
subsets of S, find an approximative set A € A that minimizes the mean
discrepancy of a random point X ~ P from the set A:

W(A, P) = /S pld(e, A) P(dz) - min

We are especially interested in the case of parametric approximative sets,
A= {A(O): © € T}, where the aim is to find a value of the parameter
© € T which minimizes

W(©, P) = W(A(®), P) - min.

Current article is an extension of Kasrik and Parna (2003) to the case
whére approximating sets A(©) are unions of k parametric sets of the
same type. We will prove the convergence of optimal values of loss-
functions and the existence of optimal sets in some functional spaces.

1. Introduction

Approximation of distributions by sets and consistency of empirically op-
timal approximations is an old but still developing issue in probability theory
and mathematical statistics.

Classical examples of one-point approximations (mean, median) are well
known and consistency of empirical means is a fundamental fact called the
Law of Large Numbers. Extension of the class of approximations to k-points
sets leads us to k-centres (sometimes called k-means, principal points), the
most studied type of approximative sets during last decades.
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The properties of k-centres are studied in various functional spaces, start-
ing from the case S = R® (Pollard (1981); Zhang and Zhu (1993); Cuesta-
Albertos, Gordaliza and Matran (1997); Graf and Luschgy (2000)) to general
Banach spaces (Cuesta and Matran (1988), (1989); Parna (1990); Lember
and Pédrna (1999)). A systematic overview of the theory of k-centres in
separable metric spaces is given in Lember (1999).

Besides k-centres, some more complex approximations have been inves-
tigated. For instance, approximation of distributions by spheres with fixed
radius in finite-dimensional Euclidean spaces is considered in Kaarik (2000).
A closely related problem (called median ball problem) is studied in Averous
and Meste (1997).

Mathematically, the problem of approximation of distributions by sets can
be formulated as follows. Let P be a probability distribution on a separable
metric space (S,d). Let A C 25 be a class of subsets of S. Our aim is to
find an approximative set A € A that minimizes the mean discrepancy of a
random point X ~ P from the set A:

A,P) = d(z, A))P(d i
W(A,P) = [ pldle, A)P(dz)  min,
where ¢ : R* — R is a nondecreasing discrepancy function and the distance
d(z, A) = inf{d(z,a) : a € A}.

Let W(P) := inf g 4 W (A, P) denote the infimum value of the loss func-
tion.

Definition 1.1. Any set A satisfying W(A, P) = W(P) is called optimal
approzimation for P (shortly, P-optimal).

An approximation A is called e-optimal for P (or, P-e-optimal) if it verifies
W(A,P) < W(P) +e.

Two important questions are:
1) when does an optimal approximating set exist,
2) does a sequence of optimal approximations converge?

The latter question arises when optimal approximative sets have been
found for measures from a sequence {P,} which converges weakly to the
measure P. In this paper our final goal is to give answers to these questions
for the special case of subsets A which are unions of k parametric sets from
the same family. The paper is a follow-up to Kéarik and Pérna (2003), where
the case of a single approximative parametric set was studied.

The paper is organized in the following way. In Section 2 we reveal some
general properties of our loss-functions for an arbitrary class A of approx-
imative sets. Then, in Section 3, we cover the case where approximative
sets are unions of &k elements of a given class A. In practice, this case is of
interest if the class A itself is too “narrow” or “limited” to provide a good
approximation for P. These general properties are exploited in Section 4,
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where the distribution P is being approximated by multiple parametric sets
of the same type (k lines, k circles, etc). The restriction to have all sets of
the same type is used to prevent some technical difficulties. However, we
believe that the main idea will work in the case of sets of different type as
well.

2. Arbitrary class of approximative sets

Here we deduce some properties of the loss-function W (A, P) for an arbi-
trary class of approximative sets.

2.1. Assumptions. Let us introduce some requirements for the discrep-
ancy function ¢ and for the measures P and {P,}.

Al. The discrepancy function @ has following properties: ¢ : Rt —
R* is continuous, nondecreasing, ¢(0) = 0, and it has Ag-property, i.e.
IA>0: p(22) < Ap(z), Vz > 0. We also assume that the inequality
lim,_s00 () =: (o0) > 0 holds, since the approximation problem has no
meaning with p(z) = 0.

A2. For some zy € S we have S o(d(z,z0))P(dz) < oo.

A3. The weak convergence P, = P holds.

A4. For some zy € S the function ©(d(z,z0)) is uniformly integrable
with respect to {P,}.

Comments. The requirements Al are weak enough to be satisfied by
any power function. Assumption A2 guarantees the finiteness of the loss-
function. Conditions A3 and A4 are satisfied if {Pn} is a sequence of em-
pirical measures corresponding to P, for example, The weak convergence of
empirical measures is shown to take place with probability 1 in Varadarajan
(1958), and the property A4 for these measures is verified in Pérna (1988).

2.2. General properties of the loss-function. Throughout this section
we assume that Al-A4 are fulfilled and the space S is a separable metric
space. The class of approximative sets A4 c 25 is assumed to be arbitrary
class satisfying W (4, P) < ¢(00) for some A € A. This is a very natural
assumption, since in the case W (A, P) = p(o0) for each A € A,any A e A
is optimal. We will derive some general properties of the loss-function, the
main result being the convergence of infimum values of the loss-function,
W(P,) — W (P), provided that P, = P.

Under the assumptions A1-A4 the following assertions are valid.

Lemma 2.1. Let 4 be q non-empty subset of a separable metric space
S. Then for each R > 0 we have

a) [o(d(z, A) + R)P(dz) < oo,
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b) the function (d(z, A) + R) is uniformly integrable with respect to
{P.}, i.e.

lim sup/ w(d(z,A) + R)P,(dz) = 0,
(d(z,A)+R)

a-300 g

c) the convergence

[ etite, 4) + R)Pu(do) - [ eldle, 4)+ R)P(as)
takes place.
Proof. For the proof of Lemma 2.1 see, e.g. Kéaérik and Pérna (2003). O

By taking R = 0 in the statement c¢), one immediately has that for each
fixed subset A € A the convergence W (A, P,,) — W (A, P) takes place.

Lemma 2.2. The inequality limsup, W(P,) < W(P) holds.

Proof. For every fixed A € Awehave W(P,) < W(A,P,) and W(A, P,) —
W(A,P). Let € > 0 be arbitrary and let A € A satisfy W(A,P) <
W(P) + . Then W(P,) < W(A,P,) —» W(4,P) < W(P) + ¢ which
implies limsup,, W (F,) < W(P) +¢. Since € > 0 was arbitrary, the lemma,
is proved. O

Lemma 2.3. The inequality W(P) < (0c0) holds.

Proof. By the assumption outlined in the beginning of the present sub-
section, there exists A € A such that W (A, P) < ¢(c0). Therefore W (P) <
W(A, P) < p(o0). O

Lemma 2.4. For any class A C 25 and any closed ball B(zg,R) C S

the uniform convergence

lim sup |W(A4,P,)—-W(AP)=0 (1)
n AcA
ANB(zo,R)£0

takes place.

Proof. Denote fa(z) = ¢(d(z, A)) and @ = {fa|A € A, ANB(zg, R) # 0}.
Then the condition (1) is equivalent to

tim sup | [ fa(0)Palda) ~ [ fa@)P(dz)| = .

T fa€d

Some sufficient conditions for this uniform convergence to hold are given
by Ranga Rao (1962): there exists g(z) such that |[fa(z)| < g{(z) for all
falz) e @andz € 5, P, = P, [gdP, — [gdP < oo, and the class & is
equicontinuous. We shall check that these conditions are fulfilled.
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Define the function g(z) := (d(z, 7o) + R), then for every A satisfying
AN B(zg, R) # 0 the inequalities

fa(z) = o(d(z, 4) < @(d(z, 20) + d(0, A)) < ¢(d(z, 20) + R) = g(x)

hold. The convergence P, = P takes place by assumption A3 and Lemma
2.1 ¢) ensures [ gdP, — [ gdP < oo.

To prove the equicontinuity of ®, we follow the ideas used in Parna (1986),
Lemma 1.

Let z; € Sand e > 0 be arbitrary. Since the discrepancy function ( is con-
tinuous, it is uniformly continuous in the closed interval I := [0, d(z;, z0) +
R], i.e. for any € > 0 there exists such § = 6(e,z1) that |p(s) — p(t)] < €
holds for every s € I and ¢ > 0 where |s —t| < 4. Choose s = d(z;, A) and
t = d(z, A) and let d(z1,z3) < §. We can see that s € ] (from one side
s = d(z1, A) < d(z1, 30) + d(x0, A)) < d(z1,20) + R and from the other side
s > 0).

Furthermore, by the triangle inequality d(z1,4) < d(z1,29) + d(z2, A),
we have |s — ¢| = |d(z1, 4) — d(z2, A)| < d(z1,29) < 4.

The fluctuation of any f4 € ® can now be estimated as follows:

[fa(21) = fa(@a)l = lp(d(z1, 4)) = o(d(z2, A))]| = |o(s) ~ w(t)] <,

which completes the proof of equicontinuity of the class ®. O

Lemma 2.5. Let S be g separable metric space, and let ¢ satisfy 0 <
€ < @(oc0) — W(P). Then there emists a ball B(zo,R) C S that eventually
intersects

a) every e-minimizing sequence {Bn} for the loss-function W (-, P), i.e.
every sequence {B,} satisfying lim sup, W (B, P) < W(P) +¢;
b) every sequence of P, -c-optimal approzimations.

Proof. To prove a) assume, on contrary, that no such ball exists. Then, for
any z € 5, there exists a subsequence {B,} such that the distance d(z, By)
will tend to infinity, and by the continuity of the discrepancy function we
get limys @(d(z, By) = ¢(00).

We now integrate this equality and use the Fatou lemma and Lemma 2.9

p(o0) = /limlinfgo(d(:c,Bn:))P(dm) < lim,inf/tp(d(:zz,Bn/))P(da;)
n n
= liminf W(By, P) < limsup W (B, P) < W(P) +¢ < o(00)
n' n

- a contradiction.
The proof of b) is similar (cf., e.g. Proposition 3.3.1 in Lember (1999)). O

Proposition 2.1. If the assumptions AI-A4 are fulfilled and S is a
separable metric space, then the convergence W(P,) = W(P) takes place.

27
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Proof. Choose an arbitrary sequence €, J 0 and consider a sequence of B,-
en-optimal approximations { A5 }. By Lemma 2.5 b), this sequence intersects
with a ball B(zg, R) C S, and Lemma 2.4 implies

lim |W(ASr, Py) — W (A", P)| = 0. (2)
n
Now the difference between optimal values can be estimated by

W(P)-W(F) < WAy, P)—W(P)

T

< WA, P)—W(AZR P +éen. (3)

If n — oo, then, due to (2), the difference between the two first terms in
(3) tends to zero and we obtain that liminf, W(P,) > W(P). From the
other side, Lemma 2.2 states that limsup, W(P,) < W(P). Hence we have
lim,, W (B) = W(B,). O

Lemma 2.6. Assume that A1-A4 hold. Let S be a separable metric
space and let € satisfy 0 < e < p(oo) — W(P). Then every sequence of P,-e-
optimal approzimations {A%} is e-minimizing for the loss-function W (-, P).

Proof. Choose an arbitrary 0 < & < ¢(o0) — W(P) and estimate
W (A7, P)-W(P)|

< W(A4, P) = WAL, Bo)| + [W(AL, Po) — W(P)|

< W(AL P) = WAL, Bo))l + [W(B) - W(P)| +e.

Lemmas 2.4 and 2.5 b) imply that the first term tends to zero, and by
Proposition 2.1 also the second term tends to zero, which implies

limsup |W (4%, P) — W(P)| <e.
n

3. Approximation with multiple sets

As before, we assume that A1-A4 are fulfilled and the space S is a separa-
ble metric space. Let A be a class of subsets of S. In this section we consider
approximation of distributions by multiple sets of type A, i.e. approximative
sets A are unions of k elements of A, A = A'U...U A* with all A* € A (the
number £ is fixed). Let Ay be the class of all such unions.

Since the results obtained in Section 2 were proved for an arbitrary class
of approximative sets, they are valid for this special case as well.

Multiple approximative sets are of interest each time when the class A
itself is too narrow to allow a reasonably good fit. Then finite unions of sets
taken from A can offer better opportunities for approximation.
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In what follows, we assume that the class A covers all the space S or at
least the support of P: P(Ugead) = 1.

Let Wi (P) denote the optimal value of the loss-function for the distribu-
tion P over the class 4. Then by Proposition 2.1 we have the convergence
Wi(P,) = Wi(P), provided that the assumptions Al-A4 are fulfilled and
S is a separable metric space,

In order to analyze further properties based on the special structure of the
approximative sets, and to rule out some trivial cases, we need to assume
that the inequalities W, (P) < Wi_1(P) < ... < Wy(P) hold. Lemma 3.1
gives us an equivalent, but more convenient condition.

Lemma 3.1. The inequalities Wi-1(P) > 0 and Wi(P) < Wy_1(P) <
.. < W1(P) are equivalent.

Proof. The same statement has been proved for the case of k-centre-
approximation as Proposition 1.2.4 in Lember (1999). We can use main
ideas of that proof in our case as well, the details are omitted. |

We will add a new assumption A5 to our special case of multiple sets:
A5. The inequality Wi_1(P) > 0 holds.

Notice that in the case k = 1 this assumption reduces to Wy (P) = ¢p(c0) >
0, which is one of the general assumptions for the discrepancy function .

Lemma 8.2.  Suppose that 0 < ¢ < Wi-1(P) — Wi(P). Then there
exists a ball B(zo, M), which, for every e-minimizing sequence {Ag (k)} for
W (-, P), eventually intersects each component set.

Proof. Consider an arbitrary e-minimizing sequence {Ag (k)} for W (., P)
and let A7 (k) = AL U...UAE. Lemma 2.5 a) says that there exists a ball
that intersects at least with one component-set, say Al. We proceed by
induction: assume that there exists a ball that intersects with ! component-
sets (1 <1< k), and show that then there exists a ball that intersects [ + 1
component-sets as well.

Since all approximative sets are of the same type, we can always ar-
range indices into a suitable order, so we can say that by assumption a
ball B(zg, R;) intersects the sets AL .o AL no> ng. Let us assume, on
contrary, that for each radius R and index n1 > ng there exists an in-
dex s > ny such that the ball B (z0, 1) does not intersect with any of the

component-sets At ... A¥ Then there exists a subsequence {n'}, which
satisfies d(wo,Aﬁjl) = 00,...,d(zy, AF,) — co.

Denote By, := AL U... U AL. Tt is obvious that

Pld(z, B)) — p(d(s, 4%, (k))) 0.
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Now define the functions h, () := o(d(z, A% (k))) —e(d(z, By)), h(z) := 0
and g(z) := @(d(z, 7o) + R), where R € R is chosen to satisfy R > R; and
o(d(z,z9) + R) >0, forall z€S.

We will now make use of the following result (Lember (1999), Corollary
3.2.2). If a sequence {fn} satisfies P{zn = 2 = fo(zn) = f(2)} =1 and
if the functions fn and f are bounded by a continuous function g, satisfying
g(z) > 0, for all = € S, and the convergences P, = P and [ gdP, —
[ gdP < oo hold, then [ fndP, — [ fdP.

In our case, for every = € S, we have that

ha(z) < @(d(z, A7 (K))) < p(d(z,20) + Ri) < p(d(z,20) + R) = g(z).
Then the assumption A3 and Lemma 2.1 ¢) imply

/g(:z:)Pn(dac) = /(p(d(:l:,:l;o) + R)P,(dz) —
[ otdtz,20) + RIP(s) = [ gla)P(da).

Therefore the assumptions for Corollary 3.2.2 in Lember (1999) are fulfilled
and the convergence [ h,dP, — [hdP or, equivalently W (A% (k), P) —
W (Bn, P,) — 0, takes place.

Using now the fact that A% (k) is an e-minimizing sequence, Lemma 2.4
leads us to

Wi(P)+e > limsup W (45 (k), P) = limsup W (A (k), Pr)
n n
= limsup W(By, P,) > limsup W;(P,) = W;(P)
n n
> Wg-1(P) > Wi(P) +e¢

- a contradiction. Lemma is proved.

4. Multiple parametric approximation

In this section, the general results obtained above are applied to the par-
ticular case of approximative sets — the class of parametric sets.

4.1. Multiple parametric sets. Let P be a probability distribution on
a separable metric space (S,d). Let A = {A(@) : ©® € T} C 2% be a
parameterized class of subsets of S. The parameter space T is assumed
to be a metric space with metrics pr. To approximate the distribution P
we use unions of k parametric sets from the class A. We denote the k-
tuples of values of © by O(k) = (©1,...,0%) € T*. Bach O(k) produces
an approximative set A(@')U...U A(O!) =: A(©(k)) and the class of all
approximative sets will be denoted by Ay, = {A(O(k)) : O(k) € T*¥}. We
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assume that the product space T* is endowed with a metrics g. We are
interested in finding such values of ©(k) that minimize

WO(), P) = W(A®K), P) = | pld(w, AO))P(ds) - min |
S O(k)eT*

If ©*(k) is optimal, then corresponding set A(©*(k)) is called optimal
approzimation for P.

Let Wi (P) denote the infimum value of the loss-function. A value of O(k)
is called e-optimal for P if it verifies W(O(k), P) < Wi(P) +e&. We denote
the set of all optimal values of O(k) by U(P) and the set of all €-optimal
©(k) by U*(P). Similar notation is used when P is replaced by P,.

We next recall and modify some properties of a “good” parameterization,

first introduced in Kaarik and Pirna (2003). Let h(A, B) be the Hausdorff
distance between sets A and B.

PROPERTY A. The mapping A : T — A is locally uniformly continuous,
Le. for any ¢ > 0 and ball B(zg, M) C S there exists § > 0 such that
or(©1,03) < § implies h(A1,A3) < € provided that intersections A; =
A(©;) N B(zo, M) £ 0, i = 1,2.

PROPERTY B. Let us have a subset U C T*. Ifthere exist o € Sand M >

0 such that for all ©(k) = (01, .. ,©F) € U we have A(©7) N B(zo, M) # 0,
J=1,...,k, then the subset U is bounded.

Remark. It is easy to show that the property B above for parameters in 7%

is equivalent to the property C2 in Kaarik and Pirna (2003) for parameters
in T' (describing one approximative component).

4.2. The existence and convergence of optimal parameters. Assume

that A1-A5 are fulfilled, and the spaces S and 7' (and therefore T%
separable metric spaces.

Lemma 4.1. Suppose that 0 < ¢ < Wi—1(P) — Wi(P). If the parame-
terization has Property B, then every e-manimizing sequence {0, (k)} c T*
for the loss-function W(~,P) 18 bounded,

) are

Proof. Lemma 3.2 and Property B imply the result. |

Corollary 4.1. If ¢ < Wi—1(P) — Wi(P) and the parameterization has
Property B, then every sequence of P, -e-optimal parameters is bounded.

Proof. The result follows from lemmas 2.6 and 4.1. |

To prove the convergence of optimal parameters, we need to add more
restrictions to spaces S and T, since it can be shown easily that in separable
metric spaces the optimal approximations might not exist. Therefore we will
assume that the spaces S and T (and therefore T%) are finite-dimensional

28




110 MEELIS KAARIK AND KALEV PARNA

normed spaces. We will prove the existence of optimal parameters and con-
vergence of P,-optimal parameters by first proving the convergence of Py;-e-
optimal parameters.

Proposition 4.1. Assume that the assumptions A1-A5 are fulfilled, the
parameterization has properties A and B, and S and T are finite-dimensional
normed spaces. If 0 < e < Wy_1(P)—Wi(P), then the distance between any
sequence of Pn-e-optimal parameters and the set of P-e-optimal parameters
converges to zero, i.e. the convergence supge cye(p,) 0(0%, U (P)) — 0 takes
place.

Proof. We make use of the following property: the convergence
0(05,U(P)) — 0 holds if every subsequence {©%,} has a (sub)subsequence
{©7+} which satisfies o(©%,,,U(P)) — 0. Consider an arbitrary sequence
{07} and its subsequence {©%,}. By Corollary 4.1, the sequence {©8,} is
bounded. For S being finite-dimensional this sequence is relatively compact,
which means there must exist a converging subsequence 0%, -0 eT. De-
note fn(z) == @(d(z, A(©%))) and f(z) := p(d(z, A(©))). To get the conver-
gence of corresponding values of loss-functions, we will again use Corollary
3.2.2 from Lember (1999), given in the proof of Lemma 3.2 above. Let us
check that the assumptions of this statement are fulfilled.

First notice that according to Lemma 2.5 b) and by the properties of
distance d, for each z € S and Py-e-optimal sequence {©%} we can con-
struct a ball B(zg, M) such that the equalities d(z, A(©%)) = d(z, B,) and
d(z, A(©) = d(z,B) hold, eventually, for B, = A(©%) N B(zg, M) and
B = A(©) N B(wg, M).

Now consider a sequence z,» — =, and estimate:

|d(zn, A(O71)) — d(z, A(O)]

< d(@nn, A(O7n)) — d(z, A(O7))] + d(z, A(O%)) — d(z, A(O)]
< d(.’EnH,.’IJ) + |d(.TC,BnH) - d(:lI,B)l < d(mnu,x) + h(Bnu,B).

By the convergence z,+ — z, the first term tends to zero, and using the
fact that ©%, — O, and Property A, also the second term tends to zero.
Therefore we get d(znr, A(©%,)) — d(z, A(©)) and the continuity of ¢ im-
plies fru(zpn) — f(2). Since the elements of the sequence {©%} are bounded,
they are contained in some ball B(6g, R) C T*. Choose R big enough to
satisfy also © C B(©g, R). The functions f, and f are bounded by the con-
tinuous function g of the form g(z) := ¢(d(z, z0) + R), and g is integrable
by Lemma 2.1 a) — hence all the requirements of Corollary 3.2.2 of Lem-
ber (1999) are met and we have the convergence [ old(z, A(©E4)))dPan —
[ e(d(z, A(©)))dP.

Now the loss-function can be estimated:

W(Py) +e > W(OL, Pu)— / o(d(z, A(B%,)))dPyr
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= [ eld(z, A©)dP =W (0, P) (4)

From the other side, Lemma 2.2 gives lim,, W (Py) < limsup, W (B,) <
W (P), which together with inequality (4) implies W(©, P) < W(P)+¢ and
hence © € U (P).

Since the sequence and subsequence were arbitrary, the convergence

SUP@e cue(P,) 0(O5, U (P)) — 0 takes place. The proof is complete. O

Proposition 4.2. If the assumptions A1-A5 are fulfilled and the pa-
rameterization has Property B, then for finite-dimensional normed spaces S
and T optimal approzimations corresponding to distributions P and P, do
exist, i.e. the sets U(P) and U(P,) are non-empty.

Proof. We will only prove that I (P) is not empty, the remaining is similar.
Let {©,} be an arbitrary minimizing sequence for the loss-function W{(.,P).
By Lemma 4.1 this sequence is bounded and therefore relatively compact.

This means, there exists a converging subsequence ©,; — © € T*, From the
other side,

W(®,P) =limW(0,/,P) = Wi(P),

n/
which implies © € U(P). O
Proposition 4.3.  If the assumptions A1-A5 are fulfilled and the pa-
rameterization has properties A and B, then for finite-dimensional normed
spaces S and T the distance between any sequence of P, -optimal parameters
and the class of P-optimal parameters converges to zero, i.e. the convergence

sup  9(0n,U(P)) =0
Onel(Py,)

takes place.

Proof. By Proposition 4.2 a Fr-optimal @, exists and U/(P) # §. Now
the result follows by applying Proposition 4.1 with ¢ = 0. O
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