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About the data designs for estimation of genetic
parameters in animal breeding studies

TANEL KAART

ABSTRACT. The simple random one-way linear model and ANOVA esti-
mators of random effects, variance components and intraclass correlation
are studied. A related sire model in animal genetic studies is considered.
The study is focused on the effect of data design on the accuracy of
estimates. The patterns of sampling variances of estimates depending
on the genetic determination of the trait and data design are examined

and optimal designs for different genetic parameters are compared in
balanced case.

1. Introduction

Estimation of genetic determination of economically important traits in
animal breeding has more than 80 years been based on the comparison of
progeny records of different sires. Mixed linear model with random sire effect
and fixed environmental effects, known as the sire model, is the main tool
implemented for this. Nowadays, due to the great progress in data collection,
designs and models in last decades, the simple sire model is applied only in
the pilot studies about previously not examined traits. As these studies are
usually small, the estimates are not very accurate. But as these studies
are also carefully planned, the maximum possible accuracy of estimates is
guaranteed by appropriate data design.

Being aware of this, it is surprising that even for the simplest models the
number of articles studying data designs for estimation of different popula-
tion genetic parameters is quite limited and can be dated back to the 1960s

and 1970s. The accuracy of estimates alongside the optimal designs is not
examined, as a rule.
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In this article basic genetic parameters usually estimated from sire model
are studied. These are the effects of sires, interpreted as half of sires additive
genetic values (breeding values) or transmitting abilities of sires, the vari-
ance component associated with sire effects and the heritability coefficient.
The last one is calculated as four times the intraclass correlation (ratio of
sires variance component to the total variance). The mean square errors of
best linear predictions of sire effects, the variance of estimates of variance
components and heritability and the probability to get the heritability es-
timates that are outside the parameter space, i.e. negative or greater than
one, are examined. The formulas and propositions collected from different
resources or derived by the author are presented without proofs. The pat-
terns of examined accuracy parameters are found by simulation studies and
optimum designs are calculated by exact formulas or by simulations.

Despite that the study is focused only on balanced designs and on es-
timates obtained by analysis of variance, the tendencies apply also to the
unbalanced case and to other variance components estimation methods, as
shortly indicated in the last section.

2. Mathematical framework
2.1. Model and estimates. Consider the mixed linear model
Yij = P+ ui + e, (1)
or in matrix notation
y=1lyu+Zu+e,

where y is the N x 1 vector of observed values, i is the only fixed effect in

the model (mean), Iy = (1 ... 1)% and Z =1, ® 1, are known design
matrices of order N x 1 and N x a respectively, associating fixed and random
effects withy, o' = (u; ... uq )' is a vector of random sire effects, e is a

N x 1 vector of random residuals, and traditionally the number of levels in
random factor (number of sires) is marked as a and the number of objects
(daughters) per level (sire) 7 is n in the one way model.
The expectation and the variance-covariance structure are represented as
E(y) =p, Var(u)=02l,, Var(e)=02Iy, Cov(u,e)=0
and
Var(Y) =I,® (U'an + UZIn) .
Also it holds that
MS(u) [MS(e)

2 2 2
no; + o og

~ Lg—1,N—a (2)

where M S(u) and M S(e) indicate the mean squares from the ANOVA table.

.
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If we assume variance components o2 and o2 known, the best linear un-
biased prediction (BLUP) of u is

0=y ZV "y ~ Inj),

or component-wise

n
Uy = 02 +n02 ; Yij — i) , where i = Zy,/N

The ANOVA estimators of variance components o2 and ¢? are obtained by
equating the mean squares with their expected values and are expressed as

- -2- [MS(u) — MS(e)]
and

= MS(e).

In genetic studies the intraclass correlation coefficient, which measures the
magnitude of random genetic effects, is calculated as the ratio of variances,
and estimated additionally:

62 MS(u)— MS(e) 3)
62+62 MS(u)+(n—1)MS(e) "

In sire model 1 the intraclass correlation equals with one quarter of heri-
tability:

p=

402

2 u

W= 0% + o2 =4
u €

2.2. Accuracy of estimates. The mean square errors of BLUP(u) and
BLUP(u;) are

U?L (aaz + norf;)

MSE(i1) =
SE(#) 02+ nol
and
2¢, 2 2
MSE(a) = 209% T 1%). (@
a(o2 +no2)
respectively, and the sampling variance of &3 is
2 2y2 4
Var(62) = 2 [(nos +07) LY ‘
n? a—1 a(n — 1)

All these results are well known and can be found in many textbooks (Searle
et al, 1992; Khuri et al, 1998).
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For the sampling variance of the estimator of the intraclass correlation
coefficient there does not exist exact formula even in the balanced case.
Usually an approximate formula is used:

V201 2
Var(p) ~ AL “;((:_11))(‘2 _(_11) P (5)

derived by Osborne and Paterson (1952) using a first-order Taylor-series
expansion of equality 3. Zerbe and Goldgar (1980) derived an alternative
formula based on the F-ratio 2. Their derivation is based on the approxi-
mation

Var[f (w)] = [0f (w) /8w])” Var(w) ,
which gave the following final formula:
2[a(n — 1)]*(an — 3) (6)
n?(a—1)a(n — 1) — 2]2[a(n — 1) — 4]

Visscher (1998) examined different expressions of the sampling variances of
intraclass correlations and concluded that formula 5 gives quite precise esti-
mate to the sampling variance of p, except for a small number of sires and/or
a large heritability coeflicient. Then the sampling variance was underesti-
mated. As Var(p) calculated by 6 is always bigger than the corresponding
value based on 5, then for large heritability values and/or small number of
sires the approximation of Zerbe and Goldgar seems to be appropriate. In
the following analysis only Osborne, Paterson formula 5 is applied because
the optimal designs are the same for both approximations of Var(p).

A supplementary undesirable property of ANOVA estimates of variance
components is that the estimates can fall outside the parameter space. The
probability of negative variance component estimate (which is equivalent
to the negative heritability estimate) is reviewed in Searle et al (1992) and
Khuri et al (1998) and is expressed as

P(h? < 0) =P(Fypn-1y, 01 > 1 +n7),

Var(p) = [1+ (n— 1)p*(1 - p%)

where T = o2 / o2 and F(4-1),a(n-1) denotes random variable with F-distri-
bution with a-1 and a(n-1) degrees of freedom. Similarly the probability to
get the heritability estimate from sire model bigger than one is derived by
the author (Kaart, 1997):

P(h* > 1) =P(Fyn_1), a1 < (n/3+ 1)1 +n7)).

2.3. Optimal designs. It is natural to suppose for balanced data that
both, number of sires a and number of daughters per sire n are bigger than
one. Then it is obvious that MSE({1) is minimized when the number of
groups is minimal, ¢ = 2, and the number of observations per group is
maximal, n = N/2.
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The optimal number of daughters per sire minimizing MSE(;) is found
by the author considering n as a continuous argument and studying the
derivatives of equation 4, after what it is seen that

—1++1+ N7
T

= (7)
In a similar way the number of daughters per sire n which minimizes Var(62)
has been derived already by Hammersley in 1948 (Hammersley, 1948; Khuri,
2000):

N(r+1)+1
= 8
"T T Nr+2 (®)
It can be shown that the design optimal for Var(62) is also optimal for

Var(p).

To illustrate the derived criteria of optimality, to find out the optimal data
design at the point of inadmissible heritability estimates and to examine the
accuracy of estimates besides the optimal designs, the patterns of MSE(;),
Var(62), Var(h?) and P(h2 < 0) + P(h% > 1) were found and both integer
and continuous optimum numbers of daughters per sire were calculated by
formulas 7 and 8 or by simulations. Without loss of generality the error
variance was taken equal to one. The patterns were drawn for the data
size N = 360, a reasonable number for small practical experiments and also
giving a possibility to be divide data into groups with equal integer size in
different ways.

3. Results

In Figure 1 the pattern of MSE(4;), in Figure 2 the pattern of Var(52),
in Figure 3 the expanded pattern of Var(h?) and in Figure 4 the pattern of
P(h? < 0) +P(h% > 1) are presented.

For all studied parameters the accuracy of estimates is stronger influenced
by the number of sires than the number of daughters per sire. The precise
estimation of variance components and their functions (heritability) requires
bigger number of groups compared to the precise prediction of realised values
of random effects. In all cases the deficiency of sires increases the inaccu-
racy of estimates when the effect of sires, measured via heritability, is large.
In estimating variance components a small number of sires may cause dra-
matic loss of accuracy (Figures 2 and 3). For small heritability values the
estimates are more accurate and do not depend so much on the design. As
the heritability of trait increases the accuracy of estimates decrease and the
optimum number of sires increase. The probability of heritability estimates
negative or greater than one depends not so much on the number of sires
than the real population value of heritability ~ if the real parameter value
is close to zero then it is obvious that the probability of getting negative
estimate increases.
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FIcURE 1. Pattern of MSE(d;) and optimal number of
daughters per sire (vertical arrows for integers and dotted line
for real numbers) in different true heritability values when

N =360 and 0% = 1.

FIGURE 2. Pattern of Var(62) and optimal number of daugh-
ters per sire (vertical arrows for integers and dotted line for
continuous numbers) in different true heritability values when
N =360 and 02 = 1.
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FIGURE 3. Pattern of Var(h?) and optimal number of daugh-
ters per sire (vertical arrows for integers and dotted line
for real numbers) in different true heritability values when
N =360 and o2 = 1.

Pre<0 U re>1)

FIGURE 4. Pattern of probabilities to get heritability esti-
mates negative or greater than one and optimal number of
daughters per sire in different true heritability values when
N =360 and o2 = 1.




120 TANEL KAART

4. Discussion and conclusions

The considered tendencies apply also in much bigger datasets. For exam-
ple, the probability to get heritability estimates that are outside the param-
eter space, come close to zero everywhere except the regions near to zero or
one.

It appears, that the usual assumption of animal breeders to increase the
number of daughters per sire for increasing the accuracy of estimates is not
the best way. Surely, increasing number of daughters per sire will increase
the accuracy of estimates, but increasing the number of sires has a bigger
effect. This misconception is shortly also noted by Searle et al (1992, p 68-
69). Studies of unbalanced designs (not presented here) indicated that in
some cases even adding small number of sires with only one daughter will
decrease the variability of estimates.

Khuri et al (1998, p 56-61) have shown that Var(62) and P(62 < 0) is
minimized when the dataset is balanced compared with unbalanced designs.
The same effect can be shown also for MSE(;), for Var(h?) and for P(h% >
1).

For unbalanced datasets the criteria of optimal design are not clear. Esti-
mation of variance components studies (which can be relied on the estimation
of heritability coefficient) concluded that the design with the closest num-
ber of classes (sires) should be used to get the optimum (Anderson, Crump,
1967). Norell (2001) showed that this suggestion does not always yield the
minimum of Var(62). Moreover, Shen et al (1996) studied maximum like-
lihood estimates of amount of quantitative genetic parameters expressed as

ratio of functions of variance components and recognized that for some func-
tions the balanced designs do not always give the most efficient estimates.

In this article it was assumed for MSE(d;) that variance components (or
their ratio or heritability) were already known. This is the common as-
sumption when the animals are ranked by their genetic values and was also
suggested by Koots and Gibson (1996), who examined different studies and
concluded that the variability of heritability estimates is much bigger than
could be expected by the theory. If the genetic determination of studied
trait is not known, the variance components need to be estimated first, after
what these estimates are used to calculate so-called second stage predic-
tors or estimated BLUPs (EBLUP) of random effects. Then, as shown by

Kackar, Harville (1984) and Das et al (2004), the expression of MSE(4;)
contains additional term depending on the sampling variance of estimates of

variance components. The studies about data, designs in this situation are
yet unavailable.
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