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Pricing European-style options under jump
diffusion processes with stochastic volatility:
applications of Fourier transform

RAUL KANGRO, KALEV PARNA AND ARTUR SEPP

ApsTrRACT. We develop a general methodology for pricing European-
style options under various stochastic processes via the Fourier trans-
form. We generalize previous work in this field and present two ap-
proaches for solving the pricing problem: the characteristic formula
which is an extension of Lewis (2001) work, and the Black-Scholes-style
formula which is an extension and generalization of previous work by
Heston (1993) and Bates (1996). We show how to apply our formu-
las for two types of asset price dynamics: 1) stochastic volatility models
with price jumps at a stochastic jump intensity rate, 2) stochastic volatil-
ity models with price and volatility jumps. Convergence properties of
Fourier integrals arising from both approaches are studied.

1. Introduction

The ubiquitous Black-Scholes (1973) model assumes that the option un-
derlying asset follows a geometric Brownian motion with drift and diffu-
sion parameters. In theory, the diffusion parameter, which is usually called
volatility, is constant. In practice, all option markets exhibit a volatility
smile phenomenon which means that options with different maturities and
strikes have different implied Black-Scholes volatility. As a result, accu-
rate pricing and hedging of options is hard to achieve within the standard
Black-Scholes model. Accordingly, it is necessary to generalize asset price
dynamics and develop appropriate pricing methods.

Here, we apply Fourier inversion methods to work out “closed-form” for-
mulas for option pricing under jump-diffusions with stochastic volatility. We
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can employ the Fourier transform in two basic ways. Firstly, we can rep-
resent option value as a Fourier integral and invert it. This method was
introduced by Lewis (2001). We refer to this approach as the characteristic
formula. Secondly, we can invert the characteristic functions to compute the
risk-neutral probabilities associated with the option value. This method is
known due to Heston (1993). We generalize this approach and call it the
Black~Scholes-style formula.

2. Problem formulation

To cope with market imperfections, a number of alternative asset price dy-
namics have been proposed in the literature. Heston (1993) in his influential
work employed the square root process for modeling the variance of the asset
price, and showed how to apply the Fourier transform to solve the pricing
problem for vanilla options. Bates (1996) added to the Heston’s stochas-
tic volatility model log-normal price jumps governed by a Poisson process
with a constant intensity rate. Fang (2000) extended the Bates’ model by
introducing a stochastic intensity rate. Duffie (2000) added to the Heston’s
model price and volatility jumps.

It makes sense to generalize all these models and to develop a general
pricing methodology for all above models. We propose the following model
for the asset price dynamics, which is a generalization of many previous
models, for this purpose.

Asset price dynamics. We assume that the asset price dynamics are
given under the risk-neutral measure QQ by

dS(t)/S(t) = (r—d— AEt)m)dt + /V(£)dW?(t) + (e — 1)dN(¢t),
S5(0) = S;

dv(t) = k(0 — V(&))dt + e/VO)AW? (£) + JYAN*(8), V(0) = V;
dA(t) = ka(0x — (1))t + ex/AB)AWA (), A(0) = A

where for the asset price dynamics we have: S(t) is the asset price, V(¢) is
the variance of asset return, r is the risk-free (domestic) interest rate, d is
the continuous dividend yield (foreign interest rate), W*(¢t) and W¥(t) are
correlated Wiener processes with constant correlation p, N(¢) is a Poisson
process with a stochastic intensity A(¢), J is a random jump size in the
logarithm of the asset price with the probability density function (PDF)
w(J). We assume that E(f(J)) < oo for a smooth function f. We set
m=E (eJ - 1) to make the discounted asset process a martingale.

For the variance dynamics we have: & is the mean-reverting rate, 8 is the
long-term mean variance, ¢ is the volatility of volatility, N"(¢) is a Poisson
process with a constant intensity AV and Jv (JY > 0) is random jump size
in variance with the PDF 4(J?).
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For the jump intensity dynamics we have: k) is the mean-reverting rate,
0 is the long-term mean rate, ¢ is the volatility of jump rate intensity, a
Wiener process W*(¢) is independent of W*(t) and W?(t). We also assume
that jump processes are independent of Wiener processes.

In our work, we will solve the pricing problem for European-style claims
under general dynamics (1). Therefore, solutions for particular models can
be obtained from our solution as particular cases. Our results are valid under
the assumption of the constant variance V, the constant intensity ), and the
absence of the jump processes.

Using the martingale pricing, we can represent option value as the integral
of a discounted probability density times the payoff function and employ
Feynman-Kac theorem [for example, Duffie et al (2000)] to derive the partial
integro-differential equation (PIDE) satisfied by the value of an option.

Now we make a change of variables from S to z = InS and from ¢ to
7 =T —t, where T is the option expiration time. Applying Feynman-Kac
theorem for the prototype price dynamics (1), we obtain that the value of a
European-style claim f(z,V, A, 7) satisfies the following PIDE

1 1 1
—frHr—d= gV =dm)fs + 5V faw + 600 =V)fv + EEZvav + peV fav

0= N+ g4 [ e+ ) — @)

Y /0 TV 4 ) - BT = o,
flz,V,A,0) = g(e*, K)

(2)

where subscripts indicate the partial derivatives, and g is the payoff function.
The most widely used derivative contracts are European calls and puts.
The payoff for a call or put option at time 7 = 0 is given by

g9(e®, K) = max{yle® — K],0} 3)

where the contract parameters are strike K and type o, with ¢ = +1 for a
call and ¢ = —1 for a put.

3. Solution of the pricing problem

3.1. Preliminaries. In our research we apply Fourier transform to solve
PIDE (2) and similar problems. The forward Fourier transform of f (z) is
given by

o0

f(2) = FIf@))(z) = vp. / ¢ ()d, (4)

o 00
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where v.p. stands for the principal value of integral, and the inverse Fourier
transform is given by

. 1 tv-4co L

f@) = F @) = g v [ =iz, (5
™ iv—00

where ¢ = /=1 and z € C, z = u + vi with real part v = Rz € R and

imaginary part v = Sz € R, is the transform variable. For typical option

payoffs integral (4) generally exists only if Sz is restricted to a strip o <

Sz < 8. We will refer to this strip as the strip of regularity.

To implement the Fourier transform, we need

1) to find an analytic representation of the Fourier transform;

2) to invert the result with the z-plain integration (5) keeping Sz in an
appropriate strip of regularity.

Integral (5) can be computed using the standard methods of numerical
integration.

It makes sense to derive a unified formula for pricing both calls and puts.
We consider variable z(t) = In S(t). Under the martingale measure Q, z(t)
satisfies

ER[x(T)] = z(t) + (r — d)(T — t).

It is more convenient to consider the option with the bounded payoff
function g(z) = min{e®, K}. Let f(z,V, )\ t) denote the value function of
this option.

Using the martingale pricing, we can represent the value of a call or put
F(z,t) as

F(z(t),t) = E%e™ " max{p[e”™) — K], 0}]
_ Tty [1 ;@E@[e”m] + %BE@[K] ~ E%min{e”™, K}]| (g
AL Sty ST AW)

Feynman-Kac theorem implies that the option value function f(z,V, A, 1)
satisfies PIDE (2) with the initial condition
g(e®, K) = min{e”, K }.
As a result, we need to solve PIDE (2) for the function f(z,V,\, ) and
price calls and puts using formula (6).
For our subsequent analysis, we need to find the transformed initial con-
dition g(z) = Flmin{e®, K}](z). A direct calculation yields
- Kiz—H
9(z) = 2 iz (7)
provided that 0 < Sz < 1. We will denote this strip of regularity as the
payoff strip Sj.
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3.2. The characteristic formula. Now we consider a powerful approach
for solving a general pricing problem. We assume that the characteristic
function corresponding to the price dynamics is given in closed-form. The
characteristic function of z(7T') = In §(T) is defined by

o0

$r(z) = EQ[e=(D)] = / €Ty () da (8)
-

where wr(z) is the risk-neutral density of the logarithmic price (7).

Now we state a modified version of Theorem 3.2 in Lewis (2001), which is
very important for option pricing under general stochastic processes. Lewis
proposed this formula for option pricing under Lévy processes; we apply his
result for general stochastic processes.

Theorem 3.1 (The characteristic formula). We assume that z(T) has
analytic characteristic function ¢r(z) with the strip of reqularity S, = {z:
a < §z < B}. Nest we assume that e f(z) € LY(R) where v is located in
the payoff strip Sy with transform f(z), Sz € 5.

Then, if Sp = Sy N S, is not empty, the option value is given by

e——r(T»-t)

U400 R
flat) = / br(—2) f(2)dz (9)

2 1U—00
where z € Sp = Sy N S,.

Proof. Using risk-neutral pricing, we have

F@(t) =B [0 p(a(1))] @ o T-0p2 [-1— / e e‘i”(T)f(z)dz}

27 Jiy—co

e~T(T'-t)  pivtoo i .
= [ R

27 v—00
8) e~—r(T-t) iv-+oo N
= B — / ¢r(—2)f(z)dz.

The exchange of integration order is allowed by the Fubini theorem. By
assumption ¢r(—z) exists if z € S,. In our case, z is already restricted to
z € S;. Accordingly, the whole integrand exists if z € Sp = SrnNS,. O

3.3. The Black—Scholes-style formula. Now we present another pricing
formula which we call the Black-Scholes-style formula. This formula is a
generalization of previous work by Heston (1993), Bates (1996) and others.
A similar result was first considered by Lewis (2001) for pricing under Lévy

processes. Here, we consider it in more details and apply for pricing under
general processes.

Theorem 3.2 (The Black-Scholes-style formula). We assume that the
characteristic function ¢r(z) = EQ[e***(1)] corresponding to the market model
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is analytic and bounded in the strip 0 < Sz < 1. Two characteristics,
¢i(u) (j = 1,2), u € R, are given by ¢y (u) = e~ SO-=DT=8) g (y — )
and ¢o(u) = ¢r(u). The cumulative distribution functions (CDF), I1;, in
the variable y = In K of the log-spot price z(T) = In S(T') are given by

oy 11 o0 dy(u)e“i“l‘
Lily) =5+ W/O éR[ ™ du (10)
and variables Pj(y) are defined by
1—
Pilp) = —% +lL;(y). (1)

Then the current value of a European-style contingent claim, F(S,t), that
pays off max{p[Sr — K],0}, where @ is the binary variable (p = +1 for a
call and @ = —1 for a put), at time of the expiration date T' has the form

F(S,1) = [e"d(T"t)SPl(go) - e~T<T"t>sz(<p)} . (12)

Proof. We assume that ¢p(—z) has the strip of regularity 0 < $z < 1.
First, we re-write the transform-based integral (9) as

‘ e——r(T~t) w400 K 1Hiz
fmin(s,x) (S(t)) = BT /iv_oo ¢T(*Z)mdz
—r(T-t)K w00 -Kz'z U400 : To12
e R e I
27 1V—00 z 100 z—=1
e—r(T—t)K

— S (R(D) + R(B)).

As usually in complex analysis, in order to evaluate I; we employ a contour
integral over the contour given by 6 parametric curves: I'; : z = u, u € (¢, R)
with g, R>0;Ty:2=R-+1b, b€ (0,v); T3:z2=u+1iv, ue (R,—R); I'y:
z=—R+ib, b€ (v,0);Ts:2=1u, u€ (—R,—q); T¢: 2z =qe?, 6 € (m,0).
As the integrand is analytic on this contour, Cauchy’s theorem implies that

6
F(z)dz = 0.
2,

Evaluating corresponding integrals, taking limits ¢ — 0 and R — oo, and
changing variable © — —u, we obtain that

R(I) = —7 — /00 R [¢T(U)E—Ig:ﬁ:| du. (14)

—0 u
Again, to evaluate Is we employ a contour integral over the contour given
by 6 parametric curves: I'1 : z =u +14, v € (¢, R) with g, R > 0; Ty : 2 =
R+ib, be (1,140); T3 : z = u+i(l+v), u € (R,—R); T4 : 2 =—-R+ib, b€
(v,1); Ts:z=u+1, u€ (—R,—q); Ts: 2z =1+ qe??, § € (0,n). Evaluating
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corresponding integrals, taking limits ¢ — 0 and R — oo, changing variable
u — u — 1, and noting that ¢r(—i) = Sel™" N7~ we obtain that

(r—d)(T—t) o T —du
?R(Ia)=56 e (-vr—/ %[gsT(u—z')i{{u—-} du). (15)

-0

Substituting (14) and (15) into (13), using relationship (6) and introducing
terms II;, we obtain the Black-Scholes-style formula (12). O

3.4. Analysis of pricing formulas. Thus, the pricing problem for Euro-
pean calls and puts is reduced to the evaluation of Fourier integrals, which
has to be done numerically.

We consider the proposed formulas in more details. The Black-Scholes
formula (12) includes integrals which are already expressed in terms of the
real-valued transform parameter k.

Now, we consider the characteristic approach. Given an explicit expression
for the moment generating function (MGF) G(®,z,V,\,7), the complex-
valued characteristic function is given by ¢r(z) = G(iz) and, similarly,
¢r(—z) = G(~iz).

For an option with payoff function g(z) = min{e®, K}, the integral (9)
can be represented as

S, Vo T) = —

oo —
21{ / ezzanG( 1z, T, Vu Aa T) dz. (16)
T Ji

v—co 2% — iz
It is more convenient to evaluate integral (16) along a straight line v = 1 /2

in the complex z-plain parallel to the real axis. Substituting z = u+3 /2, u €
R, into (16), we obtain that

00 o=(—iutl/2) MK (s 4 L 2 VA,
f(:z;,V,A,T)z—Ii/ : 2( el
oo U +1/4

o du. (17)

For brevity, we introduce
: 1
Qlu,z, VA7) = e CHHINEG (—ju + 5.0, VA7), (18)
It can be shown that integrand in (17) is a symmetric function, i.e.
Q(~u) = Q(u), so that for option pricing we need to evaluate the following

integral
K [~ _ [Quz,V,\T1)

Explicit expressions of characteristic functions and Q(u, z,V,\, 1) for par-
ticular market dynamics can be found in Sepp (2003).

Given the value of f(z,V,),7), values of European calls and puts are
calculated using formula (6). Thus, the pricing problem is reduced to a one-
dimensional integration along the real axis. It can be shown that integrals
(17) and (19) are uniformly convergent so that the partial derivatives of the

33
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option value can be computed by differentiating the integrand and inverting
the Fourier transform. The same is true for the Black-Scholes-style formula.

As a result, we have obtained two distinct formulas (12) and (19) for
solving the pricing problem. The Fourier integral can be computed by means
of standard procedures of numerical integration (see, for example, Press et
al (1992)). We adopted the ten-point Gaussian quadrature routine for this
purpose.

We have extensively studied convergence properties of the integrals arising
from both approaches. We found that using the Black—Scholes-style formula
one can compute the option price about three times faster than using the
transform-based approach. This property does not depend on a specific
market model. The advantage of characteristic integrals is that they can be
computed by virtue of the Fast Fourier Transform (FFT), which can only be
implemented for non-singular integrands. The FF'T allows for simultaneous
calculation of option values for a given level of strikes. This can be very useful
for calibrating a model to the implied volatility surface. Implementation of
the FFT for option pricing is presented by Carr and Madan (1999).

3.5. Solution to the moment generating function. For implement-
ing the pricing formulas, we need to find explicit expression for the char-
acteristic function. Here we illustrate our approach using the square root
processes given by the dynamics (1). Other stochastic processes can be an-
alyzed in a similar manner. Let us recall the following relationship between
the characteristic function ¢(u) and MGF G(®): ¢(u) = G(iu). We ap-
ply the standard considerations employed by Heston (1993) and consider
the MGF G(®,z,V, A\, 7) associated with the log of the terminal asset price
z(r) = InS(7) under the measure Q:

G(®,z,V, A7) = EQ[e?()] = ¢ "TEQ[e7Pe(7)], (20)

Accordingly, MGF G(®,z,V, A, 7) can be interpreted as a contingent claim
that pays off e"™t%% at time 7.

For the process (1), Feynman-Kac theorem implies that G(®,z,V, A, 7)
solves

1 1 1
=Gr+(r—d =35V = Am)Gy + 5V Gag + k(6 — V)Gv + §sQVGW
o0

+ peV Gy + kp(0) — NGy + %siAGM + A/ [G(z + J) — Glw(J)dJ =0,

-~
G(®,z,V,\,0) = 2.
(21)

We can solve PIDE (21) in closed-form by the method of indetermined
coefficients using a guess G = eANTBIIVHC(MA Thus, the solution has an

ti
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affine-form and, accordingly, these models are called affine (jump-)diffusions.
The full solution is specified by

Proposition 3.1. The solution to PIDE (21) is given by

G(2,2,V,\, 1) =exp{z® + (r — d)7® + A(®, T)
+ B(®,7)V + C(®,7) + D(®, 7))}

(22)

_(fr
A(®, 1) :-—gg Yy1 +2In ?:——j%’bjL

; :
B(®,7) = —(® — @2)m%,
C(@,»r)—_—-%fié X47 +2In K:i;%ii ,
D(@,7) = 2A(<D)X_1;;::_E,

e =F(k = pe®) +(, (= /(k—ped)? +£2(D — 32),
Xt ::FH)\+§3 52 K’§~2E§\A(@)a

x

o0
M) = [ Pw(J)dS —1~m®, m= / e’ w(J)dJ — 1.
—o0

—00

A complete derivation of the above formula can be found in Sepp (2003).

In the above formula, A(®) is the so-called jump transform. A few distri-
butions have been proposed for modeling price jumps.

Merton (1976) proposed jump-diffusions where the logarithm of jump size
is normally distributed with mean v and variance §2:

1 _g=w?
w(J):me 28?7,

A simple calculation yields that for log-normal price-jumps we have

A(D) = e ®H0° /2 _ 1 _ (e H0/2 ), (23)

Kou (2002) proposed an asymmetric double exponential distribution for
price-jumps:

1 1 1 Ly
w(J) = p— ”“Jl{Jzo}“F(J;];e"d 1is<o

ym

where 1 > 7, > 0, ng > 0 are means of positive and negative jumps, respec-
tively; p, ¢ 2 0, p+¢=1. pand ¢ represent the probabilities of positive and
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negative jumps. The requirement 7, < 1 is needed to ensure that E[e’] < oo
and E[S] < oco. For double-exponential jumps we have
p q b q
A2) 1—®ny - 1+ ®ny ! ®(1~nu * 1+mnq
provided that —1/n; < Sz < 1/n,.

Once the explicit expression for MGF has been obtained, we can use it to
implement the pricing formulas. Explicit expressions for the characteristic
formula and the Black-Scholes-style formula are given in Sepp (2003).

Now we consider the simultaneous jumps model (SVSJ) proposed by
Duffie, Pan and Singleton (2000) with simultaneous correlated jumps in price
and variance. The marginal distribution of the jump size in variance is expo-
nential with mean n. Conditional distribution on a realization JV of a jump
size in variance, a jump in logarithmic asset price is normally distributed
with mean v + p;J¥ and variance 6%

1) (24)

T e exp(2), T~ N+ 28,

The expression for the MGF corresponding jump-diffusion with price and
volatility jumps is derived in a similar manner. We omit details to obtain

Proposition 3.2. The MGF corresponding to the SVSJ process is given
by
G(D,2,V, A7) = exp{Oa+ (r—d)rd+ A(@, )+ B(,7)V + A(®,7)} (25)

where

v+ 142

e 15252 {1/
A(D =\ o= 1 vd+:6°P R
(®,7) 1—pﬂ7+ T4+ A" ¢~L+77UT

2nU YL —nU (T
G AT ik [1“ A )D !

U=®-0% M =k-pe®, L=1-pm®, and A(®,7), B(®,7), ¢+, ( are
defined in formula (22).

4. Conclusions

In this research, we examined a number of jump-diffusion processes for
the asset price dynamics. We considered pricing problem of European-style
options and derived explicit formulas for European call and put option values
using two approaches: the characteristic formula and the Black—Scholes-style
formula. We found that the Black-Scholes-style formula yields the option
value considerably faster than the characteristic formula. However, the char-
acteristic formula can be computed using the Fast Fourier Transform. Our
empirical results with DAX options data show that, to achieve a close fit to
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the vanilla market, one needs to incorporate both components into pricing
models — the stochastic volatility and jumps.
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