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The projection-based multivariate density
estimation

MINDAUGAS KAVALIAUSKAS, RIMANTAS RUDZKIS AND TOMAS RUZGAS

ABSTRACT. The paper discusses methods of estimation of the multi-
variate density function by using statistical estimates of the densities
of the univariate sample projections. The Gaussian mixture model is
analyzed. Density parameterization is applied, parameters calculation
methods based on the parameters of projections are proposed. A simu-
lation study is carried out and the simulation results are discussed.

1. Introduction

Both parametric and non-parametric statistical estimation of a density
function becomes more and more problematic with the growth of dimen-
sionality. Authors of this article will analyze the Gaussian mixture model,
one of the most popular data models in practice. Usage of projected data
to reduce the dimensionality is not a new idea. It was used by Friedman et
al. (1984), for example. Usually the projection-pursuit approach has been
followed. Authors of this paper use another projection-based approach to
the multivariate density estimation.

Let X € R? be an observed random vector with unknown density function
f(z) and X(1),..., X (n) form an independent sample of X. Let us denote
the density of univariate projection X, = 7 X by fr(z). The one-to-one
correspondence exists

fe{f, TeRY (1)

and it is natural to discuss the methods of estimating f using statistical
estimates of f,. Does this approach to the estimation of a multivariate
density have any sense in practice? Yes, it has.
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Let us consider a mixture of the multivariate Gaussian distributions as an
example. In this case the density function is

q
=" piple, Mi, Rs) < £(2,0), 2)
1=1

where ¢ is the number of clusters, ¢ is the multivariate normal density and ¢
is the vector of all model parameters. Thus, we must estimate parameter 8
to obtain the parametric estimate of the density f. The mazimum likelihood
estimate (MLE) is asymptotically optimal in the Gaussian mixture model
and it is natural to use it for the parameter estimation. Even if the dimension
d and the number of clusters ¢ are small, the dimension of parameter 0 is
large (for example, if d = 10 and ¢ = 5 then dim 6 = 329) and the calculation
of MLE is difficult. The recurrent ezpectation mazimization (EM) algorithm
could be used to calculate approximation of MLE but it converges to OyrE
only if initial estimate is close enough to 0pr5. So, calculation of parameter
f and corresponding multivariate density f is problematic, if dimension is
large.

The calculation of density and the corresponding parameter in one-dimen-
sional case is much easier. Therefore we suggest the projection-based
approach. We are going to make many umvarlate projections of our sample
and calculate estimates fT as well as f , instead of estimating f by some
complicated classical method.

2. Employing the inversion formula

Let us employ the inversion formula

f(@) = e / e (8 dt, (1) = Be' X (3)

RY
By denoting u = ||t||, 7 = t/||f|| we obtain after a change of variables

f(z) = (271r)d / ds/e“i“'flzip(uv")ud”l dt. (4)
mifirll=1 0

The first integral is a surface integral over the unit sphere.
Let us denote 1, (1) = Ee*X7. Then,

P(ur) = ¢r(u) and P(ur) = Pr(w). (5)
Having selected the set T' of projection directions and using (4) and (5), we
obtain the estimate

Y _ﬂ_ T —iur & d—1_—hu
f(w)-—cardeejT / =7 2 (wud e du. (6)
T 0
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One can see the additional multiplier e™#* under the integral. This multi-
plier performs the additional smoothing of the estimate fwith the Gaussian
kernel. The simulation study showed that this multiplier is necessary and
it decreases significantly error of the estimate. Here h is a small number,
which is selected so that f (1,) is non-negative.

The formula (6) could be used with different estimates of the univariate
characteristic functions {b\T(u) We analyzed the case of the Gaussian mixture

model. In this case, the projected data also satisfy the Gaussian mixture
model

NfTiE ‘9 ZPZTQDxszaUIT) (7)
1=1
We used the parametric estimates of corresponding univariate characteristic
functions, which depend on estimates of the parameters of projected data
q
(u) =Y Bi exp(iuf, — 57,u%). (8)
=1
The number of parameters in each direction is much smaller than in the
multivariate case and estimation of it is not so problematic. For example,
if ¢ = 5, then dim@, = 14. The same time we had dim @ = 329 in the
multwanate case. In the case of the Gaussian mixture model, the integral
in (6) can be constructively calculated.

3. The least squares approach for the projected parameters

We also propose another projection-based method for estimating the mul-
tivariate density function. This method is based on the least squares ap-
proach. Its properties are different from those based on the inversion for-
mula. The inversion formula method can be used for both, parametric and
non-parametric estimates of univariate characteristic functions, but it always
gives a non-parametric multivariate density (even if Gaussian mixture model
is satisfied). This makes it impossible to use such an estimator for data clas-
sification. The result of the method based on the least squares approach
gives a parametric expression of the density estimate. This is an advantage
of the method.

So, let X, and thereby X, satisfy the Gaussian mixture model. Having
a set of projection directions 7' = {7‘} and the estimates of the parameters
of the projected density p;, 7; , and & az -» We can calculate the parameter of
the multivariate density for each cluster 1 =1,...,q, using the least squares
method. Because of p; , = p;, ms > = 7'm; and UZ-QJ = 7'R;T, we can define
the estimates from the requirements:

Biz ) (B — bir)? — min, (9)

T
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Mgy (1 — i) — min, (10)
T

D %) ~2 2

R;: Z (T Ry — ai17> —> min. (11)
T

The calculation of the estimates p;, m; and ﬁ, can be done using common
technique, however the definition of R; this way does not ensure that it will
be positive definite. We suggest the following to ensure R; to be positive
definite. Let us define

~ d -~

R Y AAT, (12)
where ;1\1 is a lower triangular matrix. The matrix f/l\z can be calculated by
using the recurrent procedure

-~ X >k 2
A 3O (T, AW Z 31.2’7) — min. (13)

(3
T

can be calculated from the condition

A\Eo) : Z (TlA‘gﬂ)A‘;(O)T — 312,7)2 ——3 min, (14)

T

The initial value A\EO)

under assumption that 21(0) is diagonal. Diagonality ensures the equation to

be linear and }1\50) can be calculated using common technique.

This projection-based multivariate density estimation method gives a para-
metric estimate of the density, but it still has a few drawbacks. One of them
is that in each direction 7 the number of estimated clusters must be equal to
g. In real situation, in some projections the projected clusters overlap and
clusterization procedure for univariate data gives smaller number of clusters.
Then the proposed least squares algorithm should not be used. The other
drawback is that we still relay on some clusterization procedure which esti-
mates parameters of the Gaussian mixture. The next section describes the
method without these drawbacks.

4. The least squares approach for the projected densities

Let us minimize the sum of squared distance between densities:
~ ~ 2 ]
Y fT(~,0)~—fT(~)112 s min, (15)
T

where f,(-,0) is defined by (7) and 7+(*) is some density estimate of projected
data. This requirement can be rewritten as

7. Z/(fz(m,e)—zmm,e)ﬁ(x)) dz —> min, (16)
TR
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where the last component ﬁ?(m) is omitted because it does not depend on
the variable 6. We can use the parametric estimate of f,(-) or we can replace

the integral of the second component by sum over projected data. In this
case we obtain from (16)

g Z/ff(x, ) dx — %ZfT(T'Xj,O) — min. (17)

Let us divide vector of all unknown model parameters 6 into three parts
P
u |, (18)

A4

where p is vector of probabilities, u is vector of all mean parameters and
v is vector of all covariance parameters of clusters. Because integral of the
product of the Gaussian densities remains the Gaussian density

/ oz, m1,02) p(z, mo,0d) dz = p(my —my, 0, 02 +02),  (19)
R

equation (17) has the following form

0: Q@) = Zwi(P)%(ua v) — min. (20)

1

Here ¢ is the Gaussian density function and i is the index-vector of sum
over all projection directions 7, clusters 4,7 = 1,...,¢q and sample points
[ =1,...,n. Notice, that

_ _Gi = ((u—a)Te)? . B =T
(pi._.—\//_g—_i—exp( 2,3i)7 where alm((u a;) Cl) » Bi=biv. (21)

Here a4, b; and ¢; are vectors depending on the sample and the set of pro-
jection directions. If we have fixed the sample and directions of projections,
these vectors are constants.

Let us calculate derivatives of the function Q(8):

dp; i i
_J% = -——Eag = A;j(u — a;), where 4; = —%i“ [CiCiT] ; (22)
dps; o 1 ’

— . —_— e —— P di — Bi s 23
dv ¥ <2/6i2 Zﬁi) g v )
where d; = Pic b, B; Bi% [bibiT] .

- 2B T 2p?
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Thus,
)
=) wi(p)Ai(u - o) = Cu—e, (24)
du -
3

where C' = Zwi(p)Ai, e = Zwi(P)Aiai,
d
= wio)ds— Br) =g~ Dv, (25)

where D = Zwi(p)Bi, g= Zwi(p)di.

Here ai, b, ¢, di, e and g are vectors and A;, By, C and D are matrices.
Since

~ . dQ ~ dQ - dQ ~ .
f: Q(f) — min = ?.—%(0) = (, E%(O) =0, :i%(g) =0, (26)
we can define a recurrent algorithm for calculation of 6:
ult ) = =g g(a)), v(E+D = p=1(g(R) g(g()), (27)
Value of p at each step of the algorithm is calculated using common technique

because %g is a linear function of parameter p.

5. Results

The suggested methods were studied by using Monte-Carlo method. We
will present some simulation results here. All simulations are done assuming
the Gaussian mixture model. We used 5-dimensional data sets in our study,
i.e. d = 5. 'The sample size was n = 500. The number of projection
directions card T was up to 20000. We used various numbers of clusters to
vary the number of parameters of the model. The methods were compared
using error

e =13 (Fwr - 1)’ &
i=1

The following estimates and pseudo-estimates were used for comparison:

° fVMLE — the pseudo-estimate calculated using the multivariate EM
algorithm with initial theoretical value of the parameter 6 (i.e., 6(0) =
). In this case EM converges to MLE.

~

o fprp — the multivariate parametric estimate calculated using the
multivariate EM algorithm. Ideas about selection of initial parame-
ter value and other details can be found in Rudzkis and Radavi¢ius
(1995).

e fryv — the projection-based pseudo-estimate calculated by (6) from
MLE pseudo-estimates 6, prrg in each direction.
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e fmv — the estimate calculated by formula (6) from real estimates of
6; in each direction.

e fLsp - the projection-based pseudo-estimate calculated using the
parametric least squares approach (see, (9)-(14)) from MLE pseudo-

estimates 0. ar.r in each direction.

Simulation study showed that fML g and f[ Nv give similar errors, but if the
number of clusters is 5 or more (number of parameters is large enough in
this case) the projection-based ]"}NV pseudo-estimate is slightly better.

The estimate f}NV is also better that fEM by up to 10%, if the number
of parameters is large.

The projection-based estimate ]7,;3 p gives very good results. It gives up to
20% smaller error than fy,; g, if the number of parameters is large. But this
parametric least squares estimation method has one drawback. The number
of estimated clusters must be the same in all directions and also clusters
must be numbered in the same order in all directions. This drawback is very
difficult to overcome in a real situation because of overlapping of clusters.
Therefore we were not able to get good estimates based on parametric least
squares approach, but only using pseudo-estimate which uses theoretical
value of projected density parameters as initial point for calculating MLE,

The method based on the least squares approach for projected densities
is currently under study.

Conclusion. The projection-based estimates give similar error as classi-
cal methods if the number of parameters is small. If the number of parame-
ters is large, projection-based estimates are better because projection to an
one-dimensional space reduces the number of parameters very much. In the
Gaussian mixture model the projection-based method can give smaller error
than MLE. This is because MLE is only asymptotically effective estimate.
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