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Density expansions for correlations and
eigenvalues of the covariance matrix

TONU KOLLO AND ANNE SELART

ABSTRACT. In the paper explicit approximation formulae for the sample
correlation coefficient and eigenvalues of the sample covariance matrix
are found. The approximations are based on univariate and multivariate
normal and skew normal distributions. A simulation experiment has
been carried out where the empirical distributions are compared with
different approximations.

1. Introduction

Density expansions have become one of the main tools when approxi-
mating distributions of complicated statistics in the small sample situation.
The theory is well developed in the univariate case (see Field & Ronchetti
(1990) or Kolassa (1994), for example). Besides normal approximations
several other approaches have been worked out that are based on non-
symmetric densities like chi-square approximation (Hall, 1983) or gamma-
approximation (Gerber (1979), for instance). In the multivariate case most
of the existing results are based on the multivariate normal distribution
(Barndorff-Nielsen & Cox (1989), Skovgaard (1986), Traat (1986)). So far
the density expansions based on the non-symmetric densities are not fre-
quent. We can refer here only to Tan (1979), (1980) and Kollo & von Rosen
(1995) for Wishart approximations and Gupta & Kollo (2003) for the skew
normal density expansions. In this paper results of Gupta & Kollo (2003)
are developed and applied in two special cases: for eigenvalues of the sam-
ple covariance matrix and for an element of the sample correlation matrix.
It is known that empirical distributions of these statistics are skewed and
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156 TONU KOLLO AND ANNE SELART

therefore it would be natural to use also a skewed distribution for the ap-
proximation. In our case the multivariate skew normal density is used in
this role. The obtained skew normal approximations are compared with the
corresponding empirical distributions and with the usual Edgeworth type
expansions which are based on normal distribution. Both univariate and
multivariate approximations are considered. The used formulae are based
on a general relation between two density functions presented in Kollo &
von Rosen (1998).

The structure of the paper is the following. In Section 2 basic notation and
notions are presented and in Section 3 the necessary results on multivariate
skew normal distribution are given. In Section 4 different approximations for
eigenvalues of the sample covariance matrix and for an element of the sample
correlation matrix are found and compared with the empirical distributions
found from the simulation experiment. In Appendix the first three cumulants
of the sample correlation matrix have been derived.

2. Basic notions

In the following bold capital letters X, Y, Z stand for random vectors
and lower-case bold letters x, y, z for their realizations. Lower-case letters
t, u, v,... are used for arbitrary constant vectors, and constant matrices
are denoted by capital letters 4, B, C, .... Notation A stands for the
transposed matrix A. If X is a continuous random p-vector then the density
function of X is denoted by fx(x), for X ~ Np(p,X) the density function is
¢p (X; H, Z) 4

Let X be a continuous random p-vector. The characteristic function ¢x (t)
of X is defined as the expectation:

wx(t) = Eexp(i t'X) = / eittxfx(x)dx, t € RP,
Rr
and the cumulant function ¥x (t):
Px(t) = 1n ox(t).

Moments mg(X) of the random vector X are defined as the derivatives
1 d*px(t)

X)= &—122 =1,2,...
mk( ) ik dtk t=07 k y 4y ’
and central moments 7, (X) as
1 d*ox_px(t)
mp(X) = - —r——"t k=1,2,....
mk( ) ik dtk t=07 ) 4y
Cumulants ¢ (X) are defined as the derivatives
1 d*yx (t)
Ck(X):Zk"‘——(‘i—é‘]g-“ ,k:l,2,....

t=0
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DENSITY EXPANSIONS FOR CORRELATIONS 157
For derivation of cumulants we need the notion of matrix derivative. If the
elements of an r x s matrix ¥ are functions of a P X ¢ matrix X the matrix

day
derivative of Y by X is a pg x rs partitioned matrix X which is defined
by the following equality:

% = é;g‘——fvectY, (2.2)
where
A, o 9 0 0 J \*

Higher order matrix derivatives are defined recursively:

d*y d (dk‘“lY)

dX* ~ dXx

d Xk~1

k
In the following text the derivative ;i X}; is also denoted by Y*)(X). For

the matrix derivative and related matrix algebra (commutation matrix K,
vec-operator etc.), see Magnus & Neudecker (1999) or Kollo (1991)

3. Multivariate skew normal distribution

The skew normal distribution is an extension of the normal distribution.
The symmetry of the normal distribution is distorted with one extra param-
eter called the shape parameter. In the case of a scalar random variable the
sign of the shape parameter indicates whether the heavy tail is in direction
of negative or positive values. Shape parameter value 0 corresponds to the
normal distribution. The scalar version of the skew normal distribution was
first introduced by Azzalini (1985) and generalized to the multivariate case
in Azzalini & Dalla Valle (1996) and Azzalini & Capitanio (1999). We shall
follow Gupta & Kollo (2003) in the presentation of the multivariate skew
normal distribution.

Random p-vector Z is said to have multivariate skew normal distribution
with parameters p, ¥ and a, if the density function of Z is of the form

fz(2) = 2¢p(2; p, £)0(a(z — ), z € RP,

where ¢,(z; 1, 2) is the density function of the normal distribution Np(p, X,
®(-) is the distribution function of the standard normal distribution N (0, 1)
and p, o are constant p-vectors.

The constant vector p : px1 is called the location parameter and «c : px1 is
called the shape parameter. If the distribution of Z - pX1is skew normal with
parameters u, ¥ and a, we use the following notation: Z ~ SNp(p, 2, ).
If the location parameter p = 0 then instead SN,(0,3, ) the notation
SNy(Z, @) is used.

40




158 TONU KOLLO AND ANNE SELART

Skew normal distributions share several good properties with normal dis-
tributions. For example, the marginal distributions of a skew normal vector
are skew normal. Cumulants of skew normal and normal distributions are
also similar. As skew normal distributions have one additional parameter,
the cumulants have additional terms comparing to cumulants of a normal
distribution as can be seen from the following table (Gupta & Kollo, 2003).

Table 1: Cumulants of the normal and skew normal distributions

7~ 5N, 0,5 a) X~ 5
1(Z) = o+ ;?‘T-u (X) =
() =5 - 2o ea(X) =
e3(Z) = -72; (% _ 1) o (1)1? e3(X) = 0

In Table 1 we use notation

Yo
Vi+alyTa

The derivatives of the skew normal and the normal density functions have
again some similarities. Both of them can be expressed through the den-
sity function itself and multivariate Hermite polynomials. The multivariate
Hermite polynomial of order & is defined by the equality

)k ¢P ( E)

Hk(x;uaz) = ( ¢p( _)*

where X ~ N,(u,X) and d),(,k) (x; p, ) stands for the k-th derivative of
Np(p, X) density function. The expressions of a first three multivariate Her-
mite polynomials are of the following form (Kollo, 1991, p. 141):

Hi(z; 1, %) = 7Yz — p);

Hy(z;p,2) =27z — p)(z— )T~ =571

Hy(z; 1, 8) = 57z — p)((z — p)'S1)®* - 57z — p) vec ‘57!
Sl e@-pir Tt -z -piv e sl

From Gupta & Kollo (2003) we get the expressions of the first derivatives
of a skew normal density. Let Z ~ SNg(u,2,a). Then the first three

de;
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derivatives of the density function fz(z) are of the form:

a‘z
£ = |-mns) + a2 0,
1) = [Hz(z; )
_ Hatz) (aH}(z; p, L) — ahy(atz)at + Hi(z; 5)al) }f (2);
(I)(CttZ) ix 11\Z; L, 1 1\2; [t Z 3
tZ
(@) = [» Hy(z; 2, T) + g@%l) (arvec *Ha(z; 11, ) + Hy(z; 1, %) ® &
+ &' ® Hy(z; 1, T) + ahy(alz)(af @ of) (3.1)

+ by (o'z)[aH (2 1, 3) ® o
(5 1, D)o ® o) + et © He (s s, z)])} fa(2),

where h;(-) are univariate and H;(z; u, ) multivariate Hermite polynomials,
and ¢, @ are the density and distribution functions of N (0, 1)

4. Expansions for eigenvalues and correlations

A general relation between two density functions is given in the paper
Kollo & von Rosen (1998) as Corollary 3.1. An unknown density is approxi-
mated by a formal density expansion which includes cumulants of unknown
density and cumulants and derivatives of a known density function.

We are going to approximate first the density function of the statistic

Yi = v/n(d; - 6;),

where d; is the i-th eigenvalue of the population covariance matrix & and
d; is the 7-th eigenvalue of a sample covariance matrix S. From simulation
experiments it is known that empirical distribution of this statistic is skewed.
If the sample is from the normal population Ny(p, %), then the cumulants

of ¥; can be expressed as follows (Siotani, Hayakawa & Fujikoshi (1985),
p. 454):
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where

5L 6ok Po528}
a; = s b= b 4.1

RO AR @)
Set ¢ = 1, then ¥ = Y] is determined by the largest eigenvalues of the

population and the sample covariance matrices.
Our approximations will be based on skew normal and normal distribu-
tions. Skew normal distribution can be used for approximation if we consider
the shape parameter o dependent on the sample size n in the following way

a=— (4.2)

where a* = O(1). In this case the terms in derivatives of a skew normal
density function fz are of diminishing order (Gupta & Kollo, 2003)

(z) = O(1) + O(n7);
$2(z) = O(1) + O(n~7) + O(n™Y);

Bz) = 0(1) + O(n~2) + O(n~Y) + On~3/2)

and further
Bz)=01) +o(1), k>4

In the expansions we shall exclude later on these terms of fg ) (1=1,2,3)
which are of higher order.
From expression (4.2) we get that a = O(n”?li) and

1
— = (1),
V14 atEa (1)

Thus the cumulants of Z ~ SN, (u, 2, &) can be expressed as

1 2 Yo 1
Cl(Z):M‘f“\‘/—“: - :N""“—Al(z);
VT )1+ Lartnar vn
12 Xa*a*s 1
Z) =Y ——— —————— =%, — — A5 (Z);
c2(2) nw 1-{—%(1*’5204* n 2(2);
1 (2 /4 Yot (orty)®? 1
c3(Z) = —54/ = ("‘“1) ( ) 7 = —5A3(Z),
ni VAT

2 n2
(l + %a*tZa*>

where A;(Z), A2(Z) and A3(Z) are of order O(1). From here we get the
order of the cumulants: ¢;(Z) = O(1) + O(n”%), e(Z) = O(1) + O(n™1)
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(&4

and c3(Z) = O(n"%). By Gupta & Kollo (2003)

ck(Z) = O(n~%), k>4

From the text above it can be concluded that in expansions the terms
which include differences of cumulants and derivatives of fz are of dimin-
ishing order and the expansion converges if the term which includes the
difference of the second cumulants equals 0. The similar convergence holds
if we use normal density fx instead of skew normal. Then c2(X) = O(1)
and ¢, (X) =0 if k > 3.

We are going to examine closer four expansions. The first two are based
on Theorem 4.1 and the other two are based on Theorem 4.2 from article

Kollo & von Rosen (1998). These two theorems are presented jointly in the
following statement.

Theorem. Let Y be a random p-vector and let X be a random r-vector,

p < r. Let DX be a non-singular matriz with different eigenvalues A; >
Ag > ... > Ap.

(i) Let DY be non-singular and let (DY)% be any square root of DY so that
(DY)2(DY)? = DY. Then

fy(yo) = |DX|?|DY|"% (27) 307
1

X {fx(xo) — Evect(Ptc?,(Y)P®2 — c3(X)) vec f)(g') (xq) + r3} ,

where xg = Plyo ~ PLEY + EX, P = (DY)"iV4, V = (v1,...,v,) is an
T X p matriz, with columns being the first p eigenvalue-normed etgenvectors
(vivi = X\;) of DX, and r3 denotes the remainder term.
(ii) Let ma(Y) be non-singular and let (mo (Y))% be any square root of ms(Y)
so that (mz(Y))%(mg(Y))% =mo(Y). If EX = 0, then

Fx(y0) = |DX|2|my(Y)|" 7 (2m) 3C-P)

{ eloo) — BY Prce 100

(=23

[vec !(Ples(Y)P®? — e3(X))] vec f)(g)(xo) + rg},

where xg = Ply, P = (mg(Y))“%V’f, V = (v1,...,vp) is an r X p matriz,
with columns being the first p eigenvalue-normed eigenvectors (viv; = \;) of
mo(X), and r3 denotes the remainder term.

41
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From part (i) of the previous theorem we get the following normal ap-
proximation:
1 -1 -
fr(yo) = |Z12(289) 72 (21)" by (%0; 2, 1)

4
X {1 + ——=vec (v (v})®%)vec Ha(x0; T, ) + 7"3} ,

3y/n

where xp = v1(25%)’% (yo—La1)+p , vy is the eigenvector of T corresponding
to the largest eigenvalue §; and a; is given in (4.1). The second expansion
is based on a skew normal distribution

Fr(yo) = [£17(262) 72 (2m) ! fz(xo)

1 1
X {l + 6\/ﬁvect(%/ivl(vi)‘@2 — ;;Ag(Z))VeCHg(Xo; )+ 7'3} ,

(4.3)

(4.4)

where xp = v1(25f)”%(y0 - n‘%al) + A1(Z) and Z ~ SN, (%, ). To deter-
mine the parameter o we assume that the moments of P'Y and Z are close.
Set EZ = P'EY or

2
“Ya ~ PEY,
™
from where we get
™

o= 2'1v1(25%)"%a1 t‘z—n“%

As the third cumulant ¢3(Z) is of order (’)(n"%) it could be excluded from
the expansions but we shall keep it to include additional skewness term into
the approximations.

In the univariate case we get from part (ii) of Theorem the following two
expansions: the first one is based on the normal distribution

a 463
Fr(yo) = $(y0i0,26) { 1+ —=ha(yo: 207) + g==halyo; 267) + 73 ¢ (45)

and the other one is based on the skew normal distribution

fy(yo) = fz(yn){l + %hl(yo; 282, 1)

1 (468 1 (46)
1 2
= | —— — —A3(Z) | ha(yo; 20 :
+ (- 2 0(2) ) a2 4 7
If we assume EZ = 0 as in Theorem (ii), we must use distribution
SN(pu,0% &) (Azzalini, 1985). 1In the case of SN(0% «) the condition
EZ =0 is satisfied only if @ = 0 i.e. the normal distribution. To determine
i and o we choose again

and
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N3(1
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1 e
and 4 = a1n”? = —EY, to have the condition EZ = 0 satisfied. The
parameter o2 is chosen to be 26% and the obtained result is expansion (4.6).

To study these expansions numerically we consider the normal population
Ni3(p, X)), where

0.9 02 20 1
L= 02 30 05 and p=1 2 1. (4.7)
20 05 5.0 3

To find the empirical density of ¥ = \/n(d; — 61) we generated 2000 samples
with sample size 9.

As can be seen from Figure 1 the approximation (4.3) gives the best fit
in the middle part and on the left tail of the empirical distribution, approx-
imations (4.4)-(4.6) have too heavy tails. At the same time it is difficult to
decide which approximation is the best on the right tail.

empirical

-=--~ approximation (4.3)
==~ approximation (4.4)
-~ - approximation (4.5)
approximation (4.6)

Figure 1. Density approximations for ¥ = vn(dy — 61), sample size n = 9.

Another statistic of interest is Yis = Vn(rig — wiz), where r15 and wyy

S S
are elements of the sample correlation matrix R = S, *8S5,? and popula-
tion correlation matrix Q, respectively. At first we need the cumulants of
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Y = /nvec (R — Q). The expressions of the first three cumulants of vec R
are found in Appendix. If the population distribution is normal N(u, %)
then (see Kollo, 1991, p. 106, for example)

1 1
ma(vec §) = ~Ily = = (L2 + K, ) (@ %)

1
= é‘\’/‘"—([rl’ ® vec tHN)KM,Tzvec Ds:

= D\TIy D!

1 ,
- Z--(I,rz ® vec tHN)KT4’T2VGC DQVGCtD2K7.2>T4 (vecIy ® I,2);

1
T 2/n
— (vec tDQK").ﬂA (veclIy ® I2) @ DlﬂND{)(Irz + Krz’rz)

c3(Y) [ — (L2 ® vec'TIy) K4 2vec Davec "D Iy Dt

1
+ '2—7;(17.2 ® VectHN)KM’Tzvec DQ(VeCtDQKTZJA (vec Iy ® I,2))%2],

13 2 t
where Dy = (%) and Dy = (%) .
’ S=% S=X

To find the cumulants of Yi» we can consider Y15 = e}Y, where e; is
an r2-dimensional basis vector, so that all other elements of Y are elim-
inated except Yis. Hence ¢1(Yia) = ebei(Y), ca(Yi2) = ebcp(Y)ez and
c3(Y12) = ebe3(Y)e$?. The cumulants can be expressed in a following way:

1

Tn
1

ca(Yi2) = ehea(Y)eg = C + ;L“OZ;

1 -

-203 -+ 0(77, 1),

s

where C and C; (1 = 1,2, 3) do not depend on the sample size n. Analogously
to the approximations (4.3)—(4.6) we get the following four expansions. The
first one is based on the multivariate normal distribution

Fria(y0) = [B[2C2(2m) ¢ (x0; 2, )

c1(Y12) = egcl (Y) = C;

C3 (Ym) = egc;; (Y)e§®2 =

1 ~3/2.,t®2 (4.8)
x «1+ mvec (vngC’ vi )vec Hs(xp; 2, 1) + 73 ¢,
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where xg = vy o (yo— ;11—01) +p and V) is the eigenvector of ¥ which corre-

sponds to its largest eigenvalue d;. The second is based on the multivariate
skew normal distribution

iz (y0) = |Z12C 72 (2m)" f2(x0)

1 1
X {1 + 6\/7_lvec’5(v16'30_3/2(vt1)®2 — ;;Ag(Z))VECHg(Xo; )+ 7"3} ,

(4.9)

where xy = VIC‘%(yo - n_%(]l) + A1(Z) and Z ~ SN.(Z,a). Here

a =~ Z“lVlC‘%Cl \/gn“%. The third is based on the univariate normal
distribution

1

Tvia (o) = (ﬁ(’yOQO,C’) {1 4 _QL

\/ﬁ C3h,3(y(); C) + 7‘3} . (4.10)

The fourth approximation is based on the univariate skew normal distribu-
1

tion, where again a =~ 0“101\/—§_n"% and g = Cin™2 = —FEY, Le. the

condition FZ = 0 is satisfied. The parameter o® we choose equal to C:

fria(v0) = fz(yo){l + —%hl(yo;u,c)
(4.11)

+ al/—ﬁ (C'a - %Aa(z)) hs(yo; 4, C) + 7”3}-

For a numerical study we use the same population distribution as in the
previous example, i.e N3(u,X), where p and ¥ are given by (4.7). The
population correlation matrix is in this case

1 0612 094
Q=1 012 1 013
094 013 1

In Figure 2 the graphs of all approximations practically coincide and do not
give a good fit with the empirical distribution.
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Ther
o
d
- ——  empirical
s 7 ---- approximation (4.8) ST From
-~ - approximation (4.9) / x
~— - approximation (4.10) / L .
-~ — - - approximation (4.11) / N\
° . \\ and t
\\
For
we he
If we
Figure 2. Density approximations for Y15 = \/n(ri — wy2), sample size and s
n=09.
Appendix we ge
The cumulant function of R is (Kollo & Ruul, 2003)
| )
Yr(T) = ivec’ (T)vec Q + In{l — §vect(T)Mvec (T) + %vcct(T)N}, Fin
where Py
M = Dy (vec S)D!; d1
N = {I,» ® vec‘(7fy(vec S))} K4 p2vec Dy

and Dj, Dy are defined as in Section 4. To find the cumulants of

Y = /nvec (R — ) the derivatives of 9z have to be found as indicated
by formula (2.1). Denote By
d.

, -1
G= (1 - %vect(T)Mvec (T) + —;—vect(T)N) ;

H:%N—quﬂ.
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Then using formula (2.2) the first-order derivative is

-1
dq'b;ng) =vec )i + g—g—wG = vec {2 — —[(MV@C (T) + Mvec (T)) +iN]G
=vec i + HG.

From here the derivate at 7' = 0 equals

dpr(T) o
e =vecQli+ -N
aT - vec il + 5

and the first cumulant
1
ci(vec R) = vec ) + §N.

For the second-order derivative
d*Yr(T) _dH
ciT2 - dT a7
we have to find first £ dT and %g’—:
dH ¢ dG
daT ©dT
If we replace now obtained results into the expression above, we get:

dG

t
dTH

G®I*)+
( LY. Mvec (T))(-1)G?* = -H G2.

2 ly
fl—f%gﬂ =-MGQL)-HGH = -Go M- HGH!

and so from the second order derivate at 7 = 0
2 -2
4*Yr(T) = M- NN
de T=0 4
we get the second cumulant

1
ca(vecR) = M —~ ZNNt.

Finally the third order derivative and cumulant are as follows:

Bepr(T) dG dH , ‘o
a3 gr ®vee <M - dT(GH

dG? ., dH' , ,

- L. @H

( aT H" + a7 — )( 2 @ HY)

=HG > @vec'M + G*H' ® M + H2G}(H' ® HY) + M  G*H';

d3'¢7R(T) 7 ¢ 1 t ’i3 t " ) +
2R = s = M+ — N M & - Nt
|, 5V ® vec M+ N'@M+--NN'® N+ ® 5N

1
c3(vec R) = 3 [%N(N'f)®2 — (N*® M)(I,2 + K2 ,2) — Nvec'M
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