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New parametric and nonparametric multiple test
procedures for high-dimensional data

SIEGFRIED KROPF AND GERHARD HOMMEL

ABSTRACT. Modern techniques in biomedical research as microarrays or
computer based imaging techniques often yield extremely high-dimensio-
nal data for a patient. We propose several procedures for separate tests
with all variables controlling the experimentwise type I error in a para-
metric as well as in a nonparametric setup. These procedures utilise
the idea that all variables should have a similar scale. Otherwise the
procedures are less powerful but the type I error is still under strong
control,

Various modifications of the basic procedures weaken the power-de-
pendence on the assumption of equal variances. All procedures are very
simple to implement. They are demonstrated here in a microarray data
set, comparing their performance with standard techniques.

1. Introduction

Many new biomedical investigation techniques deliver lots of data per
patient to characterize complex biological mechanisms. Examples are gene
expression analyses by microarrays, long time series of sets of physiological
parameters or imaging techniques. But still the sample sizes in studies are
restricted by the number of available patients, costs or others.

Statistical comparisons can be based on the whole multivariate observa-
tions, where usually special methods as those of Lauter, Glimm and Kropf
(1996,1998) are necessary to overcome problems of the extreme relation of
number of parameters and sample sizes. However, these multivariate tests
answer only global questions.

A deep understanding of the biological problem often requires the parallel
investigation of the single parameters. Then special multiple comparison
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procedures are necessary to avoid an unacceptable high number of false pos-
itive results caused by the cumulation of stochastic errors in the multitude
of tests. Here, we focus on methods controlling the familywise error rate in
the strong sense. They guarantee that in all the tests a type I error occurs
with a pre-specified probability « at most, not only when all null hypotheses
are true but also when some may be wrong.

When the number of variables is high and the sample sizes are small
then classical procedures ensuring the familywise type I error in the strong
sense have problems. Testing with a-priori ordered hypotheses (Bauer et al.,
1998) is usually not possible because of missing a-priori information. The
Bonferroni-Holm method (Holm, 1979) has extremely small critical levels
for the smallest p-values because of the large number of hypotheses. The
Westfall-Young permutation procedure (Westfall, Young, 1993) has only a
small number of possible permutations in small samples. A closed test proce-
dure (Marcus, Peritz, Gabriel, 1976) cannot be applied in a basic form with
explicit consideration of all intersection hypotheses because the number of
these becomes astronomical.

Therefore, we apply another principle here. We assume that all the vari-
ables have a similar scale. This is given in many applications or it can be
reached by suitable transformations. In this case, variance-like terms or
similar nonparametric measures can be considered as additional information
which is used for ordering or weighting hypotheses. However, this additional
assumption is not necessary to ensure the type I error. Thus in the case of
large differences of the scale of the variables, the tests lose power but they
are still valid.

In the next section, we specify the considered parametric and nonpara-
metric test problems. Test procedures with data-driven ordering of hypothe-
ses (Kropf, 2000; Kropf, Lauter, 2002; Kropf et al., 2004) are described
in Section 3, procedures with weighted hypotheses (Westfall, Kropf, Finos,
2004; Kropf et al. 2004) in Section 4. In Section 5, a modified procedure
with weighted hypotheses based on a procedure by Benjamini and Hochberg
(1997) with fixed weights is proposed and discussed. A proposal by Hommel
using the closed test procedure (Marcus, Peritz, Gabriel, 1976) is considered
in the last section.

We only treat the one-sample case here. The two-sample case is described
in the above papers or is straight-forward in the new proposals.

All procedures are demonstrated with gene expression data from the Uni-
versity of Leipzig, Germany (continued research work from Eszlinger, Krohn,
Paschke, 2001, deadline September 2002). Here, 15 patients with cold nod-
ules in the thyroids have been investigated and issue samples have been
taken from the nodule as well as from the surrounding tissue. The extracted
mRNA has been analyzed in Affymetrics GeneChips® yielding expression
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activities for 12,625 genes in parallel. We use the differences of the logarith-
mic expression values from nodule and surrounding tissue.

2. The test problems

In this paper, we consider parametric and nonparametric versions of the
one-sample case. The parametric one-sample case is characterized by a sam-
ple of n iid multivariate normal observation vectors of dimension D

Z51 M1 o1 o Olp
K= i |~ N (X)) with p=} 1 |, 2= ¢ - | (1)
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(7 =1,...,n), where we want to test the p local hypotheses H; : pp; =0 (i =
1,...,p) under strong control of the familywise type I error. The covariance
matrix X is arbitrary positive semidefinite.

For a nonparametric version, we restrict to observation vectors with con-
tinuous density function. Thus, we assume that the n iid p-dimensional
sample vectors x; (j = 1,...,n) have a density fp (x) which is symmetrical

12

to the location vector u = ( Broc oy ) ,

fo(p+x) = fp(p—x) .
The local null hypotheses of interest are again H; : ;=0 (i=1,...

3. Procedures with data-driven ordering of hypotheses

For the parametric one-sample problem (1), Kropf (2000) and Kropf,
Léuter (2002) proposed the following

Procedure I:
o Sort the p variables z,...,z, for decreasing values w; = Do) Tl
e in this order carry out the usual one-sample ¢ tests for the variables

at the unadjusted level a as long as significance is attained. Stop at
the first non-significant test result.

The proof that this procedure controls the familywise type I error is based
on the multivariate theorems in Lauter et al. (1996, 1998). It follows from
the decomposition w; = 377, o%; = n-22 + Y7_, (z — 7)? that the ordering
by w; is essentially an ordering by the absolute values of the means if the
variances of all variables are equal or similar.

A nonparametric counterpart for the model (2) is described in Kropf et
al. (2004) utilizing the independence of rank and order statistics under the

null hypothesis:
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Procedure I*:
e Sort the p variables z1,...,z, for decreasing values of the median
m; of the absolute sample values,
e in this order carry out the usual one-sample Wilcoxon tests for the
variables at the unadjusted level o as long as significance is attained.
Stop at the first non-significant test result.

In the example, sorting of the variables for decreasing w; gives the follow-
ing series of corresponding p-values in the one-sample ¢ tests: .0002, .0006,
0032, .0871, .0254, .2227, .5001, .1334, .9365, .1066, .0858, .0006, .0000, ....
Analogously, the nonparametric procedure brings the p-values .0006, .0034,
5245, .0256, .0730, .4887, .2524, .1070, .0009, ... Thus, we have to stop after
the third variable in the parametric case and after the second variable in
the nonparametric procedure though in both cases very small p-values are
in later positions. Nevertheless, the three or two significant variables are
remarkable insofar as neither parametric or nonparametric Bonferroni nor
the Westfall-Young permutation procedure could show significance in any
variable. The principle of utilizing the quadratic forms or the medians as
additional information appears to be useful, but the stringent use of ordering
makes the procedures accessible for disturbances.

4. A weighted test procedure

In his basic paper, Holm (1979) already described the possibility of ap-
plying (fixed) weights for the local hypotheses. Westfall et al. (2004) now
choose data dependent weights based on the above proposals. In the para-
metric case this gives

Procedure II:

o Determine the unadjusted p-values p; from the one-sample ¢ tests
and the sums of squares w; for all p variables,
o with a fixed n > 0, calculate weights g; = w] and weighted p-values
% =pi/9i i=1,...,p),
e sort the variables for increasing weighted p-values 1) <9 < <
q(p) and denote the corresponding weights by 91y 92)5 - - 9(p),
e reject H;) as long as
L& 3
O =57 00 ®)
stop at the first non-significant result.

The nonparametric counterpart (Kropf et al., 2004) uses the medians m;
of the absolute values instead of the w; and the p-values from the one-sample
Wilcoxon tests instead of those from the ¢ tests.

It is easy to see that we have the usual unweighted Bonferroni-Holm
method with = 0. Furthermore, Westfall and Krishen (2001) have shown
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that this procedure converges to Procedure I for n — co. The procedure with
intermediate values of 77 can be considered as smoothed version of procedure
I, where the smoothing effect becomes larger for smaller 7.

The results for the example depending on the parameter 7 are shown in
Figure 1 in the next section. One can see a real improvement for intermediate
values of the smoothing parameter. Furthermore, the parametric procedure
finds more significant genes than the nonparametric one in this example.

5. An alternative weighted procedure

The linkage of Procedure I with the Bonferroni-Holm principle reduces
the problem that extremely small p-values in the local tests have to be disre-
garded in the procedure because of previous non-significant results. It does
not prevent the problem, however. Therefore, we consider an alternative
proposal by Benjamini and Hochberg (1997). They suggested this for fixed
weights but we will show that it can be used with the above data-dependent
weights as well.

Procedure III:
e Determine the unadjusted p-values p; and the sums of squares w; for
all p variables,
o with a fixed 7 > 0, calculate weights ¢; = w;’ ,
e sort the variables for increasing unweighted p-values Py < pa) <
"*+ < P(p) and denote the corresponding weights by 901> 92>+ - 9(p)
e reject Hi;y as long as

9i4) &
f:j 9

stop at the first non-significant result.

PG S 3 (4)

Please note that the subscripts in parantheses now characterize a different
ordering as in Procedure II. Again with n = 0, we have the usual unweighted
Bonferroni-Holm method but the procedure does not converge to Procedure
I for n — oo.

For the proof that the procedure keeps the familywise type I error in the
strong sense, we denote the set of all variables with true null hypotheses by
My, the subscript of that variable from My with the smallest p-value by g
and the set of variables containing this variable and all others which follow
it in the sorted procedure (according to the denominator of (4)) by Sp. Then
My € 5¢ and as in the proof in Benjamini, Hochberg (1997),

Gip &
ZieSo gi

<P pios_@ﬂ_?___ SZP plg__;’ﬂ__

Ppiy <
ZiC—Mo gi le Mo ZiEﬂ/fo 9i

Let now X = (x1,...,%,)" denote the whole sample matrix and Xj its sub-
matrix containing only the variables from My. Then the theory of spherically
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distributed matrices (Fang, Zhang, 1990) states that Xg is left-spherically
distributed and also the conditional distribution of Xy for fixed X{Xg is
left-spherical. Hence, each of the columns of Xy (corresponding the single
variables from Mj) is also conditionally left-spherically distributed and the
one-sample t tests exactly maintain their type I error. Furthermore, for fixed
X$Xo, all w; and hence g; are fixed (i € Mp), such that the above chain of
inequalities can be continued

P pios__‘q@f}__ < Zp plg_;g_l_ai___ _<‘Z-~lq~l—a-{—«—:a
2ieSo Ji 1€ Mo 2ieM, Ji 1Mo 2 iy 9i

As this is valid for each fixed value of X{Xy, it is valid unconditionally, too.
Thus, the first true null hypothesis in the ordered sequence of variables is
accepted with probability 1 — «, if the procedure did not even stop before.
This completes the proof.

In the nonparametric version, we use the weights g; = m;-’ and the p-
values of the one-sample Wilcoxon test. The rest is the same as in the
parametric procedure. The proof for the familywise type I error control is
quite analogous to that for Procedure II in Kropf et al. (2004).
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FIGURE 1. Results of the parametric and nonparametric ver-
sions of Procedures II and IIT in the example, depending on
the parameter n
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Figure 1 shows the number of significant variables for the example with the
parametric and nonparametric versions of Procedures 1T and IIT. Obviously,
Procedure III finds less significant genes in both set-ups. In the parametric
version, at least one significant gene is found with intermediate values of 7,
none is found in the nonparametric version. The differences have not been
so drastical in other examples. However, already Benjamini and Hochberg
(1997) have noted a reduced power in many cases compared to the weighted
procedure as in Procedure II with fixed weights. They also pointed out that
Procedure III has a monotonicity-problem: it may happen that a decrease
in some or all local p-values can lead to reduced number of significances.

Both Procedures IT and IT have the common problem that the smoothing
parameter has to be fixed in advance. Here, some general experience may
help. Large 7 should be used in very small samples when additionally the
variances of the variables can be assumed to be similar. The larger the
sample size or the more heterogeneity of variances is expected, the smaller 7
should be choosen. Furthermore, simulation experiments for the special size
of the data matrix may help to fix a suitable 7.

6. Smoothed procedure with ordered hypotheses

A very recent proposal by Hommel again utilizes the ordered sequence of
hypotheses as in Procedure I but gives the possibility to skip m — 1 non-
significant hypotheses, with a fixed number m.

Procedure 1IV:
e Sort the p variables x1,...,z, for decreasing values w; = Z;’L:I .L?Z,
o in this order carry out the usual one-sample ¢ tests for the variables
at the level a/m, where up to m — 1 non-significant tests may be
skipped before the procedure definitely stops.

It can easily be seen that the procedure is identical to Procedure I for
m =1 and to the Bonferroni procedure for m = p. Intermediate values give
a varying level of smoothing. Again, the procedure is based on the theory
ol spherical distributions in the parametric case and on the independence of
rank and order statistics in the nonparametric case. Applying the closure
testing principle, a slightly more powerful version can be derived. The de-
tailled description and the proof for the control of the familywise type I error
in the strong sense will be given in a forthcoming paper (Hommel, Kropf,
2004).

As an example, we consider again the sorted p-values for the parametric
version of Procedure I: .0002, .0006, .0032, .0871, .0254, .2227, .5001, .1334,
9365, .1066, .0858, .0006, .0000, ....With m = 1 we could find only 3 signifi-
cances in Procedure I. If we choose m = 10, for example, then the first three
p-values are also below the reduced critical value 0.005. Then there is a gap
of 8 values which are larger. But now we can utilize also some p-values after
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F1GURE 2. Results of the parametric and nonparametric ver-
sion of Procedure IV for varying m

this gap, giving 7 genes with significant changes. Figure 2 shows the results
of Procedure IV in the example for varying values of m. The shape of the
curve is similar to that of Procedure II but it is mirrored because large m
have similar effects as small 7. In the example it seems that Procedure IV
has slight advantages compared to Procedure I1. The problem to determine
m in advance is analogous to Procedures II and III and can be handled in
the same way.
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