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Two new multivariate tests, in particular for a
high dimension

JURGEN LAUTER

ABSTRACT. Two new test statistics for the multivariate one-sample prob-
lem are introduced that are applicable to normally distributed data in
all cases with a sample size n > 2 and a dimension p > 1. The dimension
may also be greater than the sample size. The tests are based on the
theory of spherical distributions. They utilize the principal components
of the total sums of products matrix of the given data. Under the null
hypothesis, the statistics are exactly beta distributed. The performance
of the tests is investigated by simulations. Finally, the methods are ap-
plied to high-dimensional data from gene expression analysis (dimension
p = 12625).

1. Introduction

Given n independent p-dimensional normally distributed data vectors

X,(j):(mjl ijp)NNp(lez) G=1...,m n>2 p>1), (1)

the one-sample mean-value null hypothesis is
p=0. (2)

The covariance matrix ¥ is supposed to be an unknown positive definite
p x p matrix. The n data vectors are represented as an n x p data matrix

*()
X={ 1 | ~Noplep',I,®3). (3)
X(n)

Here, 1, is the n x 1 vector consisting of ones; I, is the n x n identity
matrix.
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In classical multivariate analysis, Hotelling’s well-known T? test is avail-
able for such a testing problem. However, this test requires to maintain the
condition p < n. Furthermore, difficulties of overfitting arise which impair
the results.

Another class of multivariate tests, the class of so-called spherical tests,
has been developed in the last years [Lauter (1996), Liuter, Glimm and
Kropf (1998)]. These tests

— are not based on the method of least squares and the maximum likeli-
hood method,

— are not invariant under affine transformations of the p variables,

— are based on the theory of spherical distributions,

— are applicable also for situations with p > n.

In this paper, a special type of spherical multivariate tests is proposed.
The new tests are based on the principal components of the total sums of
products matrix X'X. They have the remarkable property that the rank of
X can be fully exhausted by the principal components.

2. Derivation of the tests

We start from the p x p eigenvalue problem
(X'X)D = DA, D'D =1, (4)
or the corresponding scale-adjusted eigenvalue problem

(X'X)D = Diag (X'X)DA, D' Diag (X'X)D =1L, (5)

Here, D is the matrix consisting of the eigenvectors pertaining to the g
largest eigenvalues A, of X'X, and A is the ¢ x ¢ diagonal matrix of these
eigenvalues. As the eigenvectors of X'X are unique only up to the signs of
reversal in the direction, we additionally need a rule to determine these signs
from X'X. This topic is addressed below. Thus, the data matrix X of the p
given variables is replaced by a matrix Z of ¢ principal components:

Z=XD with Z'Z=A. (6)
The number ¢ may take any value with
1 < g < min(n,p). (7)

In the case of ¢ = min(n, p), the information of X is completely exhausted
by the principal components. Then for the eigenvalue problem (4), the
spectral decomposition

X'X = DAD’ (8)
is valid, the n columns of X' lie in the space spanned by the eigenvectors:

X' =DD'X/, rank(X) = ¢ with probability one. (9)




TWO NEW MULTIVARIATE TESTS, IN PARTICULAR FOR A HIGH DIMENSION181

For the second eigenvalue problem (5), the corresponding equations
X'X =Diag(X'X)DAD' Diag(X'X), X' =Diag(X'’X)DD'X' (10)
are fullfilled in this special case.

To construct a new test statistic, we note that

1 1 1 n—
B= ;(1;\1)2 = ;1-1;va'1“ ~ B (2 ), (11)

where v denotes an n x 1 random vector with the standard spherical dis-
tribution satisfying the condition v'v =1 (uniform distribution on the n-
dimensional unit sphere). On the right-hand side, the well-known beta dis-
tribution with the parameters % and %—1 occurs. Given the data matrix
X ~Nnxp(lpp', I, ® B) under the null hypothesis p = 0, the random ma-
trix U = Z(Z'Z)"l/ 2 = ZA~1/2 has the n x g standard left- spherical distri-
bution with U'U = I, [Fang and Zhang (1990)]. Thus, u = U1, a7z follows
the n x 1 standard spherical distribution and, therefore,
1 1
Bi = H(1;1u)2 = qu-(l’nUlq)2 = 55(1;ZA—1/21Q)2 = n—q(1;1XDA*1/‘f’1q)2
(12)
becomes B_(%-, n=1) distributed. If we define the mean vector of the data
matrix X,
% = 11X, (13)
the final expression of By is obtained:

= M= A-1/27 V2 ln-1 4
B1 q(XDA 1,) B(Z’ ) )- (14)

In the elementwise notation we have

p q
Z-’I;z zh/\-l/Q) (15>

i==] h=1

n
q

Possibly, it is a disadvantage of this statistic that the lambda term ap-
pears with a negative exponent. Thus, the eigenvectors corresponding to the
smallest eigenvalues A, can get large weight in this expression. Therefore,
a second beta statistic will be introduced in the following which avoids this
deficiency.

We start again from the eigenvalue problem (4) or (5) and the corre-
sponding p X g score matrix Z = XD in (6). Recall that Z is left- -spherically
distributed under the null hypothesis ¢ = 0. Then, the n x 1 vectors

z =71, (16)
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and
1
(A +...+)\q)1/2

are also spherically distributed. Because of u'u =1, the second beta statistic
is obtained:

u = z(z'z) /% = XD1,(1/A1,)"/? = XD1, (17)

2 _
B, = (1pw)® _  (13XD1)*?  a(®Di)’ B(l, n— 1). 1)
n n(Ar+...+ X)) A4+ A 27 2
In the elementwise notation we have
P g
n
I e Tidip)?. 19
B2 )\1+-~-+/\q(;h§’nz h) ( )

For the test statistics B; and Be, the orientation of the eigenvectors
d,...,dg, which are the columns of D, is important. The expressions of
Bi and Bs change if the sign of an eigenvector is reversed. To attain the
exact null distribution, the orientation must be defined in a unique way as a
function of X'X. In the case of the eigenvalue problem (4), we propose the
following approach: Select the variable ¢max with the largest absolute weight
in the first eigenvector dy. Then, determine the directions of all eigenvec-
tors dp,...,d, in such a way that d; .., (h =1,...,q) become all positive.
Thus, the directions are uniquely derived from X'X. This strategy implies
that the factorial effects reinforce each other mutually, at least in the domi-
nant variable imay. In the case of the scale-adjusted eigenvalue problem (5),
the variable tax is used which has the largest absolute value in the vector
[Diag(X'X)]2 d;.

Of course, the orientation of eigenvectors may also be defined in another
way if there are specific reasons.

For g =1, By and B» yield the same results.

3. Simulations

In this section we will present simulation results of the beta tests treated
above. At first, the power of the By test is compared with the power of
Hotelling’s well-known test. We consider different cases of the one-factor
parameter structure

® =kI, + 99, p =59, (20)

where 9 is a p x 1 scale vector, & is the error variance of the p single variables,
d is a non-centrality coefficient. The principal components are determined
from the eigenvalue problem (4). The level of significance is o = 0.05.
Simulations are performed with 10 replications. The following 4 models
were examined by simulation.
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1. A symmetric parameter structure with p < n.
Suppose p=4,n=6,g=4, A’=p¥lp=4, p=(p p p p),

The power values for the correlation coetlicients p = 0.20, 0.40, 0.60, 0.90
are given by the table

correlation p 0.20 0.40 0.60 0.90
power of Bo 0.6870 0.8170 0.9009 0.9547
power of Hotelling’s test | 0.3008 0.2986 0.2945 0.2970

It can be seen that test Bs has much higher power than Hotelling’s test.
All four principal components are utilized in this example, according to the
rank 4 of X.

2. A non-symmetric parameter structure with p < n.
Setagainp=4,n=6,¢g=4, A2=p'S lp=4 butp'=(p p 0 0),
1 0 0
p 0 0
0 1-p 0
0 1—p

S=(1-pIy+p (1 100)=

1
1
0
0

The two first variables contribute genuine one-factor information, and the
other two represent “independent noise”. The following table provides the
power values:

correlation p 0.20 0.40 0.60 0.90
power of B2 0.6357 0.7434 0.8451 0.9467
power of Hotelling’s test | 0.3003 0.2958 0.2951 0.3052

3. A symmetric parameter structure with p > n.
In such a case, Hotelling’s test cannot be applied. Suppose p = 10, n = 6,

q:ﬁ,A2:4,u,:(M /J, . /’l’)
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Once more, the number of the principal components coincides with the rank
of X. The following power values are obtained:

correlation p | 0.20 0.40 0.60 0.90
power of By | 0.5432 0.7665 0.8804 0.9591

4. A non-symmetric parameter structure with p > n.
Set again p =10, n = 6, ¢ = 6, A? = 4, but w=p(15 0f),

1
b :(1 - p)Iw +p 02 ( 1’5 0’5 ) .

In this example, the first five variables yield the substantial information.
The power values are

correlation p| 020 040  0.60  0.90
power of By |0.4043 0.6365 0.8016 0.9450

The B> test is superior to the By test in many applications. However, there
are also situations, where By attains higher power than By. For example,
forp=¢g=2,n=12,

1.6667 1
1 1.6667 /°

the B test has the power 0.7310, but the By test only 0.6870, if o = 0.05.
Hotelling’s test gives the power value 0.7304 in the simulation.

u'::(l O), =

4. Application to gene expression data

We consider gene expression data by M. Eszlinger, K. Krohn and R.
Paschke (University of Leipzig) in patients with cold nodules in the thy-
roid gland. Tissue samples of the nodule and of the surrounding have been
taken from 15 patients. The data of the tissue samples have been recorded
on Affymetrix gene chips referring to 12625 genes. In this example we use
the logarithmic expression values, and we consider their differences between
nodule and surrounding for each of the 12625 genes in the 15 patients. These
differences are approximately normally distributed.

In this case, p = 12625 and n = 15. We want to apply the B; and By test.
The eigenvalue problem (4) is used. However, there are some difficulties
in the implementation because the total sums of products matrix X’X has
the order 12625 x 12625. To avoid handling this matrix, we can exploit the
duality property of the eigenvalue problem

(XX\U=UA, UU=I, (21)

al

tl
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where the matrix XX’ is only of the order 15 x 15. The eigenvalues of (4)
and (21) are the same, and the eigenvectors are related via

D = X'UAY2. (22)
Therefore,
Z = XD = XX'UA"/? = UAY/?, (23)

that is, the matrix U is the same as in Section 2. Thus, the beta tests can
be written as

n(”ﬁ’Al/qu)Z

B2 = )\1+...+)\q,

(24)

with the “mean vector” @' = 11/ U.

The orientation of the eigenvectors dj, and u, (h = 1,...,¢q) according
to the sign regulation at the end of Section 2 is attained over (22). We
find ¢max = 6746, the Affimetrix notation of this gene is 36681.at. The
corresponding elements Ty, of the vectors @ (for ¢ = 1,...,15) are

1,15 = 1073(~21, -9, -3, 2, —6, —1, —1, =2, —4, +3, —1, =5, +2, —5,—6).

The most mean values Ty, are negative, in particular, the largest by absolute

value. Therefore, all cumulative sums ij iy, and i ﬂh)\}l/ 2 (g=1,...,15)
h=1 h=1

are negative, and the factorial effects are supporting each other (in the sense

of the absolute value). This is a confirmation of our rule for the orientation

of the eigenvectors. A special conclusion from this consideration is that, in

total, the cold thyroid nodules must have a reduced gene expression level in

comparison to the surrounding tissue.

We obtain the following P values in the By test for g =1,...,15:

P = .0002, .0002, .002, .007, .004, .009, .01, .02, .02, .04, .04, .03,
.04, .03, .02.

The corresponding P values of the Bs test are:

P =.0002, .00008, .0005, .002, .0009, .002, .004, .005, .004, .01, .01, .007,
.01, .008, .004 .

All P values are smaller than 0.05. Therefore, a significant difference
between the nodules and the surrounding is proved for all values of ¢, if
a = 0.05. The best result, P = 0.00008, arises at the By test in the case of
two principal components (g = 2).
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