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On risk processes with double barriers

KATRIN LOKK AND KALEV PARNA

ABSTRACT. We consider risk processes with two barriers. The risk pro-
cess starts with an initial capital » > 0 and the two barriers are set at
0 and v(> u). We are interested in finding the probability o(u,v) that
the risk process hits the upper barrier v before 0. Both cases of positive
and negative relative safety loading are considered. Explicit formulae
for ¢(u,v) are obtained in the case of positive safety loading and in a
special case of negative safety loading when the claims are exponentially
distributed. For the general case of negative safety loading an integral
equation is derived for ¢(u,v), similar to the classical result for the case
of a single barrier at 0.

1. Introduction

The risk process is a type of stochastic processes to model the wealth of
an insurance company. It is defined by X(¢) = ¢t — Z,’:’:f? Zy where ¢ is
interpreted as a gross premium rate (the company receives ¢ units of money
per unit time), N (¢) is the number of claims on the company during the time
interval (0,¢]. Each time when N grows the company has to pay out random
amount of money (Z). The value of X(t) is the profit of the company over
the time interval (0,¢]. Ruin of the company means that starting with initial
capital u its wealth u + X () becomes negative at some time point ¢.

The problem of calculation and estimation of the ruin probability is a
central issue in the ruin theory. Several basic results (which we now call
“classical”) concerning risk processes were obtained by F. Lundberg and
H. Cramér (see, e.g., Cramér (1930)). Of good accounts of risk processes
we refer to books by Gerber (1979) and Grandell (1991), the latter being
devoted to various generalizations of classical results.
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In this paper we consider the situation when also an upper barrier v{> u)
exists. We are interested in finding the probability ¢(u,v) that starting from
u the upper barrier v is reached before the lower barrier (0) - a fargoing
generalization of the famous gambler’s ruin problem. Hitting the level v
can be an important goal from the business point of view for it can create
interest among investors.

The problem of hitting one barrier without hitting earlier the other barrier
is also studied in financial mathematics, where other types of underlying
stochastic processes are of interest. For example, pricing double barrier
options under jump diffusion processes is recently tackled by Sepp (2004).

The paper is built up as follows. We first fix notation and give a brief
review of classical results concerning the one barrier problem (0). Then the
case of two barriers is studied. Both cases, positive and negative relative
safety loading are considered. Explicit formulae for ¢(u,v) are obtained in
the case of positive safety loading and in a special case of negative safety
loading when the claims are exponentially distributed. For the general case
of negative safety loading an integral equation is derived for (u,v), similar
to the classical result for the case of a single barrier at 0.

2. Classical risk processes

Classical risk process is a standard model for an insurance company. It
is defined by X(¢) = ct — Ziv:(tl) Zy where ¢ > 0 is a constant, {Z;}%2,
are i.i.d. random variables having common distribution function F(z) with
F(0) = 0 and mean value EZy, = u, N(t) is a homogeneous Poisson process
with intensity o and independent of {Z;}. The process X (t) is interpreted
as the profit of the company over the time interval (0, ¢].

An important parameter of the risk process is its relative safety loading.
Let us calculate the expected profit over (0, ]:

EX(t) = ct — E[N(t)|E(Z) = ¢t — atp = (c — au)t.

The ratio p = (c—au)/ap is called the relative safety loading. It is positive
when the company makes profit in average but it can also be negative. The
latter occurs, for example, when the company keeps prices of policies low in
order to win new customers.

The ruin probability of a company having initial capital u is defined by

U(u) = P{u+ X (t) < 0 for some ¢ € (0,00)}. (1)

The non-ruin probability is denoted by ®(u) = 1 — ¥(u). The calculation
of the ruin probability is a challenging task. It has been shown (see, e.g.,
Grandell (1991), Ch.1) that the function ®(u) satisfies the following (Volterra
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type) integral equation:

u
8 (u) = B(0) + 90‘-/ B(u—2)[1 - F(2))dz. @)
0
From this equation so called Cramér-Lundberg asymptotic formula has been
derived:
lim ¥ (u) = C, (3)

U300
with constants R > 0 (Lundberg ezponent) and C > 0, both depending on
e, ¢, and F.
An exact formula for the ruin probability is available for the case of ex-
ponentially distributed claims, Z ~ Ezp(1/u), when we have

T(w) = - ipe“R“ (4)

with R = m

{1+p)

3. Risk processes with two barriers

Let u be the initial capital of the risk process, u > 0. Besides the lower
barrier 0, which is the only barrier in the traditional set-up, we also fix
an upper barrier v, v > u. When the risk process starts between upper
and lower barrier it is almost sure, by the Strong Law of Large Numbers
(SLLN), that the process eventually leaves the strip [0,v]. In many cases it
is interesting to know which barrier (upper or lower) is reached first? What
is the probability that we become “rich” (v) before the ruin?

Let T, be the time of the first ruin, T, = inf{t¢ : u+X(¢) < 0}. If ruin ever
occurs then T}, < oo, and if ruin never occurs then T, = oo. Let T}, be the
time of the first passage of the upper barrier v, Tyy = Inf{t : u + X (¢) > v}.
Note that for almost all trajectories of X (¢) only one of the variables T;, and
Ty can take value 400, since the process achieves at least one of the two
barriers a.s. Our aim is to find probabilities P{T},, < T} and P{Ty, < T,, <
oo}. In the first case we want to know the probability that the trajetory of
the risk process leaves the strip [0,v] via the upper barrier v, while in the
second case also the ruin must follow.

We consider separately the cases of positive and negative safety loadings.
It will be seen that the problem solves easily for p > 0, while it is not
elementary in the case of p < 0.

4. The case of two barriers, p > 0

In this section we obtain some results concerning calculation of probabil-
ities P{Tyy < Ty} and P{Ty, < T, < oo} for the case of positive p. We will
show that in this case the problem can be reduced to the classical problem of
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calculation of the ruin probability for the risk processes with one (i.e. lower)
barrier. Our result is based on the following simple observations.

1. For p > 0 the risk process u + X (t) has positive trend and due to the
SLLN it is almost certain that the process attains the level v, eventually.
Thus P{Ty, < oo} = 1 which, in turn, implies P{T, < Ty,} = P{T, <
Ty < 00}

2. As the equality Ty, = Ty, is excluded, we have

P{Tyy < Ty} + P{T, < Ty} = 1. (5)

3. By dividing the event “ruin” into two parts according to when v is
reached, one has

P{T, < oo} = P{Tyy < T, <00} + P{T, < Tyy}. (6)
4. Finally, by the multiplication rule
P{Ty, <T, < oo} = P{Tyy < Tu}P{Ty, < 00|Tyy < Ty}

Since the ruin from the level u, under the condition that we first reach
the upper barrier v, is equivalent to the ruin from the level v, the latter
probability can be replaced by P{T, < oo}, and therefore

P{Ty < Ty < o0} = P{Tyy < T, } P{T}, < o0}. (7)

Recall now that the probability of ruin is ¥(u) = P{T, < oo} and the
probability of non-ruin is ®(u) = 1 — U(u). Then, solving (7) for P{Ty, <
T} and using (5) and (6) one obtains a surprisingly simple formula

D (u)
O(v) (8)

P{Ty, <T,} =

Thus, we have proved

Proposition 1. If p > 0, then the probability of hitting the upper barrier
v(> u) without previous ruin is given by (8).

The formula (8) allows precise calculation of P{T,, < T,} in situations
when there is an exact formula available for the ruin probability ¥ (u). For
instance, if the claims are exponentially distributed, then for (4) we have

1+p—e‘R“

PATw <D} = T =

(9)
At the same time, for large values of u and v, Cramér-Lundberg approxima-
tion (3) can be used to evaluate ®(u) and ®(v). If we require, in addition,
the ruin after the first passage of v, then the result is:

D (u)

P{Ty < Ty, <0} = ()

T(v). (10)
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5. The case of two barriers, p <0

We now assume that p < 0. Then the risk process u + X (t) has negative
drift and, again due to the SLLN, we have lim;_, o[t + X (£)] = —oco. Hence,
the ruin is inevitable, ¥(u) = P{T} < oo} = 1, for all w > 0. Since now
®(u) =1— ¥(u) =0 for all u, the formula (8) cannot hold.

5.1. Achieving an upper barrier. Let v > u > 0. We first find the
probability

U(u,v) 1= P{Tyy < 0o} = P{starting from u the level v will be reached}.

(11)
As we clearly have ¥(u,v) = ¥(0,v — u), it suffices to study the case u =0
only. There is an important difference between how the risk process hits
lower and upper barriers. While the lower barrier 0 can only be reached at
the moment of a claim (when an amount of money is payed out), any upper
barrier v above u can only be reached between claims. Furthermore, each
trajectory which starts from 0 and hits the level v > 0 also hits any level
s between 0 and v. Hence, by Markov property, U(0,v) = ¥(0, s)¥U(s,v) =
¥(0, 5)¥(0,v — 8). Therefore the function ¥(0,v) must be of the form

T(0,v) =e (12)

with some constant B > 0. We call it modified Lundberg ezponent and will
present an equation to determine R below.

5.2. Derivation of integral equation for P{Ty, < T,}. For further
convenience, we denote the probability of leaving the strip [0, v] upwards by

o(u,v) = P{Ty < Ty} (13)

Note that a simple inequality ¢(u,v) < ®(u,v) holds, since the term on the
left means restricted path from u to v (keeping u + X (¢) on positive side)
while the term on the right means unrestricted path from u to v.

We now derive an integral equation for the function ¢(u,v). As the
main tool, the renewal argument is used, similarly to Grandell (1991) where
the classical problem with one single barrier is considered. We condition
upon the time of the first claim 57 and its size Z; and write o(u,v) =
Elp(u,v)|51, Z1)], where S) ~ Ezp(a) and Z; ~ F. Note that for values
of S greater than (v — u)/c our process attains the level v before the first
claim, thus with probability 1. Furthermore, for §1 < (v —u)/c and for the
values of the first claim Z; between 0 and v + ¢S}, the process starts again
with initial capital u + ¢S7 — Z1, and we may write:

0o (v—u)/c putcs
olu,v) = / ae”*ds + / / o(u+cs — z,v)ae” **dF (z)ds.
(v—u}/c 0 0
(14)
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The change of variables u + ¢s = « leads to

v T
plu,v) = elv—w/e 4 %ea“/c / e“’c/c/ o(z — z,v)dF(z)ds. (15)
Ju 0
Differentiation by u gives an integro-differential equation:
‘ e a [
¢ () = Sotu0) = 5 [ plu—z0)dF () (16)

Now, integration by u over [0, t] casily leads to
t
o
olh,0) — 9(0,9) =% [ 0(0,0)(1 - Flu)a

+2 /Ot/ou o (14— 2,0)(1 — F(2))dzdu.

After the change of the order of integration we get the following integral
equation:
t
o
o(t,9) = p(0,0) = % [ plt = 2,0)(0 = F(2)) (13)
The result can be stated as follows.

Proposition 2. If p < 0, then the probability ¢(u,v) of hitting the upper
barrier v(> u) without hitting earlier the barrier O satisfies the following

integral equation
o
pl,0) = 9(0,0) + 2 [ plu=z)(1 - Pz (19)
0

This renewal-type equation is quite similar to the classical equation (2)
for the ruin probability. But there is also a big difference between them.
Namely, in the classical case it is assumed that p > 0 and therefore the
weight function is subnormalized : [j° %(1 — F(z))dz = °¢ = T%E < L
Feller overcame this difficulty by multiplying both sides of the equation (2)
by eR* where R is a properly chosen constant called Lundberg exponent
(Feller (1971), Ch. XI, §7a)). In our case p < 0 and therefore the weight
function is supernormalized, which makes it impossible to use Feller’s trick
to solve the equation (19). A further study on how to solve the equation

(19) is needed.

5.3. Modified Lundberg exponent. Here we make use of (19) to derive
an equation which uniquely determines the modified Lundberg exponent R.

We first deduce an expression for ¢(0,v) - the probability that starting
with initial capital O we first gain the level v and then the ruin follows. For
that take v = v in (19):

plo0) = 9(0,0) + % [ plv—z0)(1 - P (20)

As

rig
of
the

lik
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As p(v,v) = 1, we get

o(0,0) =1 /0 "o — 2,9)(1 - F(2))ds. (21)

Let now v — oco. On the left hand side clearly ¢(0,v) — 0. On the
right hand side for each fixed z > 0 and for increasing v the probability
of ruin from the level v — z monotonically decreases to zero and therefore
the restricted and unrestricted attainings of v from the level v — z become
likely probable: lim,_,0 (v — 2,v) = limy 0 U (v — 2,v) = e~ % where the
last equality follows from (12). We see that the result depends only on z.
Applying the Monotone Convergence Theorem to the right side of (21) and
equating the result to zero, we obtain the relationship

a [* &

~/ e (1 - P(2))dz = 1 (22)
€ Jo

with > 0. Note that this equation differs from the definition of Lundberg
exponent R only by the sign in the exponent, but as the whole situation is
different (wrt p), we cannot just take R = —R. However, for the case of
exponentially distributed claims the latter still holds, since solving (22) for
R gives

R="C_ P

P s B (23)

where Lundberg exponent R was evaluated at the end of Section 2.

5.4. Exponentially distributed claims. Assume that p < 0 and let
claims be exponentially distributed with expectation EZ; = u. We deduce
a closed form expression for @(u,v) for this special case. First note that

¢(u,v) = P{Tyy < oo} — P{T, < Ty, < co}. (24)

Due to (12) we already know that P{Ty, < oo} = e F(v~%) with R defined
by (23), and therefore in order to get ¢(u,v) it suffices to find the probability
P{T, < Ty < 0o}. The probability that first ruin occurs and then the upper
level v is reached can be decomposed as

P{Tu < Tyw < 00} = P{Tu < Tuv} : P{Tu+X(Tu),v < OO}

- [1 - ‘10(’“" U)] ' P{,‘Z—;L—I—X(Tu),v < OO} (25)
where u + X(Ty) < 0 is the wealth of the company immediately after the
ruin. The random variable Z := —(u + X(7})) > 0 is called the overshoot.
From the memoryless property of the exponential distribution the overshoot
is also exponentially distributed, Z ~ Ezp(1/p). Now we condition upon Z:

P{Tusx(r)p < o0} = P{T-z, < 0o} = / P{T_,, < oo} - ée‘z/“dz.
0
(26)
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As for each fixed z we have P{T_,, < oo} = P{Tp 4y < co} = e~ R+2),
substitution into (26) leads to
e"_R‘U
Ru+1
Now, putting together (24), (25) and (27) one easily obtains the formula
Ru 1

e [ S—
Ru+1
plu,v) = ——hE (28)

Rv _ _1
e Ru-+1
After substitution R from (23) we finally get

P{Tu-I»X(Tu),v < OO} = (27)

U
1+p—e wlits)

QD(’U" U) = Py

14+p—e wite)

which coincides (1) with the formula (9) obtained for the case of exponential
claims and p > 0. Therefore, we have proved the following

Proposition 3. If p # 0 and the claims are exponentially distributed with
mean , then the probability of reaching an upper barrier v(> u) without
previous Tuin is given by (29).
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