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On reparameterization of random effects in linear
mixed models

MART MOLS

ABSTRACT. The Empirical Best Linear Unbiased Predictor of random
effects in linear mixed model may be non-unique. For fixed effects two
approaches are used to derive unique solutions — one is based on us-
ing estimable linear combinations of parameters and the other one uses
reparameterization constraints. It is shown in this article that both ap-
proaches can be applied in a similar manner to derive unique prediction
results for random effects.

1. Notation

Consider the model
Y = XB+ Zv +e,
where Y is a vector of n observable random variables, § is a vector of p
unknown parameters having fixed values (fixed effects), v is a random vector
of length %k (random effects) and ¢ is a random n-vector of errors. Matrix X
is an n X p and matrix Z is an n x k matrix. Both X and Z are assumed to
be known. We suppose that E(y) =0, E(e) = 0 and

w[1]-[3 3

The covariance matrix of Y can be expressed as
V=R+2GZ". (1)

Throughout the paper it is assumed that V' and R are non-singular matrices.
Generalized inverse of a square matrix A is denoted by A~. The Best Linear
Unbiased Estimator of fixed effects (BLUE) §(V) is defined as

BV) = (XTv-ix)-xTv-ly.
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The Best Linear Unbiased Predictor (BLUP) of random effects is defined as
(R, G) = GZTV (Y = XA(V)), (2)

where V is a function of R and G as given in (1).

2. Reparameterization of random effects

The proofs in this article use results from matrix algebra, two of which
are emphasized as Lemma 1 and Lemma 2.

Lemma 1. If matrices Z and H satisfy the condition

rank fj = rank(Z) + rank(H), (3)

then there exists a symmelric positive deﬁm'te matriz A such that
HAZT =0.
Proof. See Harville (1997), Theorems 17.2.4 and 17.7.1. O

Lemma 2. Let A be a positive definite matriz. Then, for any matriz Z
for which the multiplication Z A is defined, the following equality holds:

ZAZT(ZAZTY ZA = ZA.
Proof. See Harville (1997), Theorem 14.12.25. O

Now consider two separate mixed models which differ from each other only
by having different covariance matrices for . For model 1 (reference model)
Var(y) = G and for model 2 (alternative model) Var(y) = G,. The first
theorem quarantees the existence of such alternative model for which BLUP
predictors satisfy “reparameterisation constraints” in the form H#% = 0 and
for which the BLUP predictors for linear combinations of Zv (“predictable
linear combinations”) would be the same as for the reference model.

Theorem 1. Let H be a matriz, for which the equality (3) holds. Then
there exists a matrix G* such that
H4%(R,G*) =0,
Z4(R,G") = Z4(R, G).

Proof. From Lemma 1 the existence of a positive definite matrix A, such

that
HAZT =0,

follows. Using matrix A, define an idempotent matrix P projecting into
column space of Z7:

PT = AzT(zAZT)~ 2.
Obviously

HPY = HAZT(Z2AZT)"Z =0, (4)
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and from Lemma 2 it follows that
ZPT = ZAZT(ZAZTY Z = ZAZY(ZAZT) " ZAA™ = ZAA™ = Z.
As the final step, define matrix G* as Var(PT7):
¢* = pPrap. (5)

Then
z2G*2T = zPTq(zPTT = zGZT

and, hence,
V(G =20 ZT + R=ZGZT +R=V.
If V(G*) = V then also B(V(G*)) = (V), and
Z3(R,G*) = ZG*ZTV-YY — XB(V(G*)))
ZGZTV Y - XB(V))
Z3(R, G).
Vector 4(R, G*) of predicted random effects satisfies the condition HY(R, G*) =
0 because of HPT = ()
H4(R,G") HGEV(@) (Y - XB(V(GY))

HPTGPV(G")~ (Y — XB(V(GY))
0.

3. Identifiability of random effects
The likelihood function of Y for normally distributed Y is
L(y,G,...) =|2n(R + zGZT)|~Y/?

<exp (5= X0)T (R + 2627) 'y - X6) ).

Replacing G' with some other covariance matrix may, but does not have to,
change the likelihood function. It is possible to consider a class of covari-
ance matrices G(G), which all lead to the same likelihood function (for any
possible value of y):

G(G) ={G;: L(y,G,...) = L(y,Gy,...) | forally}.

The class G(G) consists of covariance matrices which are in the equally good
agreement with observed data and, hence, can not be preferred one over
another on the basis of observed data alone. Note, that the matrix G*
defined in (5) also belongs to this set, G* € G(G).

Two covariance matrices G1, G2 € G(G) may lead to different predictors
for v. However, if G, G2 € G(G), then Z3(R,G1) = ZH(R, G3), as is proved
in the following lemma.
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Lemma 3. If G1,Gs € G(G), then Z3(R,G1) = ZY(R, G2).

Proof. Instead of the likelihood function, it is easier to work with log-
likelihood function

Uy,G,...) log(L(y,G,...))
log((2nV|~1/%) ~ S(y ~ XV "y — XB),

where V = V(G) = R+ ZGZ". If G1,G2 € G(G), then I(y,G1,...) =
l{y, Go,...) for any value of y. Choosing y = X one gets the equality

log(|2mV (G1)| /%) = log(|2nV (Ga)| /%), (7)

where V(G1) = R+ZG1Z7 and V(Gs) = R+ZG2Z"T. Choosingy = X+,
where v is an arbitrary vector, and using (7), it follows from the equality of
likelihood functions:

vIV(G) o = vV (Gy) .
The equation -

v (V(G’l)”l - V(Gg)'l)’u =0
holds for any v. In addition, the matrix V(G;)~! — V(G2)™! is symmetric.
Consequently,

V(Gl)_l = V(G2)—17
and, hence, also B(V (G1)) = B(V(Gz)). The predictor of Zvy obtained using
Gl is

ZYR,G) = ZGiZ"V(G1) Hy— XB(V(G1)))-
From (1) it follows, that ZG1ZT = V(G1) — R and therefore
ZA(R,G\) = (y—XB(V(G1)) - RV(G1) ™ (y ~ XB(V(
- Xp

V(G1)))
(y — XB(V(G2)) = RV(Ga2) ™ (y — XB(V(G2)))
Z(R, G2),
which proves the lemma. J

Lemma 4. Let an n X k matrizc Z and o v X k matriz H satisfy the
condition

rank f[ = rank(Z) + rank(H) = k.

Then the condition HY = 0 uniquely determines the predictor of v within
the set of covariance matrices G(G).

Proof. From Theorem 1 it follows that there exists a matrix G* € G(G)
such that the condition H¥(R,G*) = 0 holds. Let two matrices G1,Gq €
G(G) satisfy the condition H¥(R, G1) = HY(R,G2) = 0. Then one can write

Zama)=| 4 |4R,G). (®)
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Because the rank of (n +v) X k matrix [ f{ } is k, it is of full column rank
T

and therefore the inverse of the matrix " T exists. Therefore it

is sufficient to multiply the equation (8) from the left with the matrix
~1
z 1" z z 1"
H H H

Y(R,G1) = (R, G2),
which proves the lemma. 0

to derive the conclusion

4. Discussion

For fixed effects it is well known that if the matrix X is not of full column
rank, then one needs to apply additional constraints to define the unknown
parameters in § uniquely. These constraints can be represented in the form
Hp = 0, where x

rank ( I ) = rank(X) + rank(H).

The validity of these constraints on observed data cannot be assessed using
the observed data. Different constraints will lead to different but mathemat-
ically equal parameterizations of the linear model. Nevertheless, the linear
combinations of parameters in the form X8 will remain the same for all
parameterizations. Interested reader is referred to Scheffé (1959) and Searle
(1971) for more detailed coverage of the topic.

It was shown in this article, that based on the observed data alone cannot
exactly identify the covariance matrix G = Var(y). Unidentifiability of G
causes also the unidentifiability of -y, if the matrix Z does not have a full
column rank. To determine -y uniquely one has to imply some assumptions
that can not be tested. These assumptions may be presented as assumptions
on the structure of G but they may also be represented in the form Hvy = 0,
where ranks satisfy (3).

The restrictions Hy = 0 are preferable since they are less restrictive —
namely there exist several covariance matrices G yielding exactly the same
predictors 4. Choosing an exact form for the covariance matrix among those
yielding identical results may be unnecessary in practical applications.

As in the case of fixed effects, the correctness of implied restrictions cannot
be assessed using only the observed data.

There are some aspects of Theorem 1 which should be pointed out. First,
one can consider matrices G and R as some functions of unknown parameters

cf,...,0%. Then the matrix functions

V =2G(o},...,08) 27 + R(6},...,00)
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and

V(G*) = ZG*(02,...,00)ZT + R(03,...,0),

where 6o o?) = PTG(o?,... oD\, )
are equal. Therefore, replacing G with G* does not change any function
which depends on G only via the covariance matrix V. For example, if ¥
is normally distributed, then the likelihood funciion of Y depends on the
covariance parameters via the matrix function V only. Hence, the likelihood
function of Y does not change if one replaces G with G*. In situations, where
the covariance parameters are unknown and one uses the likelihood function
of Y to derive the maximum likelihood estimates of covariance parameters,
the estimates remain unaffected if one uses G* instead of GG, because the
likelihood function does not change.

The other frequently used method for estimating unknown covariance pa-
rameters in mixed models is the restricted maximum likelihood (REML)
method. Under REML, one maximizes the likelihood of a linearly trans-
formed vector kY instead of the likelihood of Y. But the likelihood of the
transformed vector kY depends on G only via the matrix V. Hence, replac-
ing G with G* does not affect the estimates of covariance parameters (if Y’
is normally distributed and one uses REML or ML method). Therefore, for
normally distributed data and matrices G and G* related by (9), the EBLUE
(estimated BLUE) estimates will be equal

XpV) =XBV(GY)),
and EBLUP (estimated BLUP) predictors will also be equal
Z4(R,G) = Z4(R,G%).
It is worth to note here that the derivation of G* is not necessarily unique,

because there may exist more than one matrix 4 satisfying the key condition
HAZT = 0.
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