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Reparameterization and invariant covariance
matrices of factors in linear models

TONU MOLS AND TATYANA NAHTMAN

ABSTRACT. Let the vector ¢ consist of sampled random elements of fac-
tors in a linear mixed model. Let P be a permutation matrix. The
covariance matrix D({) is called P-invariant if D(¢) = D(P(¢). It will be
demonstrated that there is a strong correspondence between the spec-
trum of D{(({)} and certain reparameterization conditions on the factors.
In particular, the classical reparameterization condition >.¢i=0hasa
clear presentation through the eigenvalues of D(¢). This correspondence
is useful for modelling data.

1. Introduction

Consider the following linear statistical model
Yije = p+ & +mj +vij + €qjie (1)
describing two factors ¢ and 7 and their interaction -y (7 and j refer here to

factor levels). To make the meaning of parameters unique, the model terms
&, mj and -y;; must be reparameterized by imposing certain constraints on

/8 = (/~1'7§17' v 1617"71)' <o sy Y11, 7125 - - y Vims €111, €112, - - - ;Elmn)l-

Classical reparameterization conditions are the null-sum condition Zi &E=0
and the condition ¢ = 0, where ¢ is the last component of £.

In the present paper the concept of invariance is used. According to this
concept, an arbitrary permutation of levels of a factor must not affect the
covariance matrix of that factor. The invariance with respect to the group
of permutations implies a specific structure on the covariance matrix. The
structure of patterned matrices which arise in statistics has been studied by
a number of authors (Wilks, 1946; Votaw, 1948; Tong, 1997; etc.).
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It turns out, that the classical reparameterization conditions can be for-
mulated as specific restrictions on the eigenvalues of an invariant covariance
matrix. Earlier we have shown (Nahtman & Mols, 2003) that in the models
with only one factor ¢, the classical reparameterization ), & = 0 is equiv-
alent to the equality A2 = 0, where )y is the eigenvalue of the invariant
covariance matrix of £, which has multiplicity 1. This result was partially
generalized by Nahtman (2002) for interactions of two factors. In this case,
the spectrum of an invariant covariance matrix of an interaction term -;;
in (1) has four distinct eigenvalues, say A1, A2, A3, As. The three classical
reparameterization conditions

2V =0Vi, 2 ;v =0¥, and 3, %;=0 (2)
can respectively be expressed by
)\22)\420, /\3=)\4=0 and A2:A3:)\4:O. (3)

In the present paper we generalize these results to a higher number of factors.

2. Structure of invariant covariance matrices

The permutations we consider are only allowed to act within factors. Let
P denote the permutation that interchanges components of a factor ¢
(h = 1,...,9), and let v(® represent the vector of s-order interaction ef-
fects of factors €M), ... €09 (s =1,...,9). If n), is the number of sampled
levels of factor &), then ) is of order N = n;, - ng, - ... n;,, where
{i1,...,3s} € {1,...,9}. We number the components of y{*) lexicograph-
ically. For example, for s = 2,7 = m and ng = n we have ordering
(1, 1), (1,2),-. . (), (1), (),

The permutatlon matrlx acting on ,),( is given by
P, =PMlg...gpths) (4)

where ® denotes the (right) Kronecker product and {hy,...,h:}C{1,...,g}.
The permutation P will be called a marginal permutation.

Definition 2.1. The covariance matrix D({) of a factor { is called in-
variant with respect to a permutation P (further simply P-invariant), if
D({) = D(P() or, equivalently, if PD(¢)P' = D(().

In the next theorem we show that the invariance has strong implications
on the structure of the covariance matrix. Denote, for convenience, 33 =

D(y¥).

Theorem 2.1. If the covariance matriz i is invariant, with respect to
all marginal permutations Py, then it is defined by 2° parameters and has the
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following structure:

2 2
= Z <. Z cal,...,asHl,,al ® & Hs,asa (5)
ay=]1 g=1
where, for all k=1,...,s, Hy 1 15 the identity matriz I, of order ny, Hy, 2
18 aN Ny X N Matriz Jn,C of ones (Jn, = 1p, lnk), and ;... o, 0T€ CONStants

(parameters).

Proof. To see that X, has structure (5), write it as

s = Z Z 0(7:12‘2..41'3)(]'1‘]’2..,]'3)(e‘il Re,Q @ 31’3)(63’1 e, - ® 6]‘5)'

21500588 J1500008

= Z Z Olirin...is)(j1jzds) (€ir 31) ® (es, 6}2)® o ® (eise;‘s)> (6)
11500588 J15ee0d8
where e;, denotes the n;, X 1 vector with 1 on the 4,-th place, and other

COMPONENtS ZeT0S, U (i, . is)(j1j...js) 1S the element of 3, in the k-th row and
I-th column

(’L.h - 1)7’I,h+1 *Npp2 ..t N +7:5,

(Un — Dnpgr - npga oo ng + g
h

n

In the case of one factor &1 (s=1)
= 3> oijleie)) (7)
i g

and the condition P1X,P] = X, for all P, (P, is any permutation matrix
affecting the ordering of components of factor £()), implies

>_jaweZ Zaij (PreelP)) = ZU” (Preie, P) + ZO’U (Prese; Py). (8)
i#]

Equah‘(y (8) holds if and only if

1, ifi =4,

O35 = o .
J Tg, if 7 £ j

and, therefore,

Yy = (71 - TZ)Im + Todn, = c1ly, + co2Jdn, -
In the general case, if ¥; is P;-invariant, then applying (6) we can write
Be = D Olisisis)uinnio) P en el PO )@ (Pto)e; e PI)). (10)

11» ls
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Each component P{) of the Kronecker product P g ... g plh)

acts on the component of v{*) which is associated with the corresponding

factor ¢, Thus, with respect to the first component (P(’“)eile;l pha)y,

the invariance of X, implies

s = Z Za(ilig...is)(iljg...js)(P(hl)eilefilp(hl)l)(g' ' '®(P(h3)€is€§sp(h3)')
s

+ Z ZU(ixiz-.-is)(jljzn-js)(P(hl)eile{jlp(hl),)@)' ) '®(P(h5)eise;sp(h5),)

1151 12,0588

J2sefs
_ 1 h ha)! hs hs)!
et ' z (/1(12133]2]8)'[”1 ® (P( 2)ei2692p( 2) )® e ®(P( 2 )eise.,jsP(L ) )

125.-418
F2,ei008
1 ha ha)' hs s
+ Z CZ(i2»~-is,j2~--js)J"1 ® (P( ~>eize}2P( ?) )® - ®(P( )eise;’sp( ))J
ig,...,i's
J250403]8
(12)
where ci(igl_.is, iangs) 20d c%(h___is’ in...js) 8r€ constants, defined as
1 g .
COlia.is joojs) = Oliriz.is)(jtja-ds)> i 11 = J1,
1 o .
Colip..iis janis) = Oliriais)(ijags)> i 41 7 1,
1 1 1
Cl(ig..isja-ds) — CO(in..ds,jods) — C2(in..isyja-ds)" (13)

If we continue and consider the next component (P(hQ)eizeg-QP(hz)'), then
(12) becomes

5, = Z Ci(iz,“is,jzu,js)]"l ® (P(hg)eize;,?p(hz)r)(g .. ®(P(h’)€i36;sP(h’)')

iz,001

+ Z Cé(iz.“is,jg...js)"]m@ (P(hz)eize;2p(/lz) NCRRE ®(P(h,)eisegsp(ha) )

250l
J2000ds

= Z c%l(ia...is,ja...js)lﬂl @ In, ® (P(’m)eise{jsp(ha)’) @ ®(P(h5)6ise;'sp<hsy)

3,000,158
NESTROSWE]

+ Z Fais...is g ) 1 ® Tna® (p(ha)eise;sp(ns)/) ®_,.®(p(hs)eise;sp(h3),)

i3, 5ts
Jayerds

+ Z 051(13...is,j3...j3)t7n1 ® I, ® (P(ha)eisegsp(h:z) )@ - @(P(hs)eise;sp(hs) ),
1

i3,
J3yeds

+ Z 632(’53--‘is,]‘3--‘js)']"1 ® Jn2® (P(hii)eis(f;’sp(h:i)’) ® e ®(P(h5)eise_,7's‘p(h5)’),

3,0l
NERIRRWE
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where

1 2 o e
cl(iQ...is,jg...js) —Cll(ig...is,jg..,js) — 0(1112...15)(]1j2...]s)3 lle =J1,%2 = J2,
el =c? = O(i149..05)(j1jo.nis)y iL 81 = J1,19 # J
U(iz..is,g2.ds) — C12(i3...i5,53...55) — O(i192..i5)(J1j2...5s ) 1= J1,%2 7 J2,
1 2 e S
Co(iz..vis fa.is) = C2(is. s ja.is) — Oliriz.is)(frja.gs)s 1 11 7# Ji,%2 = Ja,
1 _ 2 e o
C2(i2...is,j2...js) _622(1315,‘73]3) - 0(1112...13)(]1]2...]3)7 lle # .7171‘2 7é .]Z

By continuing in the same manner we finally obtain that the covariance
matrix X has the structure given in (5). O

Theorem 2.1 does not show the explicit form of the invariant covariance
matrix Xs. In general, the structure of Xy is rather complicated. In practical
data analysis, the second- and third-order interaction terms are often of main
interest. The structure of the invariant covariance matrix of the second-order
interaction effects can be found in Nahtman (2002). For the third-order

interaction effects 4(%), the invariant covariance matrix 23 can be constructed
recursively in the following way.
Firstly, let

71 = Cov(Yom 7o),

To = COU('Y,E;;}Z,’Yl]kI) k# K,

T3 = Cov(vf,,ﬂ,%,k) j#4,

Ty = C’ov(’y(;,z,vzjfkf yIF# T EAK,

75 = Cou(yighafy), i # 4,

75 = Cov(y 1) i # 8 k # K,

Ty = Cov('yl(f,z,'yz(?,k) i#1 G # g

T8 = Cov(’yijk,’)’i,jlkl),i #,5#7 k#K,

where 4,4’ = 1,...,n3, 5,5’ = 1,...,ny, k, k' = 1,...,nq, and construct
2(11) =1In, (11 — 72) + Jn, 7o, 2(3) = Iny (75 — 76) + Jn, 7,
2P =L, (r3 — ) + I, S =Ly (1) + Ini s
Secondly, define

20 =1, ® (30 - 5®) + 1, 0 52,
2(2) '*Inz ® ( (3) §4)) + an ® Zgll)a
and then

52
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E

> P >

Sy =Iny ® (O —SP) + B0 = | T2 T2 T (1)
T
50 5@ .. 5®

Alternatively, one may write X3 in the explicit way

Y3=1In, ® |In, ® | (71 — Ty — Ty + T4 — T5 + 76 + 77 — 78) 0y
+ (T2 — T4 — Tg + TS)Jn1 + Jn2® (73—7'4 — 77+ TS)Im + (T4 - 7'8)‘]711
Iy @ |Iny ® | (15 — 76 — 77 + 78) Iny + (76 — T8) I,

-’r—an ® (’7‘7 — Tg)Im -+ TBJm . (15)

The algorithm used to construct the invariant covariance matrix X3 pre-
sented above can be generalized to an arbitrary number of factors.

Theorem 2.2. The matriz 3y in (5) can be written in a recursive form
as

5, = I, @ (5, - 3?) + 7, 0 =2, (16)

where
s = 1, v=1,...,2, (17)
50 = I, @ (504 — =) + 1, 0 B2, (18)

=1, 2% k=1,...,s—1,
where the constants T, characterize the covariances between the components
of 7).
3. Spectrum of the invariant covariance matrix
In the present section the spectrum of ¥; is obtained using the spectra of
matrices Zglll and 2&221 in (16).

Theorem 3.1. Let the covariance matriz %5 be defined as in (16). Let

wy, be an eigenvalue of E@l, wy, be an eigenvalue of Z@l’ h=1,...,p,p=
ny-...-ns_1. Then the spectrum of Ls consists of etgenvalues wh+(n3-—1)w§h

(in = 1,...,p) and eigenvalues of the form wy — wj, -

3=

£
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Proof. The matrices I,, and J,, commute. The construction of Egl_)l
and Ei)l in (16) implies that they commute. Hence, I, ® (Zgl_)] - EEQ_)l)
and Jp, ® Egz_)l are normal matrices which commute. Therefore, they are

simultaneously diagonalizable, i.e. there exists an orthogonal matrix I" such
that

8,0 = Ay + As. (19)
The diagonal matrix A, consists of eigenvalues wy — wj,...,wp — w; of
matrix I, ® (Egl_)l - 222__)1 , each with multiplicity n,. The diagonal matrix

Ay contains the spectrum of J,, ® Egz_)lz (ns — 1)p zero eigenvalues and

nswy ;... ,nswgp. Thus, the spectrum of X; is the following: wi—wj ..., wp—
wgp each with multiplicity (ns —1) and wy + (ng — 1w} , ..., wp + (ns — l)wép
each with multiplicity 1. a

As an example, the spectrum of the P3-invariant covariance matrix X3
is given in Table 1.

Table 1. Spectrum of ¥3.

eigenvalue of 33 multiplicity
M=n1—Tg—13+17— (15 —T6 —T7+718) | (n3—1)(ng—1)(n; —1)
)\2———7’1*7’34-(711«—1)(’@*74) (ng—-l)(TLQ—-l)
~(T5 — 77 + (m — 1)(7‘6 — Tg))
Az =1 — 13+ (ng — 1)(73 — 73) (ng = 1)(ny — 1)
(15 — 76 + (n2 — 1) (77 — 78))
A==+ Ag+ A3 +nong{my — 7'8) (ng—1)
As =71 —To — T3+ Ty (’I’Lg—-l)(ﬂ,l*l)
+(n3 - 1)(75 —Tg — T7 + Tg)
X =T1 — T3+ (N1 — 1) (12 — 74) (ng —1)
+(nz — 1)(rs — 77 + (n1 — 1) (76 — 73))
A7 =T — 19 + (ng — 1)(13 — 14) (ng—1)
+(7’L3 - 1)(7‘5 —T6 + (TLQ - 1)(7‘7 - Tg))
Ag = — X5 + A + A7 + ngng (14 + (n3 —1)1g) | 1

Eigenvectors corresponding to the eigenvalues of ¥¢ have different struc-
tures wy, ..., ws:

Wi = VUpa @ Uy @ Uny, Ws = 1n; @ Uy, @ Uy,
Wy == Uy @ Vp, @ 1y, we = lp; ® v, ® 1py,
W3 = Upy @ 1112 & Vn,q, wy = 17‘L3 ® 1nz ® Un,,
Wy = Upy @ 1y, @ 1y, wg = 1lp; @ 1p, @ 1p,

where v;, 1, =0 (i = 1, 2, 3).




208 TONU MOLS AND TATYANA NAHTMAN

Now, using the structure of I3 in (15), and expressions of eigenvalues of
Y3 (see Table 1), we can rewrite ¥z via its spectrum in the following way

1
23 = I’ng ® Inz ® AlInl - a{)‘l - )\2}Jn1
1 1
— dn, @ {1 = AsHp, — —{ M — X — A3+ M}y
N9 n

1 ) 1
— Ty ® [ Iy ® [{A1 = AsHn, — —{M1 — Xa = A5 + X6} ny
n3 ny

1

- ;1‘217112 ® {)\1 - )\3 - )\5 + )\7}[711
1

— -n~{>\1 ”>\2—/\3+>\4"‘>\5+)\6+>\7‘/\S}Jnl . (20)
1

4. Reparameterization and spectrum of the covariance
matrix of interaction effects

While arbitrary reparameterizations of a factor (in a linear model) may
be mathematically acceptable, not all reparameterizations are equally rea-
sonable for a given application. One of the most used reparameterization
conditions for a factor £ is the null-sum condition ), & = 0. In this section
we demonstrate how this reparameterization condition for a factor £ can be
expressed through the spectrum of the covariance matrix D(£).

In the case when only one factor £ is considered, the singularity of the
P-invariant covariance matrix D(&) of this factor is a necessary and suffi-
cient condition for £ to be reparameterized as ), =0 (see Nahtman, Méls,
2003). The situation with the s-order interaction effects is more compli-
cated. The singularity of the Ps-invariant covariance matrix of 7(5) that
represents s-order interaction effects does not, in general, imply a classical
reparameterization of A8,

The next theorem, which is the main result of the paper, shows that
imposing constraints on the spectrum of the singular P3-invariant covariance
matrix results in classical reparameterizations for '7(3). In the given context,
under classical reparameterization conditions for v we mean the following
conditions:

S =0, Vi kLGl =0,Vik, D a5l =0, Vi

Theorem 4.1. Let v®): (ngngny) x 1 represent the third-order interaction
effects of random factors. Assume fyz(;’,z # 7i('?;‘)k a.s. for alljandk, 71(]3,2 7 ’Yi(;')k
a.s. for all i and k, and 71(]3,2 # fyg,z, a.s. for all i and j. Let E(y®) =0

and let X3 = D(’y(g)) be Ps-invariant. Let Ay,...,Ag be eigenvalues of X3 as

an

arn
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defined in Table 1. Then the following conditions hold:
(i) 2 71J1c_“0: Vik, iff ds=X=M=X=0,
()nymk*(),‘v’i,k, iff A== A7y=2%3=0,
(iii Zk%yk 0, Vi,j, iff do=2X4 =X =Xz =0.

Proof. First, we show that condition (i) holds. Suppose 3, 71(3312 =0 for
all § and &, then

D(ZZ 71(;’,2) = ng71 +n3(ng — 1)75 = n3(n + (n3 — 1)715) = 0, V4, k,

and
71 = —(ng ~ 1)7s. (21)

Condition ), 71(13,2 = 0, for all 7 and k, implies

Z.Z 7o) = 0, Vk,
Z Z ’Y”k =0, VJ)
IIDID IR
and, consequently,

Z Z 71]A = ngnyT1 + n3(n3 - 1)77,27-5 -+ n3n2(n2 _ 1),r3

+ ng(ng — 1)na(ng — 1)77 = 0, VE, (22)
z Z fy”k = ngni7 + n3(n3 — L)n17s + nani(ny — m
+ n3(n3 — ny(ng — 1)1 = 0, V4, (23)

D(Zz Zj Zk 71(]313) = ngnan 7y + n3(ng — 1)nany7s + nana(ng — 1)n 73
+ nanani(n1 — 1)72 + ng(ng — )ng(ng — U)ng 7y
+ n3(ng — Dnang(n1 — )76 + nang(ng — 1)ny(ng — 1)74

+ 7’1;3(77,3 — 1)n2(‘n2 — l)?’Ll (nl — 1)7‘8 = 0. (24)
Replacing 71 in (22) — (24) by (21) we get
T3 = —(ng — 1)7s,
T3 = —(’I’L3 - 1)7‘7,
T4 == —(7'L3 - 1)7’8. (25)

Substitution of obtained 7’s into the expressions of eigenvalues, see Table 1,

leads to A5 = Ag = A7 = Ag = 0, what proves the statement of (i) in one
direction.

53
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Now, suppose that A5 = Ag = A7 = Ag = 0. Then, it follows from (20)

1 1
Y3 = Ins "‘ ‘T;;Jna ® Inz ® AlInl - —'I’E{Al - /\2}Jn1

1 1
—_ —--an ® {)\1 — )\3}In1 - ———{/\1 — Ao — Az + )\4}']711 .
n2 n

Let U = 1n, ® In,n,. Since E(y®) = 0, E(U'y®) = 0, and DU'Y®) =
U'SsU = 0. Thus, Uy =0 a.s. what implies _; 'yfjk =( for all j and k.
This completes the proof of (i).

Condition (ii) is proved in a similar way. Using the condition Z 7Z ) =(),

for all 4 and k, it follows that ;> (;’,2 =0 for all k, and 3,57, 'yijk =0
for all 4. Furthermore,

Z 73
D(Y", > v5h
D(Y. 3 150

DY 50, D)

1l

noTy T 2(77,2 - 1)7’3 = 0, V’i, k,

i

TL3(TL3 - 1)’TLQ’T5 + 713(713 — 1)’17,2(71,2 - 1)7’7 =0, Vk,

I

91 (m — 1)’7’2 -+ ng(nz — 1)77,1 (m — 1)T4 =0, Vi,

H

nz(n3 — 1)nani(n1 — 1)76

3(’1’1.3 - l)‘rLQ('I’LQ - 1)711(77,1 - 1)7‘5 = 0

+
S

and we obtain

= —(na—1)73,

Ty = —~('n,2 - 1)7‘4, (26)
15 = —(ng — 1)77,

16 = —(ng — 1)78

Taking these expressions for the 7's into account, Table 1 gives Az = Ay =
Ar = Ag = 0.

To show that A3 = Ay = A7 = Ag = 0 results in Zj %(f;i = 0, for all 4 and
k, notice

1
E3 - Ina ® In2 - Jn2 &® >\lIn1 - ;L‘l'{Al e >\2}Jn1

1 1
——Jny ® [ In, — an (A = AsHn, — —{A1 = Ao — A5 + Ag}n, |-
ng AN

Define U = I,; ® 1n, ® I,. Since E(y3) =0,

ro
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E(U'Y®) =0, DU'Y®) = U'S3U = 0.
Thus, U’y = 0 a.s. what implies > 'y]k =0 for all 4 and k.

To show that condition (iii) holds, notice that >, ’yzjk = 0, for all ¢
and 7, 1mp11es sz'yg'z =0, for all ¢, ¥, mef;l = 0, for all j, and

D250k %Jk = 0. Taking the variance of these sums we find after some
sunphﬁcafmons that

1 = —(ng — 1)1,
T3 = —(n1 — 1)74, (27)
75 = —(n1 — 1),
77 = —(ny — 1)7g.

Using relationships (27) in the expressions of eigenvalues (see Table 1) leads
t0 Ag = Ay = Ag = Ag = 0.

Finally, assume Ao = Ay = Ag = Ag = 0. In this case it follows from (20)
that

1

1
Sy = {Ina ® [Alfw — - Ag}an] ~h @ [{,\1 ~ s},

—1“{(/\1 —A3) = (A5 — A?)}anH ® [Im - %Jnl].

n2
Define U = I, ® I, ® 1,,. Since E(y®) =0,
B(U'Y®) =0, DU'Y)) = U'SU = 0.

Thus, U'y®) = 0 a.s. what implies >k 'yz(f,z =0 for all 7 and j. O

The next corollary follows from the proof of Theorem 4.1.
Corollary 4.1.

0222 ’Ylgk”()’ VE, iff M =2A=0,

(i) X kv =0, Vi, ff A= =0,

(1) D25 > % 71(3313 =0, Vi, iff de=2Ag=0,

(i) T Sk rn =0 iff Ag=0.
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