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Differential and integral transformations of
parametric functions in biometry

TONU MOLS AND MAREK TUUL

ABSTRACT. We present some useful applications of the linear statisti-
cal covariance modelling. The common classical model ¥ = X + ¢ is
assumed to contain at least one continuous variable in X. Treating the
model as a parametric function X3, and applying certain linear oper-
ators on X, makes it possible to get additional information about the
dependent variable ¥. In particular, it is possible to estimate deriva-
tives, Riemann integrals and Fourier transforms of the dependent vari-
able. The proposed methods are illustrated on real chemical data of Lake
Peipsi (Estonia/Russia). Examples cover the estimation of dynamics of
changes in the concentration of chemical substances in Lake Peipsi, and
the estimation of the total quantity of a substance heterogeneously dis-
tributed in the lake. Calculations are carried out with the SAS software.

1. Introduction

During several years large hydrochemical and hydrobiological data sets of
Lake Peipsi were analyzed using covariance models containing up to hun-
dreds of parameters (Mols and Starast, 2000), (Starast, Milius, Mdls and
Lindpere, 2001). These models present a detailed analytical description of
how water properties have changed during years, and how they depend on
day within the year, geographical coordinates, depth etc. Using parametric
functions, it was possible to compare different years or different parts of the
lake, to test the seasonality, depth-dependence, etc. But we could not find
in literature statistical applications of analytical properties of complicated
regression lines. For example, we did not find methods for estimation of
changes of concentration in time by using the derivative of the regression
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line. Another unsolved problem was the estimation of the total amount of a
substance distributed inhomogeneously in space.

In the present paper we propose a solution for these and analogous prob-
lems. The main idea is to consider the predicted value of the dependent
variable as an estimable parametric function depending on continuous fac-
tors as the year, day within the year etc. Applying then appropriate linear
operators, for example, the derivative, or integral, to these parametric func-
tions, we get new estimable parametric functions that answer the questions.
This approach has been introduced in Méls and Starast (2000).

2. Parametric functions and their confidence limits

We consider statistical models of the form
y(X) = fl(Xl, . ,XN),31 + ...+ fk(X1, .. .,XN)ﬂk + e (2.1)

where Y(X) is the dependent scalar variable, Xi,..., Xy are regressors,
B1,- .., By are model parameters, f1,..., fx are scalar functions of regressors
and £ ~ N(0,0?) is the error term. Denoting

f(X) = (fl(Xh" '>XN)"-'afk(Xla"' 7XN)) (22)
where X = (X3,...,Xn), and

/BT = (ﬁl?“'?ﬂk)’

the formula (2.1) can be written as
Y(X) = f(X)B+e. (2.3)
Denote also
Y(X) = f(X)B, (2.4)
so that Y (X) = E(Y(X)) where E is the expectation. Note that for each
possible value of X, Y (X) is a scalar and therefore the product in the right
side of formula (2.4) defines for each possible value of X a linear combination
of model parameters. Linear combinations L@ of model parameters 3, where
L is a row vector of constants, are called in this paper parametric functions.

In applications the parameters (3; are unknown and must be estimated from
empirical data. Denote by

11 ZIN Y1
: and y=
Tni InN Yn
the matrix of design points (regressor values used in an experiment) and
the vector of corresponding values (responses) of the dependent variable Y.
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Introduce, further, the design matrix

filzin..ziv) oo fielon .. ozw)
F(x) = : : :
fl(wnl---mnN) fk(mnln-an)
The common least squares estimate for 3 is then (Rao, 1965)
B=(FTx)F(x))” F¥(x)y, (2.5)

where A™ denotes a generalized inverse of A.
For simplification, let us call the following equation

Y(X) = f(X)p (2.6)
an estimation of the model (f(X) is defined in (2.2)). Note that Y(X) is
a scalar here and therefore the formula (2.6) defines for each value of X a
least squares estimate for the parametric function (2.4).

In general, the estimate given by (2.6) depends on the selection of the
generalized inverse in (2.5). To avoid complications on this basis, suppose
that for each value of X, the parametric function (2.4) is estimable. This
means, that f(X) is assumed to be for all values of X a linear combination
of rows of F'(x). Formally this means that for each X there exists a constant
vector k(X) so that f(X) = x(X)F(x).

Let 1—« be the confidence level, then the corresponding confidence limits
for an arbitrary estimable parametric function L are given by equations

I{g_ - LB - Q(L)Sta/Q
LB =LB+ q(L)stqys

where £, /5 stands for the a/2 complementary quantile of the ¢,_, -distribu-
tion (r = rankF(x)) and ¢(L) and s are defined by the formulas

o(L) = \/LFT () F(x))"LT

(2.7)

and

Y (In = FE)(FT(0)F(x))” FT(x))y

n—r

8§ =

(2.8)

Let us consider the covariance model (2.3) and let G' be some linear op-
erator which can be applied on the elements of vector f(X), G(f(X)) =
(G(f1(X)), ..., G(f(X))). Then due to the linearity of G we can apply it
on the estimable parametric function f(X)g.

Lemma 2.1. 4 linear transformation of an estimable parametric function
F(X)B is also an estimable parametric function.
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Proof. According to the linearity of G,
G (X)) = G(s(X)F(x)) = Gr(X)F(x) = & (X)F ().
O

The confidence limits corresponding to the confidence level 1 —a are given
for a parametric function G(f(X)3) by equations

(GFX)B = (GF(XNB - a(X)stara,
(GFENB = (GFHX)NF +a(X)stap,
where ¢,/ stands for the o /2-complementary quantile of the ¢,_r -distribu-

tion (r = rankF(x)), 3 and s are given by equations (2.5) and (2.8) respec-
tively, and g(X) is defined by the formula

1l

(2.9)

a(X) = /G CONFT ()P ()G (X))

3. Estimating the derivative of a dependent variable

To obtain the estimate of the derivative ?%%Q’ and the appropriate con-

fidence limits, we calculate derivative by X; of the estimate (2.6):

Y (X) 0
0X;  0X;
Look at this operation as an application of the differentiation operator

Dy,. As aresult, we obtain an estimate of a new parametric function esti-
mating the derivative of Y (X) for the given X value:

Dy ¥ (%) = D f0)f = KX p oy Ol n XN

o O A
fl(Xla'--)XN)ﬁ1+"'+ﬁfk(Xlw'-aXN)IBk-

The confidence limits for this parametric function follow from (2.9):

DxY(X) = DXii}(X) - Q(X)Sta/Z
DXiY(X) = DXif/(X) + ‘I(X)Sta/%

where

¢(X) = /D, f () (FT () F(x)) ™ [Dix, (O]

The obtained confidence limits are related to the variation speed of Y(X)
in direction of X;.
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3.1. Example. In this example we demonstrate the use of derivative in
estimating the periods of significant changes of iron content in Lake Peipsi.
The used data set is a part of the Lake Peipsi database compiled by the In-
stitute of Zoology and Botany of the Estonian Agricultural University (Mols
and Starast, 2000). The dependent variable, denoted by R, is binary loga-
rithm of the content of iron Fe in the water [mg [~1]. Regressors (factors)
are the geographical coordinates (longitude and latitude) of the observation
site, year of observation and the day within the observation year. Variables
that express influence of the year, the day within a year and the geographi-
cal position to the dependent variable, are presented in Table 1. Arguments
X1,..., Xy are the transformed year a = (year — 1920)/10, the transformed
day within a year t = (number of a day within a year)/365, the trans-
formed latitude ¢ = (latitude — 57.83)/1.18 and the transformed longitude
¥ = (longitude—26.93) /1.24. In Table 1, f(x|u; o) denotes the density func-
tion of the normal distribution with mean u and standard deviation o, and
the definitions of argument functions fi(a,,£,1) are presented in abridged
form f;. The estimate of the model which describes the variation of variable
It is given as follows:

R(avtaévd)) == (fl(a':t7§9’¢')7 v 7f68(a7ta€1¢))lé' (31)

/.,,/"
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FIGURE 1. Estimate of binary logarithm R of the content of
iron Fe in the water [mg {7!] at the geographical point 0,
with 95% confidence limits.

55




218

TONU MOLS AND MAREK TUUL

TABLE 1. Terms of the linear model which describes logarith-
mic content of iron in water (R) of Lake Peipsi. Notation: a
- transformed year, t - transformed number of a day within
a year, ¢ - transformed latitude, 1 - transformed longitude,

[l o)
fi = f(a] 4.0;0.95)
3= f(a]| 7.7,0.95)
fo=13(1—1)°
fr=9%(1 —1/))
fo=9*(1 - )
m=e01-¢°
fiz3 = (a,i40 0.95) f(a|56 0.95)
fis = f(a] 4.0;0.95) £%( —5#
fir = f(a] 7.7;0.95) £( —f)
fio = f(a] 5.6;0.95) £3( “5)
for = f(a] 4.0;0.95) £4(1 - )
foz = f(a] 7.7;0.95) €4(1 — €)°
fas = f(a ] 5.6;0.95) ¢2(1 wﬁ
for = f(a] 4.0;0.95) 93(1 — )
fao = f(a] 7.7;0.95) ¢3(1 — )’
f31 = f(a]| 5.6; 095) (1 — )
faz = €2(1 — &)* (1 — )"
fas = €M1 = &% 2 (1 - )°
far =81 -2y (1 — )’
fao = (1 - )" (1 - )
fa=601-8* (1 -9)°
fuz = f(a] 5.6;0.95) £3(1 — ¢)*
fa5 = f(a| 4.0;0.95) t3(1 -—t)
f47 = f(a[ 7 7 0 95) t3(1 —t)
fi0 = fla|5.6;0.95) t4(1 — t)*
fs1 = £2(1 §) (1 — )4
fes = 21— &) 21— 1)
fo5 = €31 — @%%1t>
for=&41 - ) 21— t)4
feo = 11— )% #1(1 — 1)
for = 92(1 — fﬁa—ﬂ
foz = 9P — ) 21 - t)°*
ﬁm:wu~¢fﬂu—ﬂ
for =91 — ) 31— 1)

- density function of normal distribution.

fo = f(a] 5.6;0.95)
fa=t2(1-1)"
fo=11(1—1)
fo=92(1 —9)°

f1o
f12
f14
fis
fis
fao
fo2
fa4
fas =
P

fas
50
fs2
fs4
fs6
fs8
fe0
fe2
foa
fes
fes

=(1-¢)°
=41 - ¢)?
= f(a| 5.6;0.95) f
= f(a} 5.6;0.95
f(a] 4.0;0.95
fla] 7.7;0.95
f(a] 5.6;0.95
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FIGURE 2. Estimate of derivative of logarithmic content R
of iron, with its 95% confidence limits (at the geographical
point O).

To display the values of predicted by model, we fix an arbitrary geograph-
ical reference point in the lake. In the current example we use a point of
58°51'11" latitude and 26°58'8" longitude and mark it with symbol O. The
prediction and confidence limits for variable R are presented in Figure 1. In
3-dimensional figures the upper confidence limits are presented by “nails”,
the lower limits have the same length underneath the surface of the diagram.
To estimate the speed of annual change of variable R, we have to calculate
the derivative of the estimate of the model (3.1) by the argument o and
divide it by 10, since 1a = 10 years:

1

DYearR(aa t, 57 1/)) = 10DaR(a7 i, ¢, 7/))7

where
~ o Is) o
DaR(a7 t: 67 'lp) = (%fl(a’at)& 'lp)v teey 5(;]‘.68(“7 t,é‘,’lp)) IB

Figure 2 presents the changing speed of variable R and its 0.95 confidence
limits at the geographical point O of the lake. Figures 3 and 4 present
respectively the cross-sections of Figures 1 and 2 by the 300** day. From
Figure 4 it is easy to find the time intervals where the variation speed of iron
content differs from zero with the confidence probability 0.95.
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-5
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FIGURE 3. Estimate of logarithmic content R of iron, with its
95% confidence limits by the 300 day (at the geographical
point O).

4. Estimating the integral of dependent variable

To estimate the integral [, ,{f;“ Y (X)dX; and to find its appropriate confi-
dence limits, we integrate (2.6) by X; over the interval [X;;, Xy ]:
Xiu X

V(X)dX; = FilXe, o XN)Bd X + ...
X X

Xiu N

* e fe(X1, .o Xn) Brd X (4.1)
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FIGURE 4. Estimate of the derivative of logarithmic content ,
R of iron, with its 95% confidence limits by the 300" day of -
the observation years (at the geographical point O).
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Look at this operation as applying an integral operator I X (X, X As a

result, we obtain an estimate of a parametric function:
k Xiu N
I ¥ (X) = Ly xon F(X)B = Z/X 55X, Xn)dXafs.
j=1 il

This estimate depends on arguments X1,. .. v Xi-1, Xi41;- -+, XN. The con-

fidence limits for the related parametric function follow from the formula
(2.9):

iu)'

N

Lxixaxa)Y (X)) = Ixyxy x0) Y (X) = ¢(X)sta)o
IXi(XilaXiu)Y(X) = Xi(f‘(ihXiu)Y(X) + q(X)Sta/Q’

where

900 = \/Tx, (e f () (FT 0O F () [T gy f T

4.1. Example. In the following example we estimate amount of total ni-
trogen (denoted by K and measured in tons) in the 1-meter surface layer of
Lake Peipsi. We calculate K from the following Riemann integral:

K(a,t) = / / / Na,t,9,¢,s) agr, any, ds de dd, (4.2)
NLJEL /D

where NL is the integration interval for the latitude ¥, EL is the inte-
gration interval for the longitude ¢, D is the integration interval for the
depth s (in current example D = [0,1] and we assume that in this 1-
meter deep surface layer the content of nitrogen is constant), ap; and
ang, are the transformation coefficients from degree scale to meter scale
(in the region of Lake Peipsi, ap; =~ 57800 m/°, anr == 111250 m/°),
and N(a,t,9,¢,5) [mg m™3] denotes the content of nitrogen in the sur-
face layer of Lake Peipsi on day t of the observation year a. At first we
compose a model which describes distribution of nitrogen in the lake during
the observation period (1985 — 2002). Model terms which express influ-
ence of a year, day within a year, and geographical position, to the nitro-
gen content, are presented in Table 2. ArgumentsXy, ..., Xy are the trans-
formed number of year a = (year — 1920)/10, the transformed day within
a year t = (number of a day within a year)/365, the transformed latitude
9 = latitude — 57.83, and the transformed longitude ¢ = longitude — 26.93.
In Table 2 f(z | 4; 0) denotes the density function of the normal distribution
and the argument functions f;(a,t,4, ) are presented in abridged form f;.
The estimate of the model which describes the content of nitrogen is given
as follows:

N(aat:ﬁa(p) = (fl(a',ta’l?ago): e -1f38(a’at7197 W))ﬂ
The geographical integration intervals of integral (4.2) are defined by 83
rectangles. The north-south directional side of all 83 rectangles has a length
of 50” latitude and the length of the east-west directional side depends on
the coastline.
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TABLE 2. Terms of the linear model which describes the ni-
trogen content of water in Lake Peipsi. Notation: a - trans-
formed year, ¢ - transformed number of a day within a year, 9
- transformed latitude, ¢ - transformed longitude, f(z| y;0)
- density function of normal distribution.

f1= f(a] 6.85;0.5) f2=fla]7.2;0.5)
f3 = f(a| 7.55;0.5) fa = fla] 7.9;0.5)
fs =121 —1t)’ fo=1(1 1)’
fr=t(1-1)? fo=1
fo 192 fo=¢
i1 = fi2=f(a

i3 (a] 7.2;0.5) f(a] 7.55;0.5) fia = f(a|7.55;0.5) f(a|7.9;0.5)
fis = fla] 6.85;0.5) ¥ fie = f(a| 7.2;0.5) 9
fir = f(a] 7.55;0.5) 9 fis = f(a] 7.9;0.5) 9
fio 7 fao = f(a|7.2;0.5)
P
Do
D

| 6.85;0.5) f(a]7.2;0.5)

| 6.85;0.5
| 7.55;0.5
| 6.85;0.5
| 7.55:0.5

)

|

f21 % foo = f(a| 7.9;0.5)
)

| 6.85;0.5) ¢

)t

)

)

)

)

fae = f(a] 7.2;0.5) d¢
f26 = f(a] 7.9;0.5) dp

f
f
f
f
f
foz=f
fos = f
for=f
Joo=f
faa=f
faa=f
fas = f
far=f

1 fag = fla] 7.2;0.5) t2(1
1 f30 = f(a]7.9;0.5) #3(1
1 fa2 = f(a] 7.2;0.5) t3(1

*(
*(
| 6.85;0.5) £3(
(1 faa = f(a] 7.9;0.5) £*(1
(
(

| 7.55,0.5
| 6.85;0.5
| 7.55;0.5

t3
tS
(1 fas = fla] 7.2;0.5) t4(1

a
a
a
a
a
a|7.55,0.5) t
a
a
a
a fas = f(a] 7.9;0.5) #4(1

(
(
(
(
(
(
(
(
(
(

The estimate for the mass of nitrogen in the one meter deep surface layer
of Lake Peipsi is given by the estimate of the parametric function as follows:

83 1
Z/ / / fl(a,t,ﬂ,(p)CYELO(NLde(,Dd’l?,...,
i=1 NL; JEL; JO

83 1
Z/ / /fgg(a,t,ﬂ,cp)aELaNLdsdgodﬂ B.
1 NL; JEL; JO

The estimate of variable K with its 0.95 confidence limits over the whole
observation period is presented in Figure 5. Figure 6 shows the cross-section
of Figure 5 by the 185" day of the observation years.
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FIGURE 5. Estimate of total amount K of nitrogen (in tons)
in the 1-meter deep surface water in Lake Peipsi, and its 95%
confidence limits.

K
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FIGURE 6. Estimate of total amount K of nitrogen (in tons)
in 1-meter deep surface layer of Lake Peipsi on the 185" day

of the observation years, and the corresponding 95% confi-
dence limits.
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