Preservation of stochastic order in \mathbb{R}^2 under random rotations

RICHARD PINCUS

ABSTRACT. For a specified order relation in \mathbb{R}^2, it is shown that a shift parameter family of distributions remains stochastically ordered, if it is transformed by random orthogonal rotations. The result has applications in monotonicity problems of the roots of Wishart matrices.

1. Introduction

Let x_1, \ldots, x_k denote independent normally distributed p-dimensional variables

$$x_i \sim N_p(0, I), \quad i = 1, \ldots, k.$$

The matrix

$$W = x_1x'_1 + \cdots + x_kx'_k \quad (1)$$

has a Wishart distribution with k degrees of freedom, shortly written $W \sim W_p(k, I)$. If x_1, \ldots, x_k are not all centered at zero, but have mean vectors m_i instead, $i = 1, \ldots, k$, the random $p \times p$-matrix W, the so-called "Sums of Squares of the Hypothesis", is said to have a non-central Wishart distribution $W_p(k, I; MM')$. Its non-centrality parameter MM' is

$$MM' = m_1m'_1 + \cdots + m_km'_k.$$

In Multivariate Analysis of Variance (MANOVA) the characteristic roots, or eigenvalues, of W play an important role. These roots remain unchanged if an orthogonal matrix C transforms the observations x_i and W to Cx_i and CWC', respectively, so one can assume without loss of generality that MM' has only non-negative diagonal entries. Consequently, we might assume the mean vectors m_i of x_i to have the form

$$m'_i = (0, \ldots, \lambda^{1/2}_i, \ldots, 0), \quad i = 1, \ldots, p.$$
Since many years the statistical question, if the roots of W are stochastically increasing under increasing roots λ_i of the non-centrality, remains open.

The term “stochastically increasing” means that for all increasing functions f of the p roots of W the expectation $E f$ is increasing in the parameters $\lambda_1, \ldots, \lambda_p$, see Lehmann (1955). If f is used as a test statistic with rejection region $f \geq c_0$, then stochastic increasing roots of W automatically imply monotonicity of the power of the respective test procedures.

In the simplest case $p = k = 2$ under fixed norm $\|x_2\|$ one finds an orthogonal rotation C, depending on x_2, of course, which transforms x_2 to a multiple of e_2 (the 2-nd unit vector). Applying this rotation to x_1 too, this would not change the eigenvalues of W, but W is now represented by a sum

$$W = y_1 y_1' + e_2 e_2'.$$

With e_2 fixed, it remains to show that the random vector $y_1 = C_{\theta(x_2)} x_1$ is stochastically increasing in λ_1 with respect to a specific order relation. A simple analysis shows that the random rotation angle θ is distributed symmetrically and unimodal. Consequently its distribution can be represented as a mixture of uniform distributions. In Pincus (2000) a proof for stochastic monotonicity of the roots of a two-dimensional Wishart matrix was given that way. Since the two-dimensional normal distribution of x_1 is a mixture of uniform distributions on lines, there is a motive to look at random rotations $C_{\theta u}$, where u stands for a one-dimensional uniformly distributed variable in \mathbb{R}^2 with a shift parameter t, see Section 3. By showing the stochastic monotonicity of this uniformly rotated family in the shift t in Section 4 we have a tool to generalize the stochastic monotonicity of the roots of (1) to certain non normal situations, and perhaps a tool for handling the case of general dimension p and number k.

Following Perlman and Olkin (1980) stochastic monotonicity of the roots of W carries over to stochastic monotonicity of the roots of the MANOVAR-matrix $S^{-1/2} W S^{-1/2}$, with S being the “Sums of Squares of Errors” matrix.

2. A special order in \mathbb{R}_+^2

In Euclidean spaces it is common to define an order relation between vectors componentwise, i.e. $x \leq y$ iff $x_i \leq y_i$ for all i. In this paper we use an alternative order relation \leq_+ in \mathbb{R}_+^2 which is defined as follows:

$$x \leq_+ y \quad \text{iff} \quad x_2 \leq y_2 \quad \text{and} \quad \frac{x_1}{x_2} \leq \frac{y_1}{y_2}. \quad (2)$$

In Figures 1 and 2 there are sketched the points x being larger or smaller than a given x_0 in the context of the respective partial order.
Two equivalent definitions of the \leq_+ relation are:

$x \leq_+ y \iff y = \beta x + \delta e_1$, and $0 \leq \delta, 1 \leq \beta$ (e_1 is the first unit vector),

$x \leq_+ y \iff y_1 = \gamma x_1$ and $y_2 = \beta x_2$, and $1 \leq \beta \leq \gamma$.

Figure 1. The order relation \leq in \mathbb{R}^2_+

Figure 2. The order relation \leq_+ in \mathbb{R}^2_+
The \leq_+ order easily extends in a symmetric way to \mathbb{R}^2 if we identify vectors with the same absolute components. Definition (2) simply changes to

$$x \leq_+ y \quad \text{iff} \quad |x_2| \leq |y_2| \quad \text{and} \quad \frac{|x_1|}{|x_2|} \leq \frac{|y_1|}{|y_2|}.$$

(3)

Two probability distributions Q and P are stochastically \leq_+-ordered, short $Q \leq_+ P$, iff

$$\int f \, dQ \leq \int f \, dP$$

for all measurable and bounded nondecreasing (in the \leq_+-sense) functions f, or equivalently

$$Q(\mathcal{F}) \leq P(\mathcal{F})$$

for all measurable and bounded nondecreasing (in the \leq_+-sense) sets \mathcal{F}, see Lehmann (1955). Obviously, if $X(x)$ is a family of random variables, fulfilling $z \leq_+ X(x)$ a.s., and z is Q-distributed, then denoting the total distribution of X by P^X, we have $Q \leq_+ P^X$, see Strassen (1965). The family of distributions of $X(z)$ is called a stochastic kernel.

3. Random rotation of shifted uniform distributions

In this section we consider a family of one-dimensional uniform distributions V_t in \mathbb{R}^2 with (disjoint) supports $\{(t, z_2)', -a \leq z_2 \leq a\}$. Clearly $V_t \leq_+ V_{t'}$, if $0 < t < t'$. Our aim is to study the total distribution, Q_t, say, of a random V_t-distributed vector z, being randomly rotated by an orthogonal matrix C_θ, where

$$C_\theta = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

and the rotation angle θ is uniformly distributed between $-\alpha$ and α, $0 \leq \alpha \leq \frac{\pi}{2}$.

In Figure 3 there is sketched the basic position of the supports of two distributions V_t and $V_{t'}$, $0 < t < t'$, before the rotations between $\pm \alpha$ are applied.

Only for illustration in Figure 4 a typical form of the support of the randomly rotated V_t is given. Note, that depending on the size of t, α and a, the point A, which is $(t, a)'$ rotated by α, may lie in the positive orthant. Also the second component of F', the rotation of $(t, a)'$ by $-\alpha$, might be negative. The proofs in the next section are, however, easy to adapt to these situations.

The distribution of the randomly rotated V_t, i.e. Q_t, has the density

$$q_t(u_1, u_2) = \frac{1}{4\alpha^2 \sqrt{r^2 - t^2}}$$

where $r^2 = u_1^2 + u_2^2$

on its support, multiplied by the factor 2 in the 'dark' region.
Ultimately wishing to prove that this total distribution \(Q_t \) is stochastically increasing in \(t \) with respect to the \(\leq_+ \) order, we start with a monotonicity
property of the marginals. $Q_t^{(1)}$ and $Q_t^{(2)}$ denote the distributions of $\left| \frac{u_1}{u_2} \right|$ and $|u_2|$, respectively, if Q_t is the distribution of the random vector (u_1, u_2).

Lemma 1. If $0 \leq t < t'$, then for the distributions of the marginals one has

$$Q_t^{(1)} \leq Q_{t'}^{(1)} \text{ and } Q_t^{(2)} \leq Q_{t'}^{(2)}.$$

Proof. The probability of any randomly (between $-\alpha$ and α) rotated point z to lie in the double cone $\left\{ (u_1, u_2) : \left| \frac{u_1}{u_2} \right| \geq c \right\}$ is an increasing function of $\left| \frac{z_1}{z_2} \right|$. Denoting this probability by $h_t(z)$ if z is a point (t, z) on the support of V_t, or by $h_{t'}(z)$ if z is a point (t', z) on the support of $V_{t'}$, we have $h_t(z) \leq h_{t'}(z)$ and

$$Q_t\left(\left| \frac{u_1}{u_2} \right| \geq c \right) = \frac{1}{2a} \int_{-a}^{a} h_t(z) \, dz \leq \frac{1}{2a} \int_{-a}^{a} h_{t'}(z) \, dz = Q_{t'}\left(\left| \frac{u_1}{u_2} \right| \geq c \right).$$

In a similar way we prove $Q_t(|u_2| \geq c) \leq Q_{t'}(|u_2| \geq c)$. Here we note that for a fixed rotation θ the probability, say $k_t(\theta)$, of the rotated support of V_t to lie outside the stripe $\{(u_1, u_2) : |u_2| \leq c\}$ is increasing in t. Integration on θ gives

$$Q_t(|u_2| \geq c) = \frac{1}{2\alpha} \int_{-\alpha}^{\alpha} k_t(\theta) \, d\theta \leq \frac{1}{2\alpha} \int_{-\alpha}^{\alpha} k_{t'}(\theta) \, d\theta = Q_{t'}(|u_2| \geq c).$$

Yet another monotonicity result will be useful in section 4. Let A_x denote the set of all $y \in \mathbb{R}^2$ with $x \leq y$.

Lemma 2. If $0 \leq t < t'$, then

$$Q_t(A_x) \leq Q_{t'}(A_x)$$

holds for all x.

Proof. We used in the proof of Lemma 1 that for a fixed rotation θ the probability $k_t(\theta)$, i.e. the length of the rotated support of V_t outside the stripe $\{(u_1, u_2) : |u_2| \leq x_2\}$ was increasing in t. Elementary analytic geometry shows that the relative length, i.e. the conditional probability of that part which additionally is contained in the cone $\left| \frac{u_1}{u_2} \right| \geq \left| \frac{z_1}{z_2} \right|$, is also increasing in t. Consequently their product, which is the probability of A_x under fixed θ is increasing in t. Integration on θ gives the desired result. \(\square\)

4. Stochastic monotonicity of rotated uniform distributions

The stochastic monotonicity of its marginals does not mean that a multivariate distribution family is monotone in its specified sense.
Since a direct proof for $Q_t \leq Q_{t'}$ is not available, we will proceed with an infinitesimal argument. If t and t' are close enough, their supports intersect, as indicated in Figure 5.

Taking the difference $t' - t = \Delta$ small, in Figure 4 in the light area, the difference $q_{t'}(u_1, u_2) - q_t(u_1, u_2)$ is positive of order Δ, in the medium gray one $q_{t'}(u_1, u_2)$ is zero, while in the dark gray region $q_{t'}(u_1, u_2) - q_t(u_1, u_2)$ equals or approximates $q_{t'}(u_1, u_2)$.

For convenience we map all points to their counterparts (with the same absolute components) in the positive orthant, thus getting a situation sketched in Figure 6. From now on by Q_t and $Q_{t+\Delta}$ and their densities we mean the induced probabilities on the positive orthant. The 'medium gray' stripe in Figure 5, which approximates the curve A-B-D and has thickness Δ will shortly be denoted as Δ-stripe.

Now we construct a stochastic kernel which transforms Q_t to $Q_{t+\Delta}$ in the following way:

If $q_{t+\Delta}(u) \geq q_t(u)$, then $X(u) = u$ a.s., if $q_{t+\Delta}(u) < q_t(u)$, which happens only in the Δ-stripe. Then with probability $\kappa = q_{t+\Delta}(u)/q_t(u)$ we set $X(u) = u$, while with probability $1 - \kappa$ the distribution of $X(u)$ is 'proportional' to $Q_{t+\Delta} - Q_t$ in an appropriately chosen region R_u. It remains to check if this can be done so that $u \leq X(u)$.
(i) First we represent A-B-D by a parametrized curve \(x(s) \), where \(s \) denotes the second component of \(x \), so that \(x(0) = D, x(b_2) = B \) and \(x(a_2) = A \). For any \(s, b_2 \leq s \leq a_2 \), we denote by \(\tilde{s} \) the value, for which \(Q_t(A_{x(s)}) = Q_t+\Delta(A_{x(\tilde{s})}). \) By Lemma 2 we have \(\tilde{s} > s \), and therefore \(x(s) \leq x(\tilde{s}) \) and moreover \(x(s) \leq \Delta A_{x(\tilde{s})} \). Finally, note that \(x(\tilde{s}) - x(s) \) is of order \(O(\Delta) \).

(ii) Now for any \(s, 0 \leq s < b_2 \), we define \(\tilde{s} \) to be the value, for which \(Q_t(B_{x(s)}) = Q_t+\Delta(B_{x(\tilde{s})}). \) Here \(B_x \) denotes the stripe \(\{(u_1, u_2) : 0 \leq u_2 \leq x_2 \} \). By Lemma 1 we have \(\tilde{s} > s \), and therefore \(x_2(s) < x_2(\tilde{s}) \). Moreover, \(x(\tilde{s}) - x(s) \) is of order \(O(\Delta) \).

(iii) The distribution of \(X(u) \) has yet to be defined on the \(\Delta \)-stripe. For a small fixed \(\Delta \) and small \(ds = o(\Delta) \) we denote by \(U_4 \) for \(b_2 \leq s \leq a_2 \) the intersection of the \(\Delta \)-stripe and the convex cone with vertex at zero, spanned by \(x(s) \) and \(x(s+ds) \). For every \(u \in U_4 \) the variable \(X(u) \) equals \(u \) with probability \(\nu = q_t+\Delta(u)/q_t(u) \), while with probability \(1 - \nu \) its distribution is the normalized difference \(Q_t+\Delta - Q_t \) in the region \(R_\nu \), the intersection of \(A_{x(s)} - A_{x(\tilde{s}+ds)} \) and the complement of the \(\Delta \)-stripe.

Let \(s^*_b \) denote \(\tilde{s}(b_2) \), and \(s^* \) be the value for which \(\tilde{s}(s) = b_2 \). For \(0 \leq s < s^* \leq b_2 \) we denote by \(U_4 \) the intersection of the \(\Delta \)-stripe and the set \(\{(u_1, u_2) : s \leq u_2 < s + ds \} \). For every \(u \in U_4 \) the variable \(X(u) \) equals \(u \) with probability \(\nu = q_t+\Delta(u)/q_t(u) \), while with probability \(1 - \nu \) its distribution differs from that of \(U_4 \) by \(q_t+\Delta \). If \(U_4 \) differs from that of \(U_4 \) by \(q_t+\Delta \) (differ according to the defintion of \(A_{x(s)} \)) (iv) It so th that \(s_1+ds_1 \) def the \(\Delta \) since it is stochastic.

The

Proof

holds.

compes

ds = o(\Delta) we denote by \(U_4 \) for \(b_2 \leq s \leq a_2 \) the intersection of the \(\Delta \)-stripe and the convex cone with vertex at zero, spanned by \(x(s) \) and \(x(s+ds) \). For every \(u \in U_4 \) the variable \(X(u) \) equals \(u \) with probability \(\nu = q_t+\Delta(u)/q_t(u) \), while with probability \(1 - \nu \)
its distribution is the normalized difference \(Q_{t+\Delta} - Q_t \) in the region \(\mathcal{R}_s = B_{\mathcal{X}(\bar{s}+d\bar{s})} - B_{\mathcal{X}(\bar{s})} = \{(u_1, u_2) : \bar{s} \leq u_2 \leq \bar{s} + d\bar{s}\} \).

\(\mathcal{U}_s \) is the intersection of the \(\Delta \)-stripe and the complements of \(\mathcal{A}_{\mathcal{X}(s^*)} \) and \(B_{\mathcal{X}(s^*)} \). For every \(u \in \mathcal{U}_s \) the variable \(X(u) \) equals \(u \) with probability \(\kappa = q_{t+\Delta}(u)/q_t(u) \), while with probability \(1 - \kappa \) its distribution is the normalized difference \(Q_{t+\Delta} - Q_t \) in the region \(\mathcal{R}_s \), the intersection of the complements of \(\mathcal{A}_{\mathcal{X}(s^*)} \) and \(B_{\mathcal{X}(s^*)} \) and of the \(\Delta \)-stripe.

(iv) Let now \(s_0 < s_1 < \cdots < s_n \) be a decomposition of the interval \([0, a_2] \) so that \(s_0 = 0, s_n = a_2 \) and \(s_k = s_l = s^* \) for some \(k, l \). Setting \(s_{i+1} = s_i + d_{s_i} \), \(i = 1, \ldots, n \), we get by the constructions in (iii) a stochastic kernel, defined on the whole support of \(Q_t \). Remember that \(X(u) = u \) a.s. outside the \(\Delta \)-stripe.

It is evident by construction, that the stochastic kernel, applied on \(Q_t \), induces \(Q_{t+\Delta} \) for fixed \(\Delta \). We can not, however, prove that \(u \leq X(u) \) a.s., since for fixed \(\Delta \) there exists \(u \in \mathcal{U}_s \) and \(v \in \mathcal{R}_s \), such that \(u \leq v \) does not hold. Nevertheless we have

Theorem 1. The distribution family \(Q_t \) of rotated uniform distributions is stochastically monotone increasing in the shift parameter \(t \).

Proof. (i) Let \(\mathcal{F} \) be any nondecreasing set. For any fixed \(\Delta \) the inequality

\[
Q_{t+\Delta}(\mathcal{F}) \geq Q_t(\mathcal{F}) - Q_t(u \in \mathcal{F} : X(u) \notin \mathcal{F})
\]

holds. The set \(\mathcal{Z} = \{u \in \mathcal{F} : X(u) \notin \mathcal{F}\} \) must be contained in the \(\Delta \)-stripe. We consider at first the part \(\mathcal{Z}_1 \) between \(A \) and \(B \), i.e. with second component \(u_2 \) between \(b_2 \) and \(a_2 \). Let \(f_* \) denote the infimum of the second component of all points in the intersection of \(\mathcal{F} \) and the \(\Delta \)-stripe. Because of the nondecreasing character of \(\mathcal{F} \), the region 'right hand' of the \(\Delta \)-stripe with second component \(u_2 \geq f_* \) belongs to \(\mathcal{F} \). By the construction of \(X(u) \) and some analytic geometry we see that only points \(u \) in the stripe \(\{f_* \leq u_2 \leq f_* + \gamma \Delta \} \) are candidates for \(X(u) \notin \mathcal{F} \), where \(\gamma \) depends on \(t \) and the angle \(\alpha \). This way we can estimate the area of \(\mathcal{Z}_1 \) by \(\gamma \Delta^2 \), and the probability \(Q_t(\mathcal{Z}_1) \) as \(O(\Delta^2) \).

In a similar way we proceed for \(\mathcal{Z}_2 \) with the second component \(0 \leq u_2 \leq s_* \), and get \(Q_t(\mathcal{Z}_2) = O(\Delta^2) \).

The set \(\mathcal{Z}_3 \) is contained in \(\mathcal{U}_s \). But \(Q_t(\mathcal{U}_s) \) is seen to be of order \(O(\Delta^2) \), so \(Q_t(\mathcal{Z}_3) = O(\Delta^2) \).

(ii) Assume that the family \(Q_t \) is not stochastically monotone increasing, then there would exist a nondecreasing set \(\mathcal{F} \) and two values \(0 \leq t' < t'' \) such that

\[
Q_{t'}(\mathcal{F}) > Q_{t''}(\mathcal{F}).
\]

Then there exists at least one \(t \) satisfying \(\frac{d}{dt} Q_t(\mathcal{F}) < 0 \), this however contradicts our result \(Q_{t+\Delta}(\mathcal{F}) \geq Q_t(\mathcal{F}) - O(\Delta^2) \). \(\Box \)
References

Institute of Mathematics, University Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany

E-mail address: pincus@rz.uni-potsdam.de