Preservation of stochastic order in \mathbb{R}^2 under random rotations ### RICHARD PINCUS ABSTRACT. For a specified order relation in \mathbb{R}^2 , it is shown that a shift parameter family of distributions remains stochastically ordered, if it is transformed by random orthogonal rotations. The result has applications in monotonicity problems of the roots of Wishart matrices. ## 1. Introduction Let $\mathbf{x}_1,...,\mathbf{x}_k$ denote independent normally distributed p-dimensional variables $$\mathbf{x}_i \sim N_p(\mathbf{0}, \mathbf{I}), \quad i = 1, ..., k.$$ The matrix $$\mathbf{W} = \mathbf{x}_1 \mathbf{x}_1' + \dots + \mathbf{x}_k \mathbf{x}_k' \tag{1}$$ has a Wishart distribution with k degrees of freedom, shortly written $\mathbf{W} \sim \mathsf{W}_p(k,\mathbf{I})$. If $\mathbf{x}_1,...,\mathbf{x}_k$ are not all centered at zero, but have mean vectors \mathbf{m}_i instead, i=1,...,k, the random $p\times p$ -matrix \mathbf{W} , the so-called "Sums of Squares of the Hypothesis", is said to have a non-central Wishart distribution $\mathsf{W}_p(k,\mathbf{I};\mathbf{M}\mathbf{M}')$. Its non-centrality parameter $\mathbf{M}\mathbf{M}'$ is $$\mathbf{M}\mathbf{M}' = \mathbf{m}_1\mathbf{m}_1' + \cdots + \mathbf{m}_k\mathbf{m}_k'.$$ In Multivariate Analysis of Variance (MANOVA) the characteristic roots, or eigenvalues, of \mathbf{W} play an important role. These roots remain unchanged if an orthogonal matrix \mathbf{C} transforms the observations \mathbf{x}_i and \mathbf{W} to $\mathbf{C}\mathbf{x}_i$ and $\mathbf{C}\mathbf{W}\mathbf{C}'$, respectively, so one can assume without loss of generality that $\mathbf{M}\mathbf{M}'$ has only non-negative diagonal entries. Consequently, we might assume the mean vectors \mathbf{m}_i of \mathbf{x}_i to have the form $$\mathbf{m}'_i = (0, ..., \lambda_i^{1/2}, ...0), \quad i = 1, ..., p.$$ Received October 5, 2003. ²⁰⁰⁰ Mathematics Subject Classification. Primary 60E15; Secondary 62H15, 15A52. Key words and phrases. Stochastic order, Wishart matrix, MANOVA. Since many years the statistical question, if the roots of **W** are stochastically increasing under increasing roots λ_i of the non-centrality, remains open. The term "stochastically increasing" means that for all increasing functions f of the p roots of \mathbf{W} the expectation $\mathbf{E}f$ is increasing in the parameters $\lambda_1, ..., \lambda_p$, see Lehmann (1955). If f is used as a test statistic with rejection region $f \geq c_{\alpha}$, then stochastic increasing roots of \mathbf{W} automatically imply monotonicity of the power of the respective test procedures. In the simplest case p = k = 2 under fixed norm $\|\mathbf{x}_2\|$ one finds an orthogonal rotation \mathbf{C} , depending on \mathbf{x}_2 , of course, which transforms \mathbf{x}_2 to a multiple of \mathbf{e}_2 (the 2-nd unit vector). Applying this rotation to \mathbf{x}_1 too, this would not change the eigenvalues of \mathbf{W} , but \mathbf{W} is now represented by a sum $$\mathbf{W} = \mathbf{y}_1 \mathbf{y}_1' + \mathbf{e}_2 \mathbf{e}_2'.$$ With \mathbf{e}_2 fixed, it remains to show that the random vector $\mathbf{y}_1 = \mathbf{C}_{\theta(\mathbf{x}_2)}\mathbf{x}_1$ is stochastically increasing in λ_1 with respect to a specific order relation. A simple analysis shows that the random rotation angle θ is distributed symmetrically and unimodal. Consequently its distribution can be represented as a mixture of uniform distributions. In Pincus (2000) a proof for stochastic monotonicity of the roots of a two-dimensional Wishart matrix was given that way. Since the two-dimensional normal distribution of \mathbf{x}_1 is a mixture of uniform distributions on lines, there is a motive to look at random rotations $\mathbf{C}_{\theta}\mathbf{u}$, where \mathbf{u} stands for a one-dimensional uniformly distributed variable in \mathbb{R}^2 with a shift parameter t, see Section 3. By showing the stochastic monotonicity of this uniformly rotated family in the shift t in Section 4 we have a tool to generalize the stochastic monotonicity of the roots of (1) to certain non normal situations, and perhaps a tool for handling the case of general dimension p and number k. Following Perlman and Olkin (1980) stochastic monotonicity of the roots of **W** carries over to stochastic monotonicity of the roots of the MANOVA-matrix $S^{-1/2}WS^{-1/2}$, with **S** being the "Sums of Squares of Errors" matrix. ## 2. A special order in \mathbb{R}^2_+ In Euclidean spaces it is common to define an order relation between vectors componentwise, i.e. $\mathbf{x} \leq \mathbf{y}$ iff $x_i \leq y_i$ for all i. In this paper we use an alternative order relation \leq_+ in \mathbb{R}^2_+ which is defined as follows: $$\mathbf{x} \leq_+ \mathbf{y}$$ iff $x_2 \leq y_2$ and $\frac{x_1}{x_2} \leq \frac{y_1}{y_2}$. (2) In Figures 1 and 2 there are sketched the points \mathbf{x} being larger or smaller than a given \mathbf{x}_0 in the context of the respective partial order. FIGURE 1. The order relation \leq in \mathbb{R}^2_+ FIGURE 2. The order relation \leq_+ in \mathbb{R}^2_+ Two equivalent definitions of the \leq_+ relation are: $$\mathbf{x} \leq_+ \mathbf{y} \text{ iff} \quad \mathbf{y} = \beta \mathbf{x} + \delta \mathbf{e}_1, \text{ and } 0 \leq \delta, 1 \leq \beta \quad \text{(e}_1 \text{ is the first unit vector)},$$ $$\mathbf{x} \leq_+ \mathbf{y}$$ iff $y_1 = \gamma x_1$ and $y_2 = \beta x_2$, and $1 \leq \beta \leq \gamma$. crs n ly an a is. m is A med as- en of ons ble tic we to of ots A- een use (2) ller The \leq_+ order easily extends in a symmetric way to \mathbb{R}^2 if we identify vectors with the same absolute components. Definition (2) simply changes to $$\mathbf{x} \leq_{+} \mathbf{y}$$ iff $|x_2| \leq |y_2|$ and $\left| \frac{x_1}{x_2} \right| \leq \left| \frac{y_1}{y_2} \right|$. (3) Two probability distributions Q and P are stochastically \leq_+ -ordered, short Q \leq_+ P, iff $$\int f \, \mathrm{dQ} \le \int f \, \mathrm{dP}$$ for all measurable and bounded nondecreasing (in the \leq_+ -sense) functions f, or equivalently $$Q(\mathcal{F}) \leq P(\mathcal{F})$$ for all measurable and bounded nondecreasing (in the \leq_+ -sense) sets \mathcal{F} , see Lehmann (1955). Obviously, if $X(\mathbf{z})$ is a family of random variables, fulfilling $\mathbf{z} \leq_+ X(\mathbf{z})$ a.s., and \mathbf{z} is Q-distributed, then denoting the total distribution of X by P^X , we have $\mathsf{Q} \leq_+ \mathsf{P}^X$, see Strassen (1965). The family of distributions of $X(\mathbf{z})$ is called a stochastic kernel. ## 3. Random rotation of shifted uniform distributions In this section we consider a family of one-dimensional uniform distributions V_t in \mathbb{R}^2 with (disjoint) supports $\{(t, z_2)', -a \leq z_2 \leq a\}$. Clearly $V_t \leq_+ V_{t'}$, if 0 < t < t'. Our aim is to study the total distribution, Q_t say, of a random V_t -distributed vector \mathbf{z} , being randomly rotated by an orthogonal matrix \mathbf{C}_{θ} , where $$\mathbf{C}_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$ and the rotation angle θ is uniformly distributed between $-\alpha$ and α , $0 \le \alpha \le \frac{\pi}{2}$. In Figure 3 there is sketched the basic position of the supports of two distributions V_t and $V_{t'}$, 0 < t < t', before the rotations between $\pm \alpha$ are applied. Only for illustration in Figure 4 a typical form of the support of the randomly rotated V_t is given. Note, that depending on the size of t, α and a, the point A, which is (t, a)' rotated by α , may lie in the positive orthant. Also the second component of F, the rotation of (t, a)' by $-\alpha$, might be negative. The proofs in the next section are, however, easy to adapt to these situations. The distribution of the randomly rotated V_t , i.e. Q_t , has the density $$q_t(u_1, u_2) = \frac{1}{4a\alpha(r^2 - t^2)^{1/2}}, \qquad ext{where} \quad r^2 = u_1^2 + u_2^2$$ on its support, multiplied by the factor 2 in the 'dark' region. Ultin increasi FIGURE 3. Supports of V_t and $V_{t'}$ Figure 4. Support of a rotated V_t Ultimately wishing to prove that this total distribution Q_t is stochastically increasing in t with respect to the \leq_+ order, we start with a monotonicity ns . rly of nal wo are the and ant. be iese property of the marginals. $Q_t^{(1)}$ and $Q_t^{(2)}$ denote the distributions of $\left|\frac{u_1}{u_2}\right|$ and $\left|u_2\right|$, respectively, if Q_t is the distribution of the random vector (u_1, u_2) . **Lemma 1.** If $0 \le t < t'$, then for the distributions of the marginals one has $Q_t^{(1)} \le Q_{t'}^{(1)} \quad \text{and} \quad Q_t^{(2)} \le Q_{t'}^{(2)}.$ *Proof.* The probability of any randomly (between $-\alpha$ and α) rotated point \mathbf{z} to lie in the double cone $\left\{(u_1, u_2) : \left|\frac{u_1}{u_2}\right| \geq c\right\}$ is an increasing function of $\left|\frac{z_1}{z_2}\right|$. Denoting this probability by $h_t(z)$ if \mathbf{z} is a point (t, z) on the support of V_t , or by $h_{t'}(z)$ if \mathbf{z} is a point (t', z) on the support of V_t , we have $h_t(z) \leq h_{t'}(z)$ and $$Q_t(\left|\frac{u_1}{u_2}\right| \ge c) = \frac{1}{2a} \int_{-a}^a h_t(z) \, dz \le \frac{1}{2a} \int_{-a}^a h_{t'}(z) \, dz = Q_{t'}(\left|\frac{u_1}{u_2}\right| \ge c) .$$ In a similar way we prove $Q_t(|u_2| \geq c) \leq Q_{t'}(|u_2| \geq c)$. Here we note that for a fixed rotation θ the probability, say $k_t(\theta)$, of the rotated support of V_t to lie outside the stripe $\{(u_1, u_2) : |u_2| \leq c\}$ is increasing in t. Integration on θ gives $$Q_t(|u_2| \ge c) = \frac{1}{2\alpha} \int_{-\alpha}^{\alpha} k_t(\theta) d\theta \le \frac{1}{2\alpha} \int_{-\alpha}^{\alpha} k_{t'}(\theta) d\theta = Q_{t'}(|u_2| \ge c).$$ Yet another monotonicity result will be useful in section 4. Let $\mathcal{A}_{\mathbf{x}}$ denote the set of all $\mathbf{y} \in \mathbb{R}^2$ with $\mathbf{x} \leq_+ \mathbf{y}$. Lemma 2. If $$0 \le t < t'$$, then $$Q_t(A_x) \leq Q_{t'}(A_x)$$ holds for all x. Proof. We used in the proof of Lemma 1 that for a fixed rotation θ the probability $k_t(\theta)$, i.e. the length of the rotated support of V_t outside the stripe $\{(u_1, u_2) : |u_2| \leq x_2\}$ was increasing in t. Elementary analytic geometry shows that the relative length, i.e. the conditional probability of that part which additionally is contained in the cone $\left|\frac{u_1}{u_2}\right| \geq \left|\frac{x_1}{x_2}\right|$, is also increasing in t. Consequently their product, which is the probability of $\mathcal{A}_{\mathbf{x}}$ under fixed θ is increasing in t. Integration on θ gives the desired result. ## 4. Stochastic monotonicity of rotated uniform distributions The stochastic monotonicity of its marginals does not mean that a multivariate distribution family is monotone in its specified sense. infi as diff one equ soli in the in l sho foll $X_{(1)}$ tion che I pen 1 FIGURE 5. Comparison of Q_t and $Q_{t'}$ Since a direct proof for $Q_t \leq_+ Q_{t'}$ is not available, we will proceed with an infinitesimal argument. If t and t' are close enough, their supports intersect, as indicated in Figure 5. ote the the om- hat eas- hder ns ulti- Taking the difference $t'-t=\Delta$ small, in Figure 4 in the light area, the difference $q_{t'}(u_1,u_2)-q_t(u_1,u_2)$ is positive of order Δ , in the medium gray one $q_{t'}(u_1,u_2)$ is zero, while in the dark gray region $q_{t'}(u_1,u_2)-q_t(u_1,u_2)$ equals or approximates $q_{t'}(u_1,u_2)$. For convenience we map all points to their counterparts (with the same absolute components) in the positive orthant, thus getting a situation sketched in Figure 6. From now on by Q_t and $Q_{t+\Delta}$ and their densities we mean the induced probabilities on the positive orthant. The 'medium gray' stripe in Figure 5, which approximates the curve A-B-D and has thickness Δ will shortly be denoted as Δ -stripe. Now we construct a stochastic kernel which transforms Q_t to $Q_{t+\Delta}$ in the following way: If $q_{t+\Delta}(\mathbf{u}) \geq q_t(\mathbf{u})$, then $X(\mathbf{u}) = \mathbf{u}$ a.s., if $q_{t+\Delta}(\mathbf{u}) < q_t(\mathbf{u})$, which happens only in the Δ -stripe. Then with probability $\varkappa = q_{t+\Delta}(\mathbf{u})/q_t(\mathbf{u})$ we set $X(\mathbf{u}) = \mathbf{u}$, while with probability $1 - \varkappa$ the distribution of $X(\mathbf{u})$ is 'proportional' to $Q_{t+\Delta} - Q_t$ in an appropriately chosen region $\mathcal{R}_{\mathbf{u}}$. It remains to check if this can be done so that $\mathbf{u} \leq_+ X(\mathbf{u})$. FIGURE 6. Difference between Q_t and Q_{t+dt} (i) First we represent A-B-D by a parametrized curve $\mathbf{x}(s)$, where s denotes the second component of \mathbf{x} , so that $\mathbf{x}(0) = D$, $\mathbf{x}(b_2) = B$ and $\mathbf{x}(a_2) = A$. For any s, $b_2 \leq s \leq a_2$, we denote by \widetilde{s} the value, for which $Q_t(\mathcal{A}_{\mathbf{x}(s)}) = Q_{t+\Delta}(\mathcal{A}_{\mathbf{x}(\widetilde{s})})$. By Lemma 2 we have $\widetilde{s} > s$, and therefore $\mathbf{x}(s) \leq_+ \mathbf{x}(\widetilde{s})$ and moreover $\mathbf{x}(s) \leq_+ \mathcal{A}_{\mathbf{x}(\widetilde{s})}$. Finally, note that $\mathbf{x}(\widetilde{s}) - \mathbf{x}(s)$ is of order $O(\Delta)$. (ii) Now for any $s, 0 \leq s < b_2$, we define \widehat{s} to be the value, for which $Q_t(\mathcal{B}_{\mathbf{x}(s)}) = Q_{t+\Delta}(\mathcal{B}_{\mathbf{x}(\widehat{s})})$. Here $\mathcal{B}_{\mathbf{x}}$ denotes the stripe $\{(u_1, u_2) : 0 \leq u_2 \leq x_2\}$. By Lemma 1 we have $\widehat{s} > s$, and therefore $x_2(s) < x_2(\widehat{s})$. Moreover, $\mathbf{x}(\widehat{s}) - \mathbf{x}(s)$ is of order $O(\Delta)$. (iii) The distribution of $X(\mathbf{u})$ has yet to be defined on the Δ -stripe. For a small fixed Δ and small $\mathrm{d}s = o(\Delta)$ we denote by \mathcal{U}_s for $b_2 \leq s \leq a_2$ the intersection of the Δ -stripe and the convex cone with vertex at zero, spanned by $\mathbf{x}(s)$ and $\mathbf{x}(s+\mathrm{d}s)$. For every $\mathbf{u} \in \mathcal{U}_s$ the variable $X(\mathbf{u})$ equals \mathbf{u} with probability $\mathbf{x} = q_{t+\Delta}(\mathbf{u})/q_t(\mathbf{u})$, while with probability $1-\mathbf{x}$ its distribution is the normalized difference $Q_{t+\Delta}-Q_t$ in the region \mathcal{R}_s , the intersection of $\mathcal{A}_{\mathbf{x}(\widetilde{s})}-\mathcal{A}_{\mathbf{x}(\widetilde{s}+d\widetilde{s})}$ and the complement of the Δ -stripe. Let s^* denote $\widetilde{s}(b_2)$, and s_* be the value for which $\widehat{s}(s_*) = b_2$. For $0 \le s \le s_* < b_2$ we denote by \mathcal{U}_s the intersection of the Δ -stripe and the set $\{(u_1, u_2) : s \le u_2 < s + \mathrm{d}s\}$. For every $\mathbf{u} \in \mathcal{U}_s$ the variable $X(\mathbf{u})$ equals \mathbf{u} with probability $\varkappa = q_{t+\Delta}(\mathbf{u})/q_t(\mathbf{u})$, while with probability $1 - \varkappa$ $\mathcal{B}_{\mathbf{x}(\tilde{s}+}$ \mathcal{U}_{*} $\mathcal{B}_{\mathbf{x}(s,-)}$ $q_{t+\Delta}($ differ of $\mathcal{A}_{\mathbf{x}}$ (iv) I so that $s_{i}+\mathrm{d}s$ its di It inductions ince define the Δ Th is stoc Pro holds. stripe. composition of the with sand so $u_2 \leq 1$ the an In a s_* , and The so $Q_t(...)$ probal (ii) . then tl such tl Then t dicts o 59 its distribution is the normalized difference $Q_{t+\Delta} - Q_t$ in the region $\mathcal{R}_s = \mathcal{B}_{\mathbf{x}(\widetilde{s}+d\widetilde{s})} - \mathcal{B}_{\mathbf{x}(\widetilde{s})} = \{(u_1, u_2) : \widehat{s} \leq u_2 \leq \widehat{s} + d\widehat{s}\}.$ \mathcal{U}_* is the intersection of the Δ -stripe and the complements of $\mathcal{A}_{\mathbf{x}(s^*)}$ and $\mathcal{B}_{\mathbf{x}(s_*)}$. For every $\mathbf{u} \in \mathcal{U}_s$ the variable $X(\mathbf{u})$ equals \mathbf{u} with probability $\mathbf{x} = q_{t+\Delta}(\mathbf{u})/q_t(\mathbf{u})$, while with probability $1-\mathbf{x}$ its distribution is the normalized difference $Q_{t+\Delta} - Q_t$ in the region \mathcal{R}_* , the intersection of the complements of $\mathcal{A}_{\mathbf{x}(s^*)}$, $\mathcal{B}_{\mathbf{x}(s_*)}$ and of the Δ -stripe. (iv) Let now $s_0 < s_1 < \cdots < s_n$ be a decomposition of the intervall $[0, a_2]$ so that $s_0 = 0$, $s_n = a_2$ and $s_k = s_*$, $s_l = s^*$ for some k, l. Setting $s_{i+1} = s_i + ds$, i = 1, ..., n, we get by the constructions in (iii) a stochastic kernel, defined on the whole support of Q_t . Remember that $X(\mathbf{u}) = \mathbf{u}$ a.s. outside the Δ -stripe. It is evident by construction, that the stochastic kernel, applied on Q_t , induces $Q_{t+\Delta}$ for fixed Δ . We can not, however, prove that $\mathbf{u} \leq_+ X(\mathbf{u})$ a.s., since for fixed Δ there exist points $\mathbf{u} \in \mathcal{U}_s$, and $\mathbf{v} \in \mathcal{R}_s$, such that $\mathbf{u} \leq_+ \mathbf{v}$ does not hold. Nevertheless we have **Theorem 1.** The distribution family Q_t of rotated uniform distributions is stochastically monotone increasing in the shift parameter t. *Proof.* (i) Let \mathcal{F} be any nondecreasing set. For any fixed Δ the inequality $$\mathsf{Q}_{t+\Delta}(\mathcal{F}) \geq \mathsf{Q}_t(\mathcal{F}) - \mathsf{Q}_t(\mathbf{u} \in \mathcal{F} : X(\mathbf{u}) \notin \mathcal{F})$$ holds. The set $\mathcal{Z} = \{\mathbf{u} \in \mathcal{F} : X(\mathbf{u}) \notin \mathcal{F}\}$ must be contained in the Δ -stripe. We consider at first the part \mathcal{Z}_1 between A and B, i.e. with second component u_2 between b_2 and a_2 . Let f_* denote the infimum of the second component of all points in the intersection of \mathcal{F} and the Δ -stripe. Because of the nondecreasing character of \mathcal{F} , the region 'right hand' of the Δ -stripe with second component $u_2 \geq f_*$ belongs to \mathcal{F} . By the construction of $X(\mathbf{u})$ and some analytic geometry we see that only points \mathbf{u} in the stripe $\{f_* \leq u_2 \leq f_* + \gamma \Delta\}$ are candidates for $X(\mathbf{u}) \notin \mathcal{F}$, where γ depends on t and the angle α . This way we can estimate the area of \mathcal{Z}_1 by $\gamma \Delta^2$, and the probability $Q_t(\mathcal{Z}_1)$ as $O(\Delta^2)$. In a similar way we proceed for \mathcal{Z}_2 with the second component $0 \le u_2 \le s_*$, and get $Q_t(\mathcal{Z}_2) = O(\Delta^2)$. The set \mathcal{Z}_3 is contained in \mathcal{U}_* . But $Q_t(\mathcal{U}_*)$ is seen to be of order $O(\Delta^2)$, so $Q_t(\mathcal{Z}_3) = O(\Delta^2)$. (ii) Assume that the family Q_t is not stochastically monotone increasing, then there would exist a nondecreasing set \mathcal{F} and two values $0 \leq t' < t''$ such that $$Q_{t'}(\mathcal{F}) > Q_{t''}(\mathcal{F}).$$ Then there exists at least one t satisfying $\frac{d}{dt}Q_t(\mathcal{F}) < 0$, this however contradicts our result $Q_{t+\Delta}(\mathcal{F}) \geq Q_t(\mathcal{F}) - O(\Delta^2)$. otes = and hich $x_2\}$. over, or a the $_{ m nned}$ $_{ m with}$ ition on of For and $X(\mathbf{u})$ — × #### References - Lehmann, E. L. (1955). Ordered families of distributions. Ann. Math. Statist. 26, 399-419. - Perlman, M.D. and Olkin, I. (1980). Unbiasedness of invariant tests for MANOVA and other multivariate problems. *Ann. Statist.* 8, 1326–1341. - Pincus, R. (1997). Multidimensional stochastic ordering and orthogonal rotations. In: Bulletin of the International Statistical Institute. Session 51st. Contributed Papers, Book 2, Istanbul, 209–210. - Pincus, R. (2000). Stochastic Order Relations for Multivariate Distribution Families Habil.-Thesis. University Potsdam, Faculty of Science. (In German) - Strassen, V. (1965). The existence of probability measures with given marginals. *Ann. Math. Statist.* **36**, 423–439. Institute of Mathematics, University Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany E-mail address: pincus@rz.uni-potsdam.de ACT Volu \mathbf{M}^{\cdot} Th the passmalle Usi survey consic of reg neariz matri Let study matrix where and ea The N > Rece 2000 Key The