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Preservation of stochastic order in R? under
random rotations

RicaARD PINCUS

ABSTRACT. For a specified order relation in R?, it is shown that a shift
parameter family of distributions remains stochastically ordered, if it is
transformed by random orthogonal rotations. The result has applica-
tions in monotonicity problems of the roots of Wishart matrices.

1. Introduction

Let x1, ..., X denote independent normally distributed p-dimensional vari-
ables

xi ~Np(0,T), i=1,..,k

The matrix

W = xx) + -+ x3%, (1)
has a Wishart distribution with k& degrees of freedom, shortly written W ~
Wp(k,I). If xq,...,x; are not all centered at zero, but have mean vectors
m; instead, ¢ = 1, ..., k, the random p x p-matrix W, the so-called “Sums of
Squares of the Hypothesis”, is said to have a non-central Wishart distribution
W,,(k,I; MM'). Its non-centrality parameter MM’ is

MM'= m;m] + - - - + mymj.

In Multivariate Analysis of Variance (MANOVA) the characteristic roots, or
eigenvalues, of W play an important role. These roots remain unchanged if
an orthogonal matrix C transforms the observations x; and W to Cx; and
CWC, respectively, so one can assume without loss of generality that MM’
has only non-negative diagonal entries. Consequently, we might assume the
mean vectors m; of x; to have the form

m) = (0,..,)\2,..0), i=1,..p.
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Since many years the statistical question, if the roots of W are stochastically
increasing under increasing roots A; of the non-centrality, remains open.

The term “stochastically increasing” means that for all increasing func-
tions f of the p roots of W the expectation Ef is increasing in the parameters
Al .oy Ap, see Lehmann (1955). If f is used as a test statistic with rejection
region f > cq, then stochastic increasing roots of W automatically imply
monotonicity of the power of the respective test procedures.

In the simplest case p = k = 2 under fixed norm ||x2|| one finds an
orthogonal rotation C, depending on x3, of course,which transforms x5 to a
multiple of ey (the 2-nd unit vector). Applying this rotation to x; too, this
would not change the eigenvalues of W, but W is now represented by a sum

W = y1y] + eze).

With e fixed, it remains to show that the random vector y1 = Cg(x,)x1 18
stochastically increasing in A; with respect to a specific order relation. A
simple analysis shows that the random rotation angle 6 is distributed sym-
metrically and unimodal. Consequently its distribution can be represented
as a mixture of uniform distributions. In Pincus (2000) a proof for stochas-
tic monotonicity of the roots of a two-dimensional Wishart matrix was given
that way. Since the two-dimensional normal distribution of x; is a mixture of
uniform distributions on lines, there is a motive to look at random rotations
Cpu, where u stands for a one-dimensional uniformly distributed variable
in R? with a shift parameter ¢, see Section 3. By showing the stochastic
monotonicity of this uniformly rotated family in the shift ¢ in Section 4 we
have a tool to generalize the stochastic monotonicity of the roots of (1) to
certain non normal situations, and perhaps a tool for handling the case of
general dimension p and number %.

Following Perlman and Olkin (1980) stochastic monotonicity of the roots
of W carries over to stochastic monotonicity of the roots of the MANOVA-
matrix S™Y/2WS~1/2, with S being the “Sums of Squares of Errors” matrix.

2. A special order in R

In Euclidean spaces it is common to define an order relation between
vectors componentwise, i.e. x <y iff z; < y; for all . In this paper we use
an alternative order relation <y in R% which is defined as follows:

. T
x<iy iff @y <yppand 2 <h (2)
Z2 Y2

In Figures 1 and 2 there are sketched the points x being larger or smaller
than a given x¢ in the context of the respective partial order.
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F1cure 1. The order relation < in Rﬁ_

FIGURE 2. The order relation < in R%

Two equivalent definitions of the <, relation are:
x<,yiff y=px+de;, and0<41<p (e is the first unit vector),
x <ty iff 91 =7z and yp = B2, and 1 < B <.
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The <. order easily extends in a symmetric way to R? if we identify
vectors with the same absolute components. Definition (2) simply changes
to

nl |0

vl (3)

Two probability distributions Q and P are stochastically <.-ordered,

short Q <, P, iff
/fdQs/#dP

for all measurable and bounded nondecreasing (in the <,-sense) functions
f, or equivalently

<

x<,y iff  |zo| < ly2| and

Ty

Q(F) < P(F)
for all measurable and bounded nondecreasing (in the <, -sense) sets F,
see Lehmann (1955). Obviously, if X(z) is a family of random variables,
fulfilling z <; X(z) a.s., and z is Q-distributed, then denoting the total
distribution of X by PX, we have Q <, P, see Strassen (1965). The family
of distributions of X (z) is called a stochastic kernel.

3. Random rotation of shifted uniform distributions

In this section we consider a family of one-dimensional uniform distri-
butions V; in R? with (disjoint) supports {(t,22)", —a < 72 < a}. Clearly
Vi <4 Vyp, if 0 < £ < ¢'. Our aim is to study the total distribution, Q; say, of
a random V-distributed vector z, being randomly rotated by an orthogonal

matrix Cy, where
cosf —sind
Co = ( sinf  cosf )
and the rotation angle 8 is uniformly distributed between —a and «, 0 <
a<?.

In Figure 3 there is sketched the basic position of the supports of two
distributions V; and Vy, 0 < t < t/, before the rotations between +« are
applied.

Only for illustration in Figure 4 a typical form of the support of the
randomly rotated V; is given. Note, that depending on the size of £, @ and
a, the point A, which is (¢,a)’ rotated by «, may lie in the positive orthant.
Also the second component of F', the rotation of (¢,a)’ by —a, might be
negative. The proofs in the next section are, however, easy to adapt to these
situations.

The distribution of the randomly rotated Vi, i.e. Qq, has the density

1 2

UL U2} = , where r

on its support, multiplied by the factor 2 in the ’dark’ region.

2 2
:'U;1+'Uz2
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Ficure 3. Supports of V; and Vy

FIGURE 4. Support of a rotated Vi

Ultimately wishing to prove that this total distribution Q; is stochastically
increasing in ¢ with respect to the <, order, we start with a monotonicity
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property of the marginals. le) and ng) denote the distributions of ‘%l and
|ua|, respectively, if Qq is the distribution of the random vector (u1,u2).

Lemma 1. If 0 <t <, then for the distributions of the marginals one
has
QM < and Q@ <QP.

Proof. The probability of any randomly (between —ov and ) rotated point

z to lie in the double cone {(ul,uz) : %‘ > c} is an increasing function of
ZL\. Denoting this probability by h¢(z) if z is a point (t,z) on the support

of Vi, or by hy(z) if z is a point (t',z) on the support of Vy, we have
h¢(2) < hy(z) and

1 [ 1 [
ZC)Z—‘%/ ht(Z) dZS—Q'E ht!(Z) dZ:Qtl(
—a J—a

38
u2

Uy
uz

>q) .

Qi

In a similar way we prove Qi(|uz| > ¢) < Qu(juz| > ¢). Here we note that
for a fixed rotation 6 the probability, say k:(6), of the rotated support of V;
to lie outside the stripe {(uy,u2) : |us| < ¢} is increasing in . Integration on
6 gives
1 a4 1 Q
Qi(Jua| 2 ¢) = g&/akt(@ df < o= | ke(0)do= Qv (Juz| = ©)-

-

O

Yet another monotonicity result will be useful in section 4. Let Ay denote
the set of all y €R? with x <. y.

Lemma 2. If 0<t <, then
Qi(Ax) < Qu(Ax)
holds for all x.
Proof. We used in the proof of Lemma 1 that for a fixed rotation 6 the
probability k¢(6), i.e. the length of the rotated support of V¢ outside the

stripe {(u1,ug) : Juz| < z2} was increasing in ¢. Elementary analytic geom-
etry shows that the relative length, i.e. the conditional probability of that

part which additionally is contained in the cone \%‘ > l%l, is also increas-
ing in t. Consequently their product, which is the probability of Ax under

fixed 6 is increasing in t. Integration on ¢ gives the desired result. d
4. Stochastic monotonicity of rotated uniform distributions

The stochastic monotonicity of its marginals does not mean that a multi-
variate distribution family is monotone in its specified sense.
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FIGURE 5. Comparison of Q; and Qy

Since a direct proof for Q; <. Qy is not available, we will proceed with an
infinitesimal argument. If ¢ and ¢’ are close enough, their supports intersect,
as indicated in Figure 5.

Taking the difference ¢ — ¢ = A small, in Figure 4 in the light area, the
difference gy (u1,ug) — qe{u1, ug) is positive of order A, in the medium gray
one gy (ui,us) is zero, while in the dark gray region gy (uy,ug) — qt(u1,u2)
equals or approximates gy (u1,ug).

For convenience we map all points to their counterparts (with the same ab-
solute components) in the positive orthant, thus getting a situation sketched
in Figure 6 . From now on by Q; and Qira and their densities we mean
the induced probabilities on the positive orthant. The 'medium gray’ stripe
in Figure 5, which approximates the curve A-B-D and has thickness A will
shortly be denoted as A-stripe.

Now we construct a stochastic kernel which transforms Q; to Qs+ in the
following way:

If gr+a(u) > gi(u), then X(u) = u as., if gra(u) < g(u), which hap-
pens only in the A-stripe. Then with probability s = g¢a(u)/gq: (1) we set
X (u) = u, while with probability 1 — ¢ the distribution of X (u) is ’propor-
tional’ to Qra — Q; in an appropriately chosen region Ry. It remains to
check if this can be done so that u <4 X(u).
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FIGURE 6. Difference between Q; and Qgyat

(i) First we represent A-B-D by a parametrized curve x(s), where s denotes
the second component of x, so that x(0) = D, x(by) = B and x(az) = A.
For any s, by < s < ag, we denote by 3 the value, for which Q;(Ax()) =
Qi+a(Ax). By Lemma 2 we have § > s, and therefore x(s) <4 x(38) and
moreover x(s) <4 Ax(). Finally, note that x(5) — x(s) is of order O(A).

(ii) Now for any s, 0 < s < by, we define § to be the value, for which
Qt(Bx(s)) = Qu+a(Bx(s))- Here Bx denotes the stripe {(u1,u2): 0 < ug < zp}.
By Lemma 1 we have § > s, and therefore za(s) < 2(5). Moreover,
x(8) — x(s) is of order O(A).

(iii) The distribution of X (u) has yet to be defined on the A-stripe. For a
small fixed A and small ds = o(A) we denote by U, for by < s < ag the
intersection of the A-stripe and the convex cone with vertex at zero, spanned
by x(s) and x(s+ds). For every u € Uy the variable X (u) equals u with
probability s = gia(u)/g:(u), while with probability 1 — s¢ its distribution
is the normalized difference Q¢ a — Q; in the region R, the intersection of
Ax(s) — Ax(s+d5) and the complement of the A-stripe.

Let s* denote 3(by), and s, be the value for which 5(s,) = by. For
0 < s < s, < by we denote by U, the intersection of the A-stripe and
the set {(u1,u2):s < up <s+ds}. For every u € U, the variable X (u)
equals u with probability » = gi+a(u)/¢:(u), while with probability 1 — s
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its distribution is the normalized difference Qs.n — Q; in the region R; =
Bx('§+d§') - Bx(g) = {(‘111,’&2) 15 <uy <5+ dg}

U, is the intersection of the A-stripe and the complements of Ax(s+) and
By(s,)- For every u € U the variable X (u) equals u with probability s =
gt+a(u)/gi(u), while with probability 1— s its distribution is the normalized
difference QiAo — Qq in the region R, the intersection of the complements
of Ax(sv), Bx(s.) and of the A-stripe.

(iv) Let now sp < s1 < -+- < s, be a decomposition of the intervall [0, as)
so that sg = 0,5, = as and s; = 84,8 = s* for some k,l. Setting s;11 =
si+ds, © = 1,...,n, we get by the constructions in (iii) a stochastic kernel,
defined on the whole support of Q;. Remember that X (u) = u a.s. outside
the A-stripe.

It is evident by construction, that the stochastic kernel, applied on Qq,
induces Qi+ for fixed A. We can not, however, prove that u <, X (u) a.s.,
since for fixed A there exist points u € U, and v € R, such that u <, v
does not hold. Nevertheless we have

Theorem 1. The distribution family Q; of rotated uniform distributions
is stochastically monotone increasing in the shift parameter t.

Proof. (i) Let F be any nondecreasing set. For any fixed A the inequality

Qura(F) 2 Qu(F) — Q(u € F: X(u) ¢ F)

holds. The set Z = {u € F : X(u) ¢ F} must be contained in the A-
stripe. We consider at first the part Z; between A and B, i.e. with second
component up between by and as. Let f. denote the infimum of the second
component of all points in the intersection of F and the A-stripe. Because
of the nondecreasing character of F, the region 'right hand’ of the A-stripe
with second component uy > f, belongs to F. By the construction of X (u)
and some analytic geometry we see that only points u in the stripe {f, <
ug < fe + yA} are candidates for X(u) ¢ F, where v depends on t and
the angle a. This way we can estimate the area of Z; by yA?, and the
probability Q;(Z;) as O(A?).

In a similar way we proceed for Z5 with the second component 0 < uy <
s+, and get Qe(Z2)=0(A?).

The set Z3 is contained in U,. But Q:(U,) is seen to be of order O(A?),
50 Q¢(23) = O(A?).

(ii) Assume that the family Q; is not stochastically monotone increasing,
then there would exist a nondecreasing set F and two values 0 < ¢/ < ¢/
such that

Qe (F) > Qpr (F).
Then there exists at least one ¢ satisfying ;%Qt(}" ) < 0, this however contra-
dicts our result Qura(F) > Qu(F) — O(A?). 0
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