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Multivariate finite population inference under the
assumption of linear pattern in the population

KRISTIINA RAJALEID

ABSTRACT. In this paper a multivariate form of regression estimator
for finite population inference is studied. Using Taylor linearization the
asymptotic covariance matrix of the estimator is derived. Properties of

the estimator are examined. The results are illustrated by a simulation
study.

1. Introduction

The regression estimator allows to use auxiliary information to increase
the precision of estimates. The estimator is approximately unbiased and has
smaller variance than the classical Horvitz—Thompson estimator.

Usually there is more than one study variable under interest in a sample
survey. However, population totals are estimated one at a time, without
considering their joint behaviour. In the current paper a multivariate form
of regression estimator is introduced. Covariance matrix of the Taylor li-

nearized form of the estimator is derived and properties of the covariance
matrix are studied.

2. Population under study

Let us have a finite population consisting of N elements. Let there be P

study variables in the population. We write the population data as an N x p
matrix

Y = Yig)»
where each row represents a population element with its p variable values
and each column represents a variable measured on N population elements.
The N Xk matrix of auxiliary variables is written in the same way, X = ;5.
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Values of study variables are known only for those population elements
which are sampled. Values of auxiliary variables are known for each element
in the population (or at least the population totals are known). Auxiliary
information is used to increase the quality of estimates. It can be used both
before and after sampling (for example, to calculate inclusion probabilities
proportional to a size variable and later calibrate by auxiliary variables).

3. Superpopulation model

We assume that the finite population is a realization of a superpopulation
model
Y =XB+e¢, (1)
where the dimensions of the matrices 3 and & are k x p and N X p accor-
dingly. For example, the population data may be generated by a biological,
chemical or economical process.

We assume that the expected values of errors are equal to zero and the
population units are independent, but the study variables are dependent.

According to the model the expected value of the ith variable (ith column
of Y) is
E(Y;) = X4,
where £; is the ith column of matrix 8. The expected value of an element
of Y is

k
E(ymn) = Z 37njﬁjm-
j=1

4. Sampling

Sampling is performed by a random vector I = (Iy,Ip,---,[ ~)T called
sampling vector. Behaviour of I depends on the sampling design used. Ele-
ments of I - inclusion indicators — show the number of times a population
element is sampled. For without-replacement sampling schemes the possible
values of inclusion indicators are 0 and 1, for with-replacement schermes in-
clusion indicators may take values from 0 to n, where n is the sample size.
At the estimation stage the expanded sampling vector

if . ( I1 Ig In )T
E(L,) E(L)" " E(N)
is used. For without-replacement sampling schemes E(I;) equals inclusion
probability, E(;) = Pr(I; = 1) = m;. In general it is the expected sampling
count of unit 4. Note that the expectation

E) =1, (2)
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is the vector of ones. About the vector approach in sampling theory see e.g.
Traat (2003).

5. Parameter estimation

Minimizing (Y — X8)T(Y — XB) with respect to 3 gives the least squares
estimator for superpopulation parameter B on the finite population level.
The estimator is

B =(XTX)"'xTy. (3)
We denote
txx = xXTx
and
txy = XTy.

The sample estimators for txx and txvy are
i\7XX = XTidiagX
and
txy = X L4 Y.
Due to (2) the estimators txx and txy are unbiased with respect to the
sampling design. By combining them we get an estimator for B:

B= E;é(fixy (4)

Estimator B is not unbiased anymore because it is not linear in I (the ex-
pectation of the inverse of I is not equal to the inverse of its expectation).

ent

6. Estimators of population totals

Usually the aim of a survey is the estimation of population totals of the
study variables or a function (average, ratio) of the population totals. Writ-
ten in matrix form the vector of population totals is

ty = Y711, (5)

As in reality only part of the values of study variables is known, one cannot
find the totals but has to estimate them using the values of sampled elements.
Well-known Horvitz—Thompson estimator of population totals is

ty =YL (6)
Assuming that the linear pattern in the population,
E(Y) = X8,

holds and having estimated the parameter /3, it is possible to find predicted
values for the whole population:

Y = XB. (7)
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Residuals R = Y — ¥ are known for sampled elements. Using the relation-
ship
Y=Y+R
we get another estimator for the totals of study variables:
ty = YT1 + R'IL (8)

The estimator of the population total of a variable (an element in ty) is
equal to the sum of predicted values, and the sample residuals multiplied
by the elements of the expanded sampling vector. Estimator (8) is called
generalized regression estimator of ty (for one-dimensional case see Sarndal
et al. (1992), p. 246). Denoting it by ty reg and replacing terms in (8) we
get

Py reg = (XB)T1 + (Y - XB)™1 (9)

Random terms in this expression are I and B (it includes i)

7. Variance of regression estimator

In order to study variance of the regression estimator we use Taylor lin-
earization method. We write the estimator (9) as

5 reg = 89 + txyixx (tx — Ex), (10)
where
tx =XT1,
fx =xT1,
ty =YTL

We see that it is a function of four random arguments
tyreg = f(tx,ty,txx,txy). We expand (10) into a Taylor series at the
point of expected values of the arguments, using the following rules (Kollo
(1991), pp. 66-67):

dx"
'E“X“ q9,p»
d;():' - _X"lg (XT)wl,
YD _ (7w,
%—g—% =In®Ins®L) [(Im,, ® vecZ)% + (vecY ® Irs)%z{— ;

where X isa p X ¢, Y isan m X n and Z is an r X s matrix.
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Derivatives of function f are

df T -1
— = —fgt3L,
dtx XY XX
d
Y g
dty
d N _ - _
—— = —Thytxk ® (tx — tx) T3k,
dtxx

df £ T, -1
— = (tx — tx) T3t
dixy ( ) txx
Evaluating the derivatives at (Ex, Ey, Exx,f;xy) = (tx,ty,txx,txy) we
get the linear part of the Taylor series

tyiin = by + (tx — tx) Ttxkixy (11)
or
tyiin = (XB)T1 + (Y - XB)™1. (12)

For bigger samples EY’lin approximates well %y,reg. In (12) only I is random
and it is easy to find the expectation and covariance matrix of it. One can see
that (12) is unbiased, i.e. its expectation is equal to the vector of population
totals. Covariance matrix of the linearized regression estimator is

Cov(ty 1in) = (Y — XB)TA(Y — XB), (13)
where g y
A = Cov(I) (14)
is the covariance matrix of expanded sampling vector.
For comparison, the covariance matrix of Horvitz-Thompson estimator is
Cov(ty ) = YTAY. (15)

Elements of matrix A are multiplied with population values in (15) but with -
population residuals in (13). Therefore, one can significantly decrease the
varlances and covariances of the estimators by using auxiliary information.

8. Simulation study

A simulation study was carried out to examine the behaviour of the in-
troduced multivariate estimator. A population with N = 1000 elements
was generated. The values of k = 4 auxiliary variables were generated in-
dependently, as well as the random errors. Superpopulation parameter B
was given. Values of study variables were calculated according to model (1).
There were p = 3 study variables and k = 4 auxiliary variables in the gen-
erated population. Auxiliary variables were correlated with study variables
as shown in Table 1.
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| %
X, | 0.65]0.16 | 0.41
Xo | 0.52 | 0.96 | 0.84
X3 | 0.15{0.16 1 0.14
X4 {049 ]0.22 | 0.36

TABLE 1. Correlations between study variables and auxiliary variables

Correlation matrix of study variables was

1 071 0.88
Cor(Y)=1{ 071 1 0.95
088 095 1

Population totals of study variables were ) = 79994, t9 = 243330 and
t3 = 169160.

1000 independent samples with size n = 100 were taken from the popu-
lation. Two different sampling designs were used - simple random sam-
pling and multinomial sampling. Simple random sampling is a without-
replacement sampling design. For simple random sampling matrix (14) has

9%7—1 on the diagonal and "}T(NW:—% in other places. Multinomial sampling

is a with-replacement design with unequal selection probabilities p;, where
selection count of population element 7 is described by a binomial random
variable, I; ~ B(n,p;). Hence (14) has %fi on the diagonal and --71; in other
places.

Population totals were estimated in two different ways - using Horvitz—
Thompson estimator (6) and regression estimator (9). Altogether we con-
sidered four different situations (two sampling schemes combined with two
estimation methods). For each situation we calculated the estimates of the
totals and the covariance matrix of the estimates. Determinant of the co-
variance matrix (generalized variance) was used to characterize both the
variances and covariances of the estimates with one figure.

Y1 |Y, V3
Sl+reg | -4(-2| 0
SI+HT 211315
MN+reg | -3|-3| O
MN+HT | -5} -1 -1

TABLE 2. Bias of estimates

In Table 2 the biases of the estimates are shown (SI = simple random
sampling, MN = multinomial sampling, HT = Horvitz—Thompson estima-
tor, reg = regression estimator). As known, Horvitz—Thompson estimator
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is unbiased and regression estimator is approximately unbiased. Al four
situations give good estimates with ignorable bias.

SI MN
340102 1049559 725973 | 26014 453 222
HT | 1049559 6352908 3414640 453 4962 -2
725973 3414640 2022949 222 -2 1813

21817 -125 -168 | 23785 -247 156
reg -125 4000 -92 | -247 4578 -144
-168 -92 1580 156 -144 1831

TABLE 3. Covariance matrices of the estimates

Table 3 shows covariance matrices of the estimates. As expected, the
variances and covariances are the biggest for simple random sampling and
Horvitz—Thompson estimator. Using auxiliary information decreased the
variability and covariance of sample estimators.

In Table 4 the generalized variances of the estimates are given. The value
is the biggest for simple random sampling coupled with Horvitz—Thompson
estimator. In this case auxiliary information is used neither on the sam-

pling stage nor on the estimation stage. Generalized variances for the other
situations are smaller and of equal magnitude.

Sampling | Determinant of
situation | covariance matrix

Sl+reg 1.37 - 101
SI+HT 3.22- 1016
MN+-reg 1.98 - 101!

MN+HT 2.33 - 101

TABLE 4. Generalized variance of estimates

We also calculated the correlation matrices of the estimates for all the four
situations. For three of the four situations correlation matrices showed inde-
pendence of estimators. For simple random sampling coupled with Horvitz—
Thompson estimator correlation matrix coincided with correlation matrix of
study variables what is theoretically the case. Positive correlations between
estimates mean that using one and the same sample the population totals of

different variables tend to be overestimated, or underestimated at the same
time.

61




242 KRISTIINA RAJALEID

References

Kollo, T. (1991). Matriz Derivative in Multivariate Statistics, Tartu University Press,
Tartu. (In Russian)

Traat, I. (2003). On the estimation of finite population covariance matrix. Stalistics in
Transition 6(1), 67-82.

Sirndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling,
Springer-Verlag.

INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITY OF TaARTU, J. Luvi 2, 50409
TarTu, ESTONIA
E-mail address: rajaleid@ut.ee

ACTA
Volume

Ci

Sma
growin
ple sur
or domx
rect es
necess:
tors th
precisi

EUF

~ ropean
‘which i
 tical Ir
_ countri
~ methoc




