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MANOVA with singular variance matrix

MUNI S. SRIVASTAVA AND DIETRICH VON ROSEN

ABSTRACT. Classical multivariate analysis of variance for p response
varjables is extended to cover high-dimensional data. For example, data
often comprise many response variables that may be related. There-
fore, inference based on all the response variables may be inefficient.
However, the relationship between the response variables is usually not
known. This leads to the assumption that the p response variables span
a linear space of some fixed dimension, say r < p; equivalently the p x p
variance matrix is singular of rank r. We will assume that the rank is
given. Following the classical approach of doing inference in linear mod-
els, parameters are first estimated and thereafter tests are constructed.
Estimators and tests are based on the likelihood method. The present
model differs from the classical multivariate analysis of variance model
and consists of a deterministic part and a random part. It is noticed

that the classical approach is a special case of the one which will be
considered in this article.

1. Introduction

Often data comprise observations on many response variables of which
many may be closely related. Therefore, inference based on all the response
variables may be inefficient. In situations like this, usually the principal
component method is applied to reduce the dimensionality of the response
variables. However, after reducing the dimensionality, it is not known how to
carry out the statistical inference on the unknown parameters. For example,
in the one-sample problem, it is not known how to estimate the mean vector
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or how to carry out tests of hypotheses regarding the parameters of the mean
vector. In this paper, we assume that the rank of the variance matrix is the
same as the number of selected principal components. Thus, we shall assume
that the variance matrix of the observations is a singular matrix of a given
rank, the rank of the matrix is either determined by the past experience
or from a practical consideration such as principal component analysis. We
shall consider the multivariate analysis of variance model. Estimators and
tests of hypotheses along with their distributions will be given.

Linear models with the singular variance matrix have been studied by
many authors including Khatri (1968), Mitra & Rao (1968), Rao (1973),
Alalouf (1978), Feuerverger & Fraser (1980) and Nordstrom (1985). Except
Khatri (1968) these authors assume that the variance matrix X is known.
In this paper this matrix is unknown and therefore has to be estimated.
Suppose that the variance matrix of the response variables, 3 : p X p, is
of rank r which is a dimensionality reduction if r < p, and based on this
agsumption a MANOVA is performed. The results of this paper will be
illustrated by a numerical example. The organization of the paper is as
follows. In Section 2 we consider a numerical example to demonstrate the
singularity of the variance matrix. Some of its eigenvalues are very small
and we suggest that instead of considering initial eight-dimensional data, we
will be better off with less than eight. In Section 3 we obtain the maximum
likelihood estimators of the parameters and likelihood ratio tests are used to
complete the analysis. In Section 4 confidence intervals for mean parameter
= are found and Section 5 is dedicated to the detection of outliers.

2. A numerical example

We consider the data of Russell et al. (1967), presented in Srivastava &
Carter (1983, p. 128). The data present the clinical analysis of soil charac-
teristics for three contours and four depths of soil. The experiment area was
divided into four blocks and samples were taken randomly at various depths
and contours. For our purpose we just consider four combinations of depths
and contours. Moreover, the four areas are reduced to two by merging the
original areas pairwise. The data are presented in Table 2.1.

According to Table 2.1 the multivariate data are obtained from a complete
balanced block design. To be even more specific, there are two blocking
factors of which one (Area) has two levels and the other (Group) has four
levels. Furthermore, there are 16 independent observations of which each
comprises 8 response variables.
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Table 2.1. Soil data where the following abbreviations are used: V1=pH;
V2=TTotal nitrogen (%); V' 3=Bulk density (gm/cm3); V4=Total phosphorus
(ppm); V5=Exchangeable + soluble calcium (me/100 gm);
V6=Exchangeable + soluble magnesium (me/100 gm); V7=Exchangeable

+ soluble potassium (me/100 gm); V8=Exchangeable + soluble sodium
(me/100 gm);

A2 540 5.65 5.14 5.14 5.14 5.10 4.70 4.46
V2 0.19 0.16 0.26 0.17 0.16 0.09 0.10 0.11
V3 0.92 1.04 0.95 1.10 1.12 1.22 152 1.47
V4 215 208 300 248 174 129 117 170
V5 16.4 122 130 119 142 86 87 95
A%} 76 52 57 70 81 69 82 092
V7 0.72 0.71 0.68 1.09 0.70 0.81 0.39 0.70
V38 1.14 0.94 0.60 1.0t 2.17 267 332 3.76
Group 1 1 1 1 2 2 2 2
Area 1 1 2 2 1 1 2 2

V1 4.37 4.39 4.17 3.89 3.88 4.07 3.88 3.74
V2 0.11 0.06 0.07 0.08 0.08 0.05 0.06 0.05
V3 1.07 1.564 1.26 1.42 1.25 1.54 1.53 1.40
V4 121 115 112 117 127 91 91 79
V5 88 47 63 66 64 38 50 59
Vé 104 69 80 9.8 11.0 66 80 10.1
V7 074 0.77 026 0.41 0.56 0.50 0.23 041
V8 5.74 585 530 8.30 9.67 7.67 8.78 11.04
Group 3 3 3 3 4 4 4 4
Area 1 1 2 2 1 1 2 2

Let the data be collected in Y : 8 X 16 where the first 4 columns consist

of the data from group 1, the next 4 columns consist of data from group 2,
etc. The design matrix X is given by

1 1 1 1 1 1 1 1 11 1 1 11 1 1
1 1-1-1 1 1-1-1 I 1-1-1 1 1-1-1
X=(1 1 1 1 0 0 0 0 0 0 0 0 —1-1-1-1
06 000 1 1 1 1 0 0 0 0 —1—1-—1-=1
000 0 00O0O0 1 1 1 1 —1-=1-1-1

and the following model is assumed to hold:

1
Y = EX + X2E,

where the columns of E are independent identically distributed (i.i.d.) random
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1
vectors with the distribution Ng(0,I), and X2 is a positive semi-definite

square root of 3. The sums-of-squares matrix due to error, i.e. S, is calcu-
lated by (3.7):

020 -0.01 -0.01 -145 -038 -—1.42 -0.09 -0.80
-0.01  0.01 -0.03 8.00 0.42 0.12 —-0.00 -0.05
-0.01 -0.03 026 -181 -234 -133 0.02 -0.03
-14.5  8.00 -—-18.1 8920 168.0 80.6 18.7 -—-58.0

8= -0.38 0.42 -234 188.0 42.4 204 -0.73 4.01
-142 012 -1.33 80.6 20.4 26,8 097 101
-0.09 —-0.00 0.02 187 —0.73 097 035 024
-0.80 —-0.05 -0.03 -58.0 4.01 10.1 024 108
An unbiased estimator of the sample variance matrix is W = 11—1S with
eigenvalues

811.31 5.02 1.50 0.40 0.017 0.013 0.0027 0.000039.

Since the smallest eigenvalue is very close to zero, it is reasonable to
assume that the rank of S is at most 7. It follows from Lemma 3.1, given
in Section 3, that the rank of W is equal to the rank of 3. The second
smallest eigenvalue is 0.003 which is also close to zero. Thus, it may be
reasonable to assume that the rank of 3 is 6. The problem of deciding on
the rank of X is rather difficult. For example, one may argue that since all
the four smallest eigenvalues are rather small, the rank of X is only four.
We may also note that the first eigenvalue contains 99% of the variation in
the data, and thus one may argue that the rank of ¥ is only one. The fewer
components are chosen, the fewer linear combinations of the mean can be
tested for significance; the difference can be detected only if it lies in the
direction of the chosen components. So, there is a difference between the so
called principal component analysis and the problem of drawing inference on
its mean components. Any inference based on one component only or on very
few components may be very misleading. Here our objective is to select the
rank of the variance matrix 3. For this, we should drop from considerations
only those components for which the corresponding eigenvalues of the sample
variance matrix are zero or very close to zero. In Table 2.2, however, we
examine the effect of various variance assumptions on the rank of 3.

We are going to test that there is no area effect in our example, i.e

H:TEc =0 versus A:TVEc # 0, (2.1)
where
=0 10 0 0)

and T is as in (3.2). Let C(Z) denote the column vector space generated by
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the columns of Z. Clearly C(c) C C(X) as r(X) = 5 and we will utilize The-

orem 3.3. However, note that r(c) = 1 and therefore the exact distribution
for A in the theorem is available, 1.e.

n—r(X)+1-7r1—2A
F= ( 2 3 ~ Fr,n—r(X)+1-ra (22)

where 7 = r(33). In Table 2.2 the results of this test under various assump-
tions on 7(X) are presented.

Table 2.2. The hypothesis in (2.1) is tested. Let A and F be given in

Theorem 3.3 and (2.2), respectively and let P denote the probability of
obtaining a larger value than F.

(%) 8 7 6 5 4 3 2 1

A 0.16 0.16 0.20 021 0.63 0.65 0.96 0.98
F 2.64 3.76 409 516 1.8 1.61 0.19 0.22
P 0.18 0.082 0.055 0.027 0.39 0.25 0.83 0.65

Thus, it follows from Table 2.2 that when we do not put any rank restric-
tions on 3, i.e. r(X) = 8, the hypothesis H in (2.1) can not be rejected.
However, under assumptions that 3 is singular of rank 6 the hypothesis is
rejected at 5.5% level of significance. Our conclusions are that there exist
some differences between the areas which we certainly can not draw if just
performing a test when X is of full rank and which is the standard test in
MANOVA. For comparison, each variable has been analyzed separately by
performing a univariate ANOVA. The results are presented in Table 2.3.

Table 2.3. Let P denote the significance level for the rejection of the

hypothesis of no Area effect in a univariate ANOVA. The variables V1 — V8§
are defined in Table 2.1.

Vi V2 V3 V4 V5 V6 V7 VS8
P 0.0002 1.00 0.15 0.64 0.32 0.51 0.09 0.14

Hence, from Table 2.3 it follows that there seem to be some differences be-
tween the groups although they are not very pronounced. Vaguely speaking,
one may say that these differences were found in the multivariate approach
under the assumption that the covariance matrix was not of full rank.

65
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3. Tests and estimators of parameters in MANOVA with
singular covariance

In this section, we derive the maximum likelihood estimators of the pa-
rameters and apply the likelihood ratio test for the general hypothesis.
The general MANOVA model can be written

1
Y =EX + X2E, (3.1)
where Y: pxn, B: px k, X: k xn, the rank of 3 is denoted r(¥) =r <p,

n —r(X) > r, the columns of E are i.i.d. N,(0,I) and 2'21~ is the positive
semi-definite square root of 3. It is assumed that Z and 3 are unknown
while X is a matrix of known constants. As it has been noted by several
authors (e.g. Rao 1973, p. 297; Nordstrom 1985) the singularity in 3 implies
certain restrictions on the parameter space as well as the observation matrix.
By performing a one-one transformation of (3.1) this can be explored in some

detail:
T r I'SIE
Y = =X + : 3.2
(FB) <F6> 0 (3.2)

where (I' : Ty) spans the whole space, I'Ty =0, T,X =0, I'T' =L, I' :
pxr, % =TAIY, where A = (\;) is the diagonal matrix of positive and
ordered eigenvalues of X, T'y : p x (p —r) and I'iIg == I,—,. Throughout, a
matrix Ag will be any matrix which satisfies C(Ag) = C(A)™*.

From (3.2) it follows with probability 1 that

'Y = T)EX. (3.3)

Equation (3.3) may be viewed as a linear system of equations in =. From Rao
& Mitra (1971, Theorem 2.3.2, p. 24) a necessary and sufficient condition
for the equation (3.3) to have a solution is that

L)y YX X = TyY, (3.4)
where A1 denotes the Moore--Penrose inverse of A. That is A™ satisfies the
four conditions (i) AA*TA = A, (ii) ATAAT = A*T, (ili)) ATA = (ATA)
and (iv) AAT = (AAT). It may be noted that in the above equation we

may use any generalized inverse of A, say A, satisfying only the condition
AA™A = A. However, the Moore-Penrose inverse is unique. Since

Tyl =T, Ty =Ty,

and TyI'y and T'{Ty are symmetric matrices, it follows that T'g: (p—7) x p
is the Moore-Penrose inverse of I'j. It can also be shown that the Moore-
Penrose inverse of X is given by

X+ = X'(XX)",
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where it is known that (XX')* = Xt X+, (X))t = (X*) and (X1)* = X.
Then, the left-side of (3.4) becomes

0 YXTX = (TiEX)XTX = I EX,

which is equal to T'{Y, from (3.3). Thus, the necessary and sufficient con-
dition is satisfied. From equation (2.3.5) of Rao & Mitra (1971, p. 24), a
general solution written in terms of Moore-Penrose inverses is given by

E =TI YX" +U - T [{UXX",
where U : p X k is an arbitrary matrix of parameters, which is of the same
dimension as E. Since
ToIyFal’ =1,
the general solution can be rewritten as
E=Te{YXTa® + T'on(I - XX1), (3.5)

where @ =T'U : r x k, and n = T{U : (p — r) x k. It may be noted that
if the & x n matrix X is of full rank £ < n, then XX* = I; and the third
term on the right-side of (3.4) vanishes. Thus, the (p — r) X k matrix i is
an arbitrary matrix due to the rank deficiency in X, while the r x k matrix
© is a matrix of parameters that can be estimated from the random part of
the model (3.2).

The solution (3.5) has been obtained from the deterministic part of the
model (3.2) and does not affect the random part of (3.2) as can be seen by
substituting the solution into (3.2). The random part of the model is given
by

I'Y = ©X + I'SIE, (3.6)
In (3.6) the dispersion matrix I'ET is non-singular as we shall show later.
Since T' is unknown, it is not obvious that estimation can be carried out.
However, as will be seen from the following lemma, the known sums-of-
squares matrix
S=Y({I-X'(XX')"X)Y' (3.7
gives some insight in C(I') = C(%) which turns out to be crucial for estima-
tion and testing.

In the subsequent Wy(e,n) represents the Wishart distribution with n
degrees of freedom.

Lemma 3.1. Let S ~ W, (X, n—r(X)). Then, with probability 1, C(S) C
C(X) and if n —r(X) > 7 =r(Z), C(S) =C(X).

Proof. We may note that X*X is a symmetric matrix. That is, XTX =
(X’X*)'. Hence

S=Y(l, - X*X)Y' = Y(I, - XTX)(I, - XTX)'Y".
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Thus,
C(S) C C(Y (I, - XtX)) = C(EX + E%E)(In - XTX))

= C(BZE(I, - X*X)) C C(82) = C(%).

Hence, the rank of S, r(S) < r(2) = r, that is the rank of the covariance
matrix S is always less or equal to the rank of 3. However, to prove that the
rank of S is exactly equal to » = (%) when r < n, we use the assumption
that S is Wishart distributed. Since X is of rank r we can write ¥ = BB/,
where B is a p X r matrix of rank r (see Srivastava & Khatri, 1979, Definition
2.1.1, p. 43). Hence, under the assumption of Wishartness, S can be written
S = BZZ'B’', where Z = (21,...,2,) is an 7 X n matrix and z;’s are i.i.d.
N;(0,I). Since n > r, the rank of the matrix Z is r, with probability one
(sce Srivastava & Khatri 1979, p. 73). Hence,
r(S) =r(BZ)=r(B) =r,
from Corollary 1.5.3 of Srivastava & Khatri (1979, p. 10). O

Corollary 3.1L. If S = HLH' where HH = 1., then T' = HQ where Q
is an r X r orthogonal matriz.

From the above result, it follows that I'jST'g = 0 with probability one and

1
thus I'y may be considered as known. Next we show that the matrix I'X2E
1 1
occurring in (3.6) is of rank r = 7(X). We note that since £2 = T'A2TY,
and T'T = I,
1 1
I'SIE = AIT'E,

where the columns of E are i.i.d. Ny(0,I). Thus, the n columns of I'E are
1.i.d. N;(0,I) and hence as above the rank is r. Thus

1
r(I'S2E) =r(T'E) =r
1
as A2 is nonsingular. From this it follows that
Iy - eX)(I'Y - 0X)

is nonsingular with probability one. In the model (3.6), the matrices of
unknown parameters are I', @ and A as

l\'l‘w lI
"¥2 = AT

Thus, the likelihood function for these parameters is given by

nr

1 .
L(®,T,A) = co|A| "2 etr {—2A "1 (T'Y -OX)(I'Y - OX)'}, ¢ = (27)” 2,
(3.8)
where etr(A) stands for the exponential of the trace of the matrix A. From
Srivastava & von Rosen (2002) we get the following theorem.

7
i
B
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Theorem 3.1. Assume that n—k > r(X). Then the mazimum likelihood
estimators of the parameters are given by

r'==H,

A= L/n,

5 =S/n,

0 = H'YX'(XX)* + Up(I — XX 1),

EX = YX*X,
8 =YX"' +HUI - XX"),
where Uy is an arbitrary matriz.

Corollary 3.1. Assume that the k X n matriz X is of full rank. Then the
mazimum likelihood estimators of ©® and E are given by
6 =H'YX'(XX)!,

E=YX'(XX),

respectively, and all the other estimators remain the same as in Theorem
3.1,

Since I'yY = I'{EX with probability 1, the unknown mean parameters
that may be tested for redundancy are I'E. We may wish to test the hy-
pothesis

H:T'EC = 0 versus A: I'EC # 0, (3.9)
where G : k£ x [. The restrictions in (3.9) are equivalent to [see (3.5)]
eC =0

which may be written as
6 = 0,0,

where ©; iIs a new parameter matrix. Therefore, instead of (3.6) we have
the model

'y = ©,C)X + I"Z%E.
Thus, the next theorem is a consequence of Theorem 3.1.
Theorem 3.2. Let
S =Y (I - X'Co(CyXX'Co)~CiX)Y’,

Hy: p X r be a semiorthogonal mairiz of eigenvectors which correspond to
the r = r(3) largest eigenvalues lg; of Sy, i.e. H Hpy =1, and (Lg); =

66
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(Igi). Assume that n —r(X : C) + 7(C) > r. The mazimum likelihood
estimators of the parameters in (3.1) under H in (3.9) are given by

A 1

A “‘ELHa

I' =Hy,

S =1H,L,HY,

=YX'Cy(CHXX'Co)™ + U(L - (CHX)(ChHX)"),
where U is an arbitrary matriz.

Observe that the test in (3.9) is in fact a between individuals test, e.g.
a comparison of different treatment groups. The I’ matrix is only used
for reducing the dimension and this reduction is the same for each treat-
ment group. If we are curious about what kind of linear combinations are
tested, Corollary 3.1L may be utilized and with probability 1 we are studying
H'EC = 0.

We end this section by presenting the likelihood ratio test for H in (3.9).
Let Up m,n be the standard test statistic in MANOVA, i.e.

o _ _ |SSE|
Pt |SSE + SST|’

where SSE ~ W,(X,n) is the sums-of-squares matrix due to error and
SST ~ W,(X,m) is the sums-of-squares matrix due to hypothesis (see e.g. ;
Srivastava & Carter 1983, p. 97).

Theorem 3.3. Suppose C(C) C C(X). The likelihood ratio test rejects
H, giwen by (3.9), if

A =Ur(m)r(©)n—r(x) S &

where

T, ST h| te1 LH

7

when ly > --- > 1, and lgy > --- > ly, are the ordered eigenvalues of S and
Sy, respectively, T' and S are as in Theorem 3.1, and Ty and Sy are as

in Theorem 8.2. The constant c is chosen so that a prespecified significance
level is obtained.
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Proof. Now,
1 T, Y (I - X'cg(cigxgc'co)-ch)Y'fw
IT/ST|
_TyY(a- X'A(X)A(')—X)Y'fg (3.10)
|T/ST|
+ngX%quﬂucwxxn-Crc%xxn~XYT|

IT'ST|
Eecause C(C) C C(X). However, since for some orthogonal matrix Q, T=
I'nQ, o o
T ST x| = |T'ST.
Moreover, C(T ) = C(T) implies that
Ly (T STw) Ty = I'(I'ST)~'1.
Thus, from (3.10), with probability 1,

\-l [T'ST + I'YX'(XX')~ C(C'(XX')~C)~C(XX')~XY'T)
- |TVST| '
Since . .
AT2T'STA™2 ~ W, (5)(I,n — (X))
and under H

1
ATIT'YX'(XX')"C ~ Ny (0 (0,1, C'(XX')~C),

and both expressions are independent of T' as well as A, the theorem is
established. Here N, (1, &, ¥) denotes the matrix normal distribution, i.e.
X ~ Npq(p, B, ®) is equivalent to vecX ~ Npg(vecp, ¥ ®@ ). O

Remark. If we do not require C(C) C C(X), it follows with probability
1 that A
_|IVsT

T, SyTy

where N is a matrix satisfying C(N) = C(X) N C(C).

I- ~ Ur(2),r(N) n—r(X)>

4. Confidence intervals for =

In this section we will construct four different types of confidence inter-
vals: a single confidence interval for an arbitrary bilinear combination of the
elements in =, i.e. a'Eb for any given a and b; simultaneous within subjects
confidence intervals, a’Eb, i.e. for all a and any given b; simultaneous be-
tween subjects confidence intervals, a’Zb, i.e. for a given a and all choices
of b; simultaneous confidence intervals, a’Eb, i.e. for all choices of a and b.
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Throughout, a € C(X) and b € C(X), because we are dealing with matrices
which are not supposed to be of full rank.
For the first case we start with the ratio

(a'(YX'(XX')~ ~ E)b)2
a'Sab/(XX')-b
The ratio is meaningful since a € C(¥) and b € C(X'). Then

R =

a’Sa
a'Xa

~ 3(n = (X))
and
(aI(YX’(XXI)— - E)b)z 2(1)
a’Slab/ (XX') b X
which are mutually independent random variables. Thus,

(n—r(X))R ~ F(1,n — r(X)).

In the next theorem we present a confidence interval based on these quanti-
ties.

Theorem 4.1. Let a € C(2) and b € C(X). For the MANOVA model
(3.1),
P(a'Zb € ' YX'(XX')"b
1
i
{n - r{X)
To obtain simultaneous within subjects confidence intervals we start again

with R but now we rely on the Cauchy-Schwarz inequality because we are
interested in

Fio(l,n — r(X))a'Sab/ (XX') b)) = 1 - a.

max R.
acC(xT)

Since ¥ = T'ATY, we study
(¢T'(YX'(XX')~ — E)b)2

max R =max

acl (D) a qT'S['qb/(XX')~b
b(YX/(XX')” — E)T(I'ST) 1T (YX/(XX')~ - E)b
- b (XX')~b

which is a Hotelling T? statistic since
'ST ~ W, (A,n — (X))

and
I(YX'(XX')~ — E)b(b'(XX')"b) /2 ~ N,(0, A).

Therefore the next theorem has been established.
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Theorem 4.2. Let b € C(X) and all a € C(X). Simultancous within
indwiduals confidence intervals for the MANOVA model (3.1) are given by

P(a’Zb € a'YX'(XX')"b
1
+ {mFl,,a(r, n—r(X)—r+1)a'Sab’(XX')"b}2 =1 —a.

For the simultaneous confidence intervals between the individuals it 18
noted that
! / nN— _ = ! / N~ _ =y
max R — a' (YX/'(XX') E)XXN(YX (XX") E)a
beC(X) a'Sa

which is F-distributed.

Theorem 4.3. Leta € C(X) and all b € C(X). For the MANOVA model
(3.1), simultaneous between individuals confidence intervals are given by

P(a'Eb € a'YX'(XX/) b

1
{7 RSP _a (r(X),n — r(X))a/Sab/ (XX)"b}Z) = 1 — a

Finally for the simultaneous confidence intervals, i.e. when both a and b
may vary, we note that

max R
a€eC(%),beC(X)

ey POYX(XXY)" - E)T(I'ST) "I (YX!(XX') ™ — E)b
 bet(x) b (XX')-b

= €1,

(4.1)
where e; is the largest eigenvalue of BW ™!, where
B =T"(YX'(XX')~ — E)X/(XX') " X(YX'(XX)™ - B)T ~ WA, r(X)).
and

W =T'ST ~ W, (A,n — r(X)).

The distribution of the largest root of W~!B has been derived by Pillai
(1955) and Roy (1957) and tables where given by Heck (1960). It can also

be obtained from the relationship ejq = T%;;’ where ¢, is tabulated by
Srivastava (2002, Table B.7).

Theorem 4.4. Let c, be the a-quantile of the distribution of e; in (4.1).
Simultaneous confidence intervals for the MANOVA model (3.1) are given
by

1
P(a'Eb € a'YX'(XX') b+ {¢1_o/(1 — C1-o)a'Sab/(XX')"b}2)=1—q.

67
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5. Outliers

The problem of finding outliers has received much attention over the years.
For a brief review see Srivastava & von Rosen (1998). Consider (3.1) which
can be rewritten as

yi:Exi+21/2e;, i=1,2,...,n,

where ¢; ~ N(0,X). A shift in the mean of the ith observation vector may
be expressed as

Elyi] = Bx; + 6. (5.1)

We define an observation y; to be an outlier if the hypothesis Hy: § =0
is rejected according to a fixed significance level. However, since we will
test each observation, many tests are performed and the problem is to find
a proper critical value. Let e; be the ith column of I,,. Then from (5.1) it
follows that

E[Y] = (4.5) <§;> = =X, (5.2)

If 6 = 0 then we say that we have model H. Otherwise the model in
(5.2) is denoted H;. The likelihood ratio criterion for testing H against H;
is according to Theorem 3.3, in obvious notations, given by

LAY
Ve
where
S=Y(I-R)Y
S;=Y(I-R,;)Y’,
R=X'(XX)"X, R;=X}(XX) X~
Now, with probability 1
[T/ST|
A = e

IT’S;T|

Observe that

Si =8 — (1 —rs) ' didj,
where

d; =y; - YX'(XX')"x;,

Tii =X;(XX')—X1.
Thus we may consider
T, = diD(I'ST) ' Vd; /(1 — 74),

since

Ai=(1-T)""
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If we want to have a numerical value of T; we can replace T by r u, for
example. This will not change the distribution of 7;. Observe that H is
rejected for large values of T;. An overall test statistic will be based on

T = max T;.
1<i<n

A conservative test based on a Bonferroni upper bound is given by

n
P(T>1) <Y P(T; > 1)
i=1
and
n—r(X)-r®) T;
7‘(2 1 -fTi ~ r(E),n—r(X)—r(Z)-

Thus,
n—r(X)-r(X) t )
() 1—¢"

'To sharpen the above result we may use a generalized Bonferroni inequal-
ity (Hunter 1976, Worsley 1982, Meng & von Rosen 2003):

n-—1
P(T28) <nP(Ty > t) = > P(T; > t, Ty > 1).
i==1
Hence, the joint distribution of 7} and Tir1 1s needed. Let
L; = e;(I—R)(1 —ry)'/?,
L' = (L, 1;), F=LL

P(T 21t) < P(Fo(s)n-r(x)—r(x) =

and then
I'ST = I'UF'UT + I'WT,
where
(T'ED) V20U = (U'3r) YA YL ~ +()2(0, LF)
(I"EI‘)“VQI"WI‘(I"E_I‘)‘I/Z ~ Wy (Ln — r(X) — 2).

Now

b

T; = w,T(T'UF'UT + I'WI) 1y, (5.3)
where
U= (ui, Llj) = (YIL,YIJ)
and

Tij =uD(T'UF~'UT + I'WT) "y,
Pij ZI;-IJ'.
In (5.3) T; is beta distributed (see Srivastava & Khatri, 1979). By applying

Theorem 2.1 in Srivastava & von Rosen (1998) we get the joint density of
T; and Tj.
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Theorem 5.1. Let the statistics T;, 1 = 1,2,...,n, be defined by (5.3).
Then the joint density of T; and T}, 1 # j, 1s given by

(1_/)2,)_%("_@-3) L) (3(n — (X))
Y I (5(n = r(X) = 2))To(37(T))
b n(2)-3 Lo oo
X[ (T~ Ty) " 2 {(L—T)(1 ) — (pyg — Tyy)2 27304y,
Ja
where

a = max(—/T;Ty, ps; — \/(l = T)(1 - tj)))
b=min(y/TiTj, pis + /(1 — T5)(1 — 1;)).
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