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Approximate design-based variance of functions of
covariance matrix

IMBI TRAAT

ABSTRACT. Functions of a design-weighted estimator S of the finite pop-
ulation covariance matrix are considered. For these functions (determi-
nant, Hotelling’s T7°) the approximate (Taylor series based) variances are
derived. For $ also the exact dispersion matrix is derived. These are gen-
eralizations of the earlier results for independent identically distributed
(¢..d.) variables. A simulation study supports the derived formulae.

1. Introduction

Finite population estimation theory is mostly one-dimensional. It means
that one study variable is considered at a time and subject of the estimation
is its certain parameter (a number) like population mean, total of values,
or variance. In this paper we consider many study variables at a time with
their joint behavior being characterized by the finite population covariance
matrix §. This is a multivariate parameter of the finite population.

A natural estimator for

S in the finite population context is a design-
weighted sample covariance

matrix S. For the self-weighting designs it re-
duces to the classical sample covariance matrix. Distribution of 3, and also
of its functions, is created by the sampling design (so called design-based
distribution). Distribution of § and of many of its functions is thoroughly
studied only under one special sampling design — simple random sampling
with replacement (SIR sampling). Corresponding sample satisfies the i.7.d.

assumption of data which is the basic assumption in classical statistics while
studying distributions of sample functions.
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In this paper we observe a general situation. Let the sample be drawn by
any sampling design. We use the distributional approach by Traat (2000}
allowing simultaneous consideration of with- and without-replacement (WR
and WOR) sampling designs. Under these circumstances we are interested
in the distributional characteristics of S and some of its functions. In Traat
(2003) an approximate (Taylor-linearization based) dispersion matrix of S
is derived. Here we derive the exact dispersion matrix of S being a general-
ization of the earlier i.i.d. result by Traat (1984).

Our main interest in this paper is turned to the important functions of § —
determinant of § and Hotelling’s T%-statistic. They are valuable inferential
tools in classical statistics — IS‘ | estimates generalized variance of the set of
variables, T2 is used for testing hypothesis about the mean vector. These
inferential procedures are based on the knowledge of distributions of these
functions. The distributions are known only under 4.i.d. assumption, in
some very special cases exactly, otherwise asymptotically. In Kollo (1990)
the asymptotic normal distribution of the above functions is established and
corresponding asymptotic variances are presented. In this paper we derive
these asymptotic variances under more general assumptions, valid for any
sampling design. We show that in the special case of SIR sampling they
coincide with the results by Kollo (1990). The simulation study confirms our
results. It can be also seen that convergence to the asymptotic distributions
is much slower in the complex sampling situation than in the i.4.d. case.

2. Finite population, sampling
Finite population is a matrix of fixed values
Y: px N,

involving measurements of p study variables on N units. Usually the case
p = 1 is considered in sampling literature. Inference is desired on Y, in
practice, usually on totals and related quantities like means, proportions
etc. In the multivariate setting all totals can be presented simultaneously as

t=Y1: px1,

where 1 : N x 1 is a vector of ones. Estimation of ¢ can be straightfor-
wardly built up on the estimation of its components which is well covered in
the sampling theory literature. More complex multivariate parameters are
almost not considered in the finite population sampling theory. The impor-
tant representatives, observed in this paper, are the population covariance

matrix
1 1

= —(YY' - =Y11'Y"):

§= (Y - FY1'Y): pxp @)
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and its functions. A convenient tool for describing sample selection from a
finite population is the sampling or design vector (see Traat 2000):

I=(I},L,... Iy).

It is a random vector with I; showing the selection count of the population
unit 1 (I; = 0 meaning that 4 is not selected). Here EI; is called the sam-
pling expectation and 7; = Pr(I; > 0) is the inclusion probability of unit ;.
Distribution of I is the sampling design. It is a discrete multivariate distri-
bution. Consideration of WOR and WR designs is unified in this way. The
observed data can be conveniently expressed as (YI4,I), where I, : N x N
is a diagonal matrix with the vector I on the diagonal. Multiplying with
Iy extracts columns of Y which correspond to sampled units. Randomness
which in the design-based approach comes in through I, is now explicitly
given in data.

For the estimation purposes the expanded sampling vector is needed:

o . . , ) h
,[:(117]2,...7]]\7)’ Where]’i:ﬁ.
Note that
Ei =1: N X 1’
offering an especially simple form for unbiased estimation of ¢:
t=YI o)

The most important design characteristic in the estimation formulae is the
design covariance matrix, more precisely, the covariance matrix of the ex-
panded design vector:

A=E(I-1)(I-1): NxN. (3)
The matrix A defines variance of f in (2):
V() =YAY, (4)

The matrix A defines also approximate (Taylor linearization based) vari-
ance of nonlinear statistics, some of them considered later in this paper.

3. Estimator of finite population covariance matrix

Finite population covariance matrix (1) is an expression of totals

1 1 , _ ro,
S——N——(Thﬁtt), where T =YY’ t=V1. (5)

A consistent estimator of § is received by replacing totals by their unbiased
estimators:

a1 1 ..
S:“:"T-‘Ttt,, 6
T -5t (6)
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where

t=viyy, t=vI N=11T. (7)
The consistency of $ holds both in the sense of infinite population (Sarndal
et al. 1992, p. 166-168) and in the sense of finite population, postulating
that if the full population is sampled then S = S. Note that in spite of
unbiased components, S is biased for S, the bias matrix being

N 1 .
B=F5-8§=—55YAY" (8)

We see that § underestimates S and the bias is 1/N? times the covariance
matrix of £.

The approximate (Taylor linearization based) dispersion matrix of vec§
is given in Traat (2003):

AV (vec8) = UAU', (9)
where U : p? x N is such that its ith column is
1 1 t
U= (yi— ) ® i~ ) — veeS). (10)
In the special case of the SIR design,

N-1 1
Ay = ———, Ajj = ——,
n n

we get from (9) the classical ¢.i.d. result (see e.g. Parring, 1979):
A 1
AV (vecS) = E(M4 —vec S vec' S),

where
B 1 t t., i t.,
M4~-N—Eu(yi—~—ﬁ)®(yi“‘]v)®(yi“']—v‘)®(yi—‘ﬁ) (11)

is the fourth central moment of the population. The one-dimensional special
case of (9) is given in Sarndal et al. (1992, p. 186-183).

Below we present the exact design-based dispersion matrix of §. Looking
at the form of S in (1) we immediately see a possible estimator
A 1 v 1 vy
= —Y(Iy— =II"Y'. 12
§ =YL~ w11 (12)
Apart from the formula (6) we do not use N here. The estimator is not
linear in I but still considerably simple (with random part separated in the
middle).

First, we are interested in the exact mean square error matrix of S:

MSE(vecS) = E[vec(S — S)ved' (S — ).
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Exploiting the expressions (5) and (12) together with the property
vec(ABC) = (C' ® A)vecB we have
- 1

vec(S — §) = N(Y ®Y)D,

where .

D = [vec(ly — 14) — Nt(f“@f -1®1)].
Now it is easy to get MSE-matrix of of §:

A 1

With the help of MSE- and bias-matrices the exact dispersion matrix of §
is:

V (vecS) = M SE(vecS) — vecBvec'B.
Its special case under 7.5.d. sampling is given in Traat (1984). We see that
both, the exact MSE- and dispersion matrices of S, depend on the moments
of the design vector I up to the 4th order. These moments are given if

the sampling design is given. Nevertheless, they are often difficult to calcu-

late. For smaller populations these moments can be estimated by repeated
sampling of the frame.

4. Functions of covariance matrix

Our main aim is to present approximate variances of the following impor-

tant functions of S:

o |5] - determinant, generalized variance;

e T2 =Y'§-1y Hotelling’s T2-statistic, where Y is given in (15).
We use general technique of Taylor linearization. Assume f(Z): RP — R}
allows Taylor approximation (linear) around Zj,

1(2) = f(Zy) + D(Z ~ Z),
where a row-vector d
D=1,
a7 %=

is a matrix derivative (Magnus and Neudecker, 1999). Since f(Z) and DZ,
are constants, then the variability of f(Z) is produced by the term DZ.
Consequently, the approximate variance of f(Z) is:

AVI(2) = D 4V (2) D, (13)

where AV(Z) is the exact or approximate covariance matrix of 2 , usually
found from its Taylor expansion.

For functions considered in this paper Z = vec$ and Z = ():” vec! SY.
For the first case AV(Z) is available in (9), for the second case we derive it.
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It remains to find the first matrix derivatives of our functions of Z. These
derivatives have been found earlier in the matrix literature. Putting the
pieces together we present below the Taylor variances for the above listed
functions of §. They are valid for any sampling design. We point out that in
the special case of SIR design they coincide with the classical 7.4.d. results.

4.1. Taylor variance of determinant. Using the derivative (Magnus and
Neudecker, 1999, p. 178),

d|S -
D=2 o = Ispec(s™)
and the expression (9) we get from the general result (13):

AV(IS]) = |8)>vec' (STHUAU vec(S™H). (14)

By specifying A the result is expressed for different sampling designs. For
example, for multinomial design (WR with unequal selection probabilities
pi) Aip = —%Zfi, Ay = —%. For SIR design, p; = 1/N, and we get from (14)

the known classical result (Kollo, 1990),

AVsrr(18D) = %ISIQ[vec’(S“l)M4vec(S"]) ~ 2,

where My is given by (11). For SI design Ay = 222, Ay = —.ﬁg—vﬁj%), the
asymptotic variance of the determinant will become smaller:
A N-—-n N
AVsi(|8]) = =7 AVs1r(I5)).

4.2. Taylor variance of Hotelling’s T2, The Hotelling’s T? = v1g-ly
is a function of the mean estimafor

- f
% (15)
and of §. By Trdat (2003) we have Taylor linearized vecS in the form
vecSy = U, (16)

where U is defined in (10). Taylor linearized 1% (without constant term) is
Yo = (i - YN)/N, (17)
or after replacing ¢ and N with their expressions through I ,
Yo =WI, | (18)

where W : p x N is a matrix with (y; — Y)/N in its ith column, Y =t/N.
Now it is easy to see that V(Yp) = WAW' and Cov(Yy, vecSy) = WAU'.
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Finally, denoting Z = (}af’ fvec’S) t 1 x p®, we get its Taylor variance in the

block form:
WAW' : WAU'
AV(Z) = . (19)
UAW' ' UAU!
Using the expression of derivative (Kollo 1990):
D = Md(yfg 2l lz=2, = QY"1 V5 @ Vg1, (20)

where Zy = (Y': vec'S)' we get from the general result (13) for ¥ # 0 the
approximate variance of Hotelling’s T?-statistic:

AV(T?) =D AV(Z) D' (21)
For the special case of SIR design (19) reduces to the form:

s M

Ms © My —veeS vec'S
where

_ 1 2 g b

Consequently, in this case AV (T?) reduces to the classical 1.1.d. result given
in Kollo (1990).

5. Simulation

The Taylor variances of determinant and Hotelling’s T2 derived in this
paper are compared with corresponding simulated values.

The population Y : px N , where p = 2 and N=1000 is generated from

the bivariate normal distribution. The population mean vector ¥ and the
covariance matrix are:

. 0.942 0.399
Y =(5.007, 4.934), §= [ 0.399 1.002 J

where
|S| = 0.785 and Y'S~'Y = 36.13.
Two different designs were used for drawing samples from Y:

o SIR design with EI; = To65> Where n is the sample size.
70
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e Multinomial design with
EIL = b+ (1 — bN/n)np;, (22)

where b = 0.02, p; = (z; — )%/ ZZNzl x; and z; is the auxiliary
variable known for the whole population. With (22) we get highly
variable sampling expectations, in our case ranging from 0.02 to 4.8,
to check our formulae in most difficult situations. With b = 0.02 we
protect us against nearly zero sampling expectations.

e Sample sizes n = 100, n = 400 were considered.

The mean and variance in tables are simulated values over 1000 repetitions,
AV is Taylor linearized variance derived in this paper. In Tables 1 — 2 the
auxiliary variable z; is correlated with one of the study variables, in Tables
3 —4 it is not.

Table 1. Mean and variance of ]5'] , correlated auziliary

SIR Multinomial
7 100 400 100 400
mean 0.751 0.779 1.180 1.000
variance 0.023 0.006 0.064 0.021
AV, (14) 0.025 0.006 0.037 0.021

Table 2. Mean and variance of T? , correlated auziliary

SIR Multinomial

7 100 400 100 400
mean 37.50 36.47 34.06 34.63
variance 36.22 6.94 32.82 13.74
AV, (19) — (21) 28.63 7.16 41.82 21.25

The mean in tables confirms the fact that both |S] and T2 are biased for
corresponding population values. The bias decreases when n increases. The
bias is bigger and decreases more slowly for multinomial design. Comparing
variances we see that AV approximates well the true (i.e. simulated) variance
in clagsical SIR case. In multinomial case with highly variable selection
probabilities p; the approximation is not so good, but it becomes better
with increasing n. The approximation works better for |S| than for T2.

Below we consider an auxiliary variable uncorrelated with study variables.
We assume study variables to be uncorrelated with each other too. Our finite
population is now

1.048 —0.053
—-0.063 1.001 |’

Y = (4.954, 4.941), S = {
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where
|S] = 1.046 and Y'S™'Y = 50.42.

With these changes we expect to increase the variability of considered sta-
tistics.

Table 3. Mean and variance of IS |, uncorrelated auziliary

SIR Multinomial

n 100 400 100 400
mean 1.011 1.036 0.930 0.970
variance 0.041 0.011 0.068 0.034
AV, (14) 0.042 0.011 0.103 0.061

Table 4. Mean and variance of T2, uncorrelated auziliary

SIR Multinomial

7 100 400 100 400
mean 52.46 50.89 54.45 52.76
variance 53.04 12.42 99.71 45.81
AV, (19) — (21) 48.68 12.17 113.68 65.32

The same tendencies as described above are visible in Tables 3-4 too. Here
the variability of statistics is bigger. The AV captures the increasing vari-
ability. With increasing n the approximation becomes very good under SIR
design, whereas under multinomial design it is moderate.

Conclusions

In this paper we considered a consistent estimator S of the finite pop-
ulation covariance matrix. We derived the exact design-based covariance
matrix of vecS. We considered also the functions of § such as determinant
15| and Hotelling’s T?-statistic. With Taylor linearization we derived their
approximate design-based variances. The results are more general than one
can find in literature. The classical i.i.d. results follow from ours under one
special sampling design —~ simple random sampling with replacement. The
derived formulae were supported by the simulation study. The approxima-
tion works very well for the designs with equal EJ;. For the designs with

highly variable EI; the approximation follows the true variance, though not
in the best possible way.
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