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The extended growth curve model — an overview
with special reference to two components model

IVAN ZEZULA

ABSTRACT. The paper contains an overview of recent results in the ex-
tended growth curve model, both with fixed and random effects. Explicit
results are shown mainly for the model with two components/profiles.
A variance components estimability criterion is proposed.

1. Introduction

The standard extended growth curve model has the form:

k-1
Y = ZXiBiZi + e, 1
=0
where
e By,...,By_; are the first order parameters (fixed or random effects),

e X; and Z; are known design matrices,

e ¢ is the random error matrix, E¢ = 0, var (vece) = Ty @ I,

e dimensions of Y, ¢, X;, B; and Z; are n X p,m X p,n X my, m; X T4,
and 7; X p, respectively.

Notation: column space of a matrix @ is denoted by R(G); Py is the
orthogonal projector on R(G) and Mg = I — Pg the orthogonal projector
on its orthogonal complement. If the corresponding (semi)metrics is given
by a positive definite (positive semidefinite) matrix A4, these projectors will
be denoted by PC’? and Mé‘l. The vec-operator stacks columns of an (m X n)-
matrix each under the other, thus making from it an mn~-vector; & is the

Kronecker (tensor, direct) product of matrices. Moore—Penrose inverse of a
matrix G is denoted by G+.
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Often, vectorized (i.e. univariate) form of the model is used:
k-1
vec(Y) Z (2 ® X;) vec(B;) + vec(e) .
1=20

This allows directly to carry over all univariate results to the multivariate
model. However, this is not always recommended, because we lose the mul-
tivariate character of the model. For a review of results on the standard
growth curve model see Kshirsagar and Smith (1995).

2. Sum-of-profiles model

When all effects are fixed, we have quite simple variance structure, while
the structure of the mean is rather complicated:

k~1
BY =Y X;BiZ, var(vecY)=3@I. (2)
1=0

IfR(Xk-1) C R(Xp2) C - C R(Xp), then maximum likelihood es-
timators of B; and X are known. However, they can be presented in a
half-explicit form only, using recurrent formula. Moreover, the estimator of
¥ is not unbiased, see von Rosen (1989).

For k = 2 and R (X}) C R (Xy), explicit unbiased estimators are available
for estimable By, By and %:

By = (X0Xo)"xiys1zi (o' 2) "
-1yt
~ (XoX0) " XgPx Y ( Py ) 272 (2087 )"

B, = (X)) xiys~' My 7 (le:'*lz\,@‘,;‘z;)+ ,

= 1
5= oY ' My, Y
n —r(Xo) o
If ¥ is unknown, we need to put E() = Eo (i‘l), El = El (i“l). In
such a case the unbiasedness of the estimates is lost, see Zezula (2003a).
If ¥ = 0?G with G known in the above model, then we can replace & by
G in B; and the unbiased estimator of o is
_ Tr(4)

2

r
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where
- Y
A = Y'Mx,Y +MGY (Mx, - My,)Y (MGO 1)
G-! o, G-l !

MG )Y PeY (M)

ro= (= (o) T(G) + (r (Xo) — 7 (X)) Tr (MG 6)
G-—~1
+r(X1) Tr (M(z;),z;)G) :

Important special case is the model with concomitant variables: here k =
2, Z; = I, but usually R (X1) ¢ R (Xp). Because of the last condition,
estimators are known in vectorized form only, see e.g. Wesolowska-Janczarek
(1996).

Unbiased estimator of the overall mean (not individual components) and
variance matrix, as well as the variance o2 in the case of known correlation
structure were also derived for the model with arbitrary number of compo-
nents (profiles). For details see Zezula (2003a).

3. Basic mixed model

The model was introduced by Khatri and Shah (1981). Here we consider
one fixed effect and several random effects in the model (1). In this case
we have a simple mean structure, but very complicated variance structure.

Thus, let By be fixed, and By, ..., By be independent random variables
with

EB; =0, var(vecB;) =5, ®1, i=1,...,k—1

b

(3)
BY =XoBoZy, var(vecY)=Yt12ZI%2, @ X,X! + 5, @ 1.

In order to estimate variance components, let us consider quadratic esti-

mators of the form Y'AY, Apx,. According to Ghazal and Neudecker (2000)
we have

k—1
EY'AY =" ZI%:7; - Te(AX,X!) + Ty - Te(A) + Z4B{ X AX 0By Zy .
t=1

In order to exclude unknown By, let us take A = M x,,p), where P is some
matrix. Thus,

k-1
EY'Mixo,p)Y =Y Z{%:2; - Te(Mx, py X: X!) + S - T (Mxo,p)) -

i=1




284 IVAN ZEZULA

By choosing different matrices P we can obtain potentially different linear
combinations of variance components. Estimators of their estimable func-
tions can be obtained by solving the system

Y'Mxyp)Y =BY Mg pyY

with variable P.
In particular, choosing P = @, Xy, (X1, X2), ..., (X1, Xa,..., Xg—1), we
get

Y Mxox0)Y = Soisy Z15:%; - (llXil12 - HP(XO,Xl)XiH2>
+ 8 (n— 7 (X0, X1)) ,

Y'My,Y = S50 257 (1607 - [1Px, Xill?) + S (n = (X))

Y'Mxo,x1,.. %)Y =0+ Sk(n =7 (Xo, X1, Xe-1)) -

This is a triangular system. Notice, that the above projection matrices

can also be calculated recursively using the formula

M, Mxp, %) M'(XOwXI-'":Xk~2)
M(XO)XI)“ﬂXk——-l) - MXO ' X] : JVIXZ ..... MXk._l -

If we denote A = {aij}szl and A” = {o‘ij}?,j:p where

aij = Tr (XJ"M(XO,Xl,..‘,XM)Xj) = 1261 = [ Poxo, s, e Xill
i=1,... k=1, j=di+1,... k=1,

0 =0, i=1,...k j=1,..,i-1,

Qi = Tr (A’f((\’o,Xl,...,X.;_l)) =n- T(X()’Xl:' e 7Xi~1) ) i= 1: .- '7k7

and
QJ :YlM(X(),Xl,‘..,Xj_,l)Ya .7 = 17"'>k7
then we can see that all solutions of the (potentially singular) system are

k
%% =Y 0 Q;
J=1
(if A is non-singular, A~ = A~! is triangular and the summation goes from
j =1 to k).

We see that ¥y, is always estimable, unless 7 (X, ..., Xx—1) = n ( but this
is usually not the case in practically important situations). Matrices Z; are
matrices of regression constants and usually of full rank. Thus, estimability
of ¥; depends on the fact whether R (X;) C R (Xy,..., Xi-1) or not, because

R(X:) C R(Xo,..., Xio1) = |1 Xl ~ ”P(Xo,...,Xi_l)Xinz =0.

The problem of ordering: researcher can — except Xy — index matrices in
this model in an arbitrary way. There are (k— 1)! ways how to index (order)
random effects. But the estimability condition depends on the chosen way
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of ordering. As a result, the estimability condition need not be satisfied for
one ordering and can be fulfilled for another ordering of the same matrices.
Thus, for a specific ordering (indexing), the estimability condition need not
be fulfilled even if all the variance components are in fact estimable (i.e. the
condition holds for another ordering). That is why we give

Definition. When the conditions R (X;) N R (X, ..., X;_1)° # {0} Vi
and 7 (Xg,...,X;_1) # n hold after suitable re-indexing of all matrices X,
we say that there exists a natural ordering of these matrices.

In such a case, A7! exists and all variance components are estimable.
Thus, existence of a natural ordering is a sufficient condition for the es-

timability of all variance components. Note that the modified von Rosen’s
condition

R(X0) GR(X1) G - G R (Xpo1)
is a sufficient condition for the existence of a natural ordering. In this case,

M(Xo,...,Xi_]) - MX{__I, 1= 1, ceey k,

and the whole system becomes substantially simpler.

Also note that if a natural ordering exists and we do not use it, a singular
matrix A can arise even if all variance components are estimable. Thus,
usage of natural orderings for the whole sequence of X; and its subsequences
is a crucial thing.

To check whether a natural ordering exists or not, we can form a proper
subspace graph:

the vertices are grouped in “floors”,
the bottom floor is formed by all individual spaces R; = R (X;),

the 214 floor contains all pair-wise union spaces R;; = R (X;, X;)
e ..

3
s

o the top floor contains single vertex Ry 1 = R (Xg, X1, ..., Xk—-1)-
An arc (aiming upwards) is put between two vertices in adjacent floors iff
the starting space is a proper subspace of the ending space. We form arcs
only between adjacent floors of vertices.
It is easy to see that a natural ordering exists iff Ry, j_; # R™ and there is
a path from (bottom) vertex Ry to the top vertex.

Example. Let

1100 100 1
101 0 110 1
1 001 100 1
Xl“looo’X2“101’ 1
1000 100 1
1 000 100 1

72
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First, let us notice that Rgi2 is a 5-dimensional space, so that Rg12 7 RS.
Secondly, it is clear that the proper subspace graph for these matrices is

Ro12
TN
Ry Ry Ry
N TN T
Ry Ry Ry

We see that there are 3 paths from the bottom to the top, which implies
that we can have the following 3 orderings satisfying our conditions:

X]_”*))(Q*'%Xo, XQ'*}Xl—-)X(), and XQ——*}X()—>X1,

but — as none of these paths starts in Ry — there is no natural ordering.
If the design matrix of fixed effects would have been X; or X5, a natural
ordering would exist. O

The problem of the existence of a natural ordering reduces to r (X, X1) <
n and R (X1) ¢ R (Xy) for k = 2, which is very simple to check.

If no such natural ordering exists, it is an open question whether changing
the ordering of matrices X; or using another P matrices can change our
possibilities to estimate more of %;.

However, the system which one suggests is that existence of a natural or-
dering of matrices X; could be not only sufficient but also necessary condition
for the unbiased estimability of all variance components.

3.1. Testing variance components. Let us consider another sequence of
quadratic forms using projectors
P, = M(XOMXi_l)Pif(*")""*"i*) L oi=1,. k1,
and
Py =Mx,,..x0_1) -
Let us define
1

SS; = Y'BY , i=1,... k-1,
7 (Xoy- -5 Xi) =7 (Xo, ..., Xio1)

and
1

n—r(Xo,..., Xp-1)

S8, =SS = Y'BY .

It is easy to see that

ESS; = (

I
J
jzi Tr(F

T (X5RX;)
) Z;-Eij%—Ek, i=1,...,k—1,
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and
E SSk = Ek y
where
Tr(F) =r(Xo,..., X;) —r(Xo,..., Xs1)
in the former expression.
We can call SS; the generalized sums of squares. Since PP, = 0 for
t=1,...,k—1, we can easily see that all these sums must be independent

under normality. If a natural ordering of matrices X; exists, this can be used
for testing of variance components.

3.2. Two variance components. In the simplest case, when k = 2,

r(Xo, X1) <, and R(X,) ¢ R (Xp), both variance components are es-
timable: .
Vo= Y My Y
22 7 — T'(XO,X}) (d\l),X‘.)
and
5 ! n ~7(Xo)
B = g (VMY — —L 20y Y|.
1441441 rI‘r(XiMXO‘Xl)‘: Xo ’n,“r(X(),Xl) («Yo,Xl) J

Explicit form of the plug-in estimator is not available. We have to use the
vectorized form of the estimator

= . ~ ~1 -1
vec By = ,:(ZQ ® X(’)) (22 ® I, + Z{Elzl &® XlXi) (Z(I) ® Xg):,

~ ~ \ =1
x (208 X5) (B2 0 I + 215, 2, ®X1X]) vecY,

and de-vectorize it after the computation.
If we want to test the hypothesis Hy : £1 = 0, we can use the fact that

ESS; =ESS,
under Hy. Also, under the normality assumption, we have
Y’ My, Pyoy %, (1 (MXOP)%XO) %)
and
Y’IVI(XO,Xl)Y ~ W, (Tr (M(Xo,Xl)) ,Za) .
‘Therefore we can use the standard tests for Hy:

: S Se)
Wilks's A = — 2%l
T A

Hotelling-Lawley’s T’ = Tr (Ss: 18’51)
Pillai’s P = Ty [551 (S8, + ssl)*lj
Roy’s M = Aoz (SS;lSSl) .

H

3
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3.3. Other special cases. Some results are also available for special vari-
ance structures, namely ¥; = (f%Gi, and in the two components model also
for the uniform correlation structure

S =01 (1 - p)) L, +p111') B9 =03 (1 - p2)lp + p211')
and the serial correlation structure
- -1
1 pi1 ... Pt ; 1 pe ... ph ,
1 1 ... P 9 1 ... P
L1 =0} p . pl. , Tg =03 p . ?
AR A U | F . S |

Unbiased estimating equations for the parameters in these models are
known, for details see Zezula (2003b). For comparison with the standard
growth curve model see Lee and Geisser (1996).

Lindsey (1999) uses in some situations model (3) with
X;=IVi=1,...,k~1.

In this model the individual matrices ¥; are not estimable. But we have
k-1
var (vecY) = | Y ZINiZi+ 5 | @ Iy =T @ I,
i=1
which is the usual growth curve model. The unbiased parameter estimators
(if estimable) are

By = (X5 Xo)" XYT2 24 (ZeT 1 25) ™,
and

1

F= ———Y'My,Y .

n—r(Xp) Xo

3.4. Balanced case. If model (3) is a balanced one (i.e. all matrices X; are
Kronecker products of vectors 1 and identity matrices I), Brown-Mathew

condition is fulfilled: there exist -y; > 0 such that
Px, XiX;Px, = vPx,, Vi=1,...,k—1.

The unbiased estimator of By is then
Bo = (X0 Xo) ™ Xo¥T ' 2 (20 2)
where
k—1
U= 7Z%Z; + T ;
=1
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the unbiased estimator of T is
k-1 k

I'= Z Z 7iain,M(Xo,X1,...,Xj,l)Y + akkYIM(XO,Xl,.‘.,Xk_l)Y

t=1 j=g

(if A~ exists, see the beginning of this section).

In many situations we are interested in the best linear unbiased predictor
(BLUP) of a linear function of the fixed effects plus random effects. In our
setting, probably most suitable multivariate analogue of such a vector is
LyByLy + By (for comparisor with the univariate case see Searle, Casella

and McCulloch (1992)). For k = 2, BLUP of this matrix is available, but in
the vectorized form only:

BLUP [VGC (LlBOLQ -+ Bl)] = vec (L1§0L2) -+

~ ~ ~ -1 =
+ (2121 ® X{) (Z;z:lzl ® X X, + 5 ® I) vec (Y - XOBOZ0> .

As it was proved in Zezula (1999), we can write the inverse of the variance
matrix in the form

- ~ 5 1 g
(Z{lel YN +Tel) =T'0 P+ 3 AT oM,
=1
where I' = Z131Zy + 9 and M; form mutually perpendicular decompo-
sition of My, (s depends on the estimability of individual variance com-

ponents). Using this result, we can easily see that BLUP of LyByLs + By
is

-~ ~ §
L BoLy + X Py, (Y — XOBOZO> IZi8+ Y XiMY AT 218,
j=1

where T = 7 Z{ngl +5, and Zij are also functions of var

iance components
estimators; see Zezula (1999) and Zezula (2000)
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