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Asymptotic formulas for a class of sums over
consecutive Farey fractions

ALEXANDRU ZAHARESCU

ABSTRACT. We provide asymptotic formulas, as Q — oo, for a class of
sums over consecutive Farey fractions of order (), which are defined in
terms of a given quadratic form.

1. Introduction

A question on the distribution of Farey fractions which came up in the
work of Galway [8] on the problem of enumerating primes in an interval with
the use of a dissected sieve, is the following.

Denote by Fg the Farey sequence of order @, that is the set of rational
numbers a/q in the interval [0, 1] with a, ¢ relatively prime and 1 < ¢ < Q.
Given a 2 X 2 symmetric matrix A and its associated quadratic form Q) 4,
the problem asks to find an asymptotic formula, as @ — oo, for a sum of
the form

1
5@ =Y, e (W, (1.1)

—q—;;) 9¢'(q + q')

a/qG.FQ
afq<Mp

where 0 < M4 <1 is a constant depending on A, F(t) = /P(t), with P(¢)
a polynomial of degree 2 defined in terms of the quadratic form 4, and
e < %:« are consecutive elements of Fq.

Atkin and Bernstein [1] introduce an algorithm that computes the prime
numbers up to N using O(N/ log log N) additions and N1/2+0(1) bits of me-
mory. The algorithm enumerates representations of integers by certain bi-
nary quadratic forms. ,

Starting from the method of Atkin and Bernstein, and inspired by the clas-
sical work of Voronoi [11] on the Dirichlet divisor problem and of Sierpinski
[10] on the circle problem, Galway [7], [8] introduces a Farey partition in the
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algorithm of Atkin and Bernstein. The resulting dissected sieve algorithm
uses somewhat more operations but only N1/3+0(1) bitg of memory.

Galway [8] discusses the efficiency of his new algorithm, and he points out
that this depends on the number of scanlines enumerated by the algorithm.
This in turn depends on the behavior of the sum S(Q) from (1.1) for large Q.
In the case when the quadratic form Q4 is given by QA(X,Y) = X2 + Y2,
My =1 and P(t) = ¢* + 1, he found numerically that for Q = 10, 100,
1000, 10000 and 100000, the corresponding values of the quantity QS(Q)/2
are 0.29094833, 0.29778011, 0.29785085, 0.29795720 and 0.29796200 respec-
tively. This led him to conjecture that QS(Q) approaches a certain nonzero
finite limit as QQ — oo.

In a series of papers (2], [3], [4] and [5] various aspects of the distribution of
Farey fractions have been investigated, and in particular suitable methods
to deal with sums over consecutive Farey fractions have been devised. In
the next section we describe such a method by which one indeed obtains an
asymptotic result of the form

5(Q) ~—— (1.2)

as  — oo, where C'/(A) is a nonzero constant depending on the given matrix
A only. As we shall see below, the constant C(A) can be computed in
closed form. For instance, in the case when Q4(X,Y) = X2 +Y? My =1
and P(t) = t* + 1, we find that C(A) = (6v/2log2)/n%. Here C(A)/2 =
0.2979627..., which confirms the trend apparent in the numerical data above.

As was pointed out by Atkin and Bernstein [1], and also by Galway [8],
one can vary the binary quadratic forms used in their algorithms. In order
to increase the efficiency of the algorithm, in that case one could perhaps
use the asymptotic result (1.2), with the simple formula for C'(A) provided
below, in order to estimate in advance, for various combinations of binary
quadratic forms, the number of scanlines to be enumerated by the dissected
sieve algorithm.

2. An asymptotic formula for S(Q)

In this section we explain how one can produce asymptotic results for
sums of the form

1
S@= ) , (2.1)
acrq PP (H2) ad'(q+ )
a/q< My

where F(t) = \/P(t), P(¢) polynomial of degree 2, and == Z—: are consecu-
tive elements of the Farey series of order Q.

Since our main goal in this paper is to obtain (1.2), in particular to un-
derstand the constant C(A), and in order to simplify the presentation, in
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what follows we will ignore the error terms that appear in our estimates,
and we will only focus on the main term. Suffices to say that if one carefully
takes into account the contribution of the error terms, one ends up with an
asymptotic formula as in (1.2), with a very good upper bound for the error
term. This is due to the powerful Weil type bounds for Kloosterman sums
(see [12], [9], [6]), which are ultimately used in the proof of the result from
[5] quoted below.

We now proceed to estimate the sum S(Q). The first step in dealing with
such a sum is to use the well known equality a’q — ag' = 1, which is valid for
any two consecutive Farey fractions, in order to obtain a good approximation
for o’ as a function of a,q and ¢'. More precisely, we replace a’ by ‘-’;1{11 in the
sum S(Q). One easily sees that the error produced by this approximation is
very small, and we obtain an asymptotic relation

1
S(Q) ~ : (2.2)
a/f\;fg F3 (%) aq'(q+¢q')

a/g<My

The next step is to put the sum from the right side of (2.2) in the form

> Y fye. (2.3)

1<g< zel,yed
’q"Q zy=-—1(modq)

This would then clear the way for bringing Kloosterman sums into play.
Here I, J are intervals and f(z,y,q) will be a function given explicitly. In
our case z stands for a and y stands for ¢’. From the equality a'q —ag’ =1
we see that ag’ = —1 (mod g), which explains why we impose the above
condition zy = —1 (mod ¢). Also, since we want a/q < M, we will define
I to be the interval (0,gM,).

Now, from the equality ¢+ ¢’ > @, which holds true for the denominators
of any two consecutive Farey fractions in Fg, we know that ¢’ belongs to the
interval (Q — ¢, Q). This is an interval of length g, so it will contain exactly
one integer from each residue class modulo ¢. Only one of these integers
satisfies the congruence aq’ = —1 (mod ¢). This is how one obtains uniquely
q' as a function of ¢ and a. In conclusion, we will take J = (Q — g, @], and
then obtain ‘

S@~ > > f=v9, (2.4)

1<g< zel,yed
Hq“Q wy=--1(modq)

1
F3 (%)qy(q +y)

f(z,y,q9) =




6 ALEXANDRU ZAHARESCU

Then Lemma 3.3 from [5] gives

> f(:v-/y,q)N%?/I/Jf(m,y,q)dydx, (2.5)

zel,yed
ry=—1(modq)

where ¢ denotes the Euler function. The lemma actually gives precise
bounds for the error term in this asymptotic result. Next, in our case
f(z,y,q) is a product, and we have

1

zg,y:a f(:n,y,q)d‘);f’ /IF3E§)dx (/;mdy>. (2.6)

ry=—1(modg)

Both integrals can be computed in closed form, as functions of q. We
would like to put the right side of (2.6) in the form (cp(q)/q)g(q). The
second integral above equals

N (3= ) dv =+ @105~ logQ-+ o)~ og(@ - a)
- —=—— |dy= - {2log &) — lo —lo —-q)).
q)g-q\y y+g g~ > v & -
This can also be written as
1 1 g
——dy=—-1lo (1 - *) : (2.7)
/J y(g+y) g ° Q?
In the other integral we perform a change of variable to obtain
1
/——~dx = gca, (2.8)
hingy)
q
where
Ma
)/ == ~——-dt 29
=), 2

is a nonzero constant which only depends on the original matrix A, and can
be computed in closed form. For instance, in the case when Q4(X,Y) =
X2 4Y?2 My =1and P(t) = t> + 1, after a straightforward computation
one finds that

: 1 1
AT ) @Y A
From (2.6), (2.7) and (2.8) we obtain
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2
Pua q
Z f(T,y’Q) ~ ""CA_(;(E*)'IOg - 52_ : (210)
xel,yed

ry=-—1(modg)

5@ ~ea Y Do) (2.11)

Now Lemma 2.3 from [3] gives, again with good bounds for the error term,

$2
6ca [9 6ca [QloB\1— oo
SQ~ o [ oy =25 [T

dz. (2.12)

Here we make a change of variable and find that

6cacq

Q)

‘ S(Q) (2.13)

T log(1 — t?)
Jo 2
After a short computation one obtains ¢y = 2log 2.

In conclusion we have the following result.

Theorem. Let S(Q) be defined by (2.1). Then

12¢c4 log 2
S@Q) ~ S5

Cco = dt.

as @ — oo, where c4 is given by (2.9).

In the particular case mentioned above, this asymptotic result has the
following explicit form, which is consistent with the numerical data provided
by Galway.

Corollary. In the case when My = 1 and P(t) = > + 1 one has

1
s(@) ~ 22082
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