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Concerning continuity of inverse in quotients
of topological algebras

WIESLAW ZELAZKO

ABSTRACT. We construct a commutative complete unital locally convex
algebra A, so that the operation of taking an inverse in 4, £ — z™1, is
continuous on the group G(A) of all invertible elements in A, but there
is a closed ideal I C A such that the operation of taking an inverse is
discontinuous in the quotient algebra A/I.

By a topological algebra we mean a (real or complex) Hausdorff topo-
logical vector space (t.v.s.) equipped with a jointly continuous associative
multiplication. For informations about topological algebras the reader is
referred to [1}, [2] or [3]. In this paper we shall show (contrary to a claim
in 1], p. 71) that it can exist a (commutative) topological algebra with a
continuous inverse, whose some quotient algebra has such an inverse discon-
tinuous. This result will be based upon the following theorem obtained in [4]
(the second part of the theorem is not formulated there, but it easily follows
from its proof):

Theorem A. Let A be a countably generated algebra. Then

(i) The algebra A equipped with the mazimal locally convex topology ke
15 a complete locally convex topological algebra.

(ii) The topology of any quotient algebra of A (the quotient topology) is
again the topology

L
Tmaz-

The above means that there is a countable subset S C A, such that A
coincides with its smallest subalgebra containing S. The topology 7L on
a t.v.s. X is given by means of all seminorms on it (all seminorms are
continuous). Under this topology all linear subspaces of X are closed (cf.

[4]). If A is any locally convex algebra with the topology given by means
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of a family (|| - ||a) of seminorms, and if I is a closed two-sided ideal in A,
then the quotient topology on A/I is given by all seminorms of the form
||z + I||,, = inf{}|z + 2||o : z € I}.

We pass now to the construction of our example. Let A be the (com-
mutative, unital) algebra of all polynomials with scalar (real or complex)
coefficients, in the variables t,tg,#1,19,..., its unit element will be denoted
by e. We equip it with the topology 7.5, so that by the theorem A (i),
it becomes a complete locally convex topological algebra. Clearly it has a
continuous inverse, since the only invertible elements in A are non-zero scalar
multiples of e. Define in A an ideal I by means of the following relations:

tto =€, (l)
and
(t+k ety =e, k=12 ..., (2)
i.e. the elements of I are of the form
n
.'L':uo(tto—e)+2uk((t+k”le)tk—e), n € N, (3)
k=1
where ug, k = 0,1,...,n, are arbitrary elements in A. The ideal I is closed,

since all linear subspaces of A are closed. For any element u in A denote by
[u] its coset modulo I, i.e. the set u+1, so that the quotient algebra A = A/T
consists of all such cosets. Clearly the elements [t + kel k = 1,2,..., are
invertible in A with inverses [tx] since the coset [e] is the unit element in A.
Also [¢] is invertible with the inverse [to].

First we shall show that the elements [¢g], [¢1], . . . , are linearly independent
in A. Or, equivalently, the elements £y, %1, ... are linearly independent mo-
dulo the ideal 7, i.e. the relation

T = qgtg -+ a1ty + -+ apty € 1,

where «; are scalar coefficients, implies ag = a1 = ... = a, = 0. Since z is
in [, it is of the form (3) and we can write

m
agto + onty + -+ anty = ug(tto —€) + Z’u,k((t + k'_le)tk —e), (4)

k=1
for some ug, . ..,un € A. Without loss of generality we can assume m > n.
Take now rational functions t(£) = &,19(€) = €71, and (&) = (€ + k™ 1)~}
for & > 1 and substitute them instead of variables t,tg,...,ty into the

formula (4), replacing there the unity e by the constant equal to 1. Since
our rational functions satisfy relations (1) and (2), the right-hand expression
in the formula (4) is zero, so that the left-hand is zero too. But the considered
rational functions are linearly independent. To see this, observe that y(§)
has a pole at £y = 0, t5(£), k > 1, has a pole at & = —k ™! and (&) is finite
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for m # k. Consequently oy = -+ = «a, = 0 and the considered elements
are linearly independent.

Observe now that the sequence [t + k™ 'e] = [¢] + k71[e] tends to [t] in
each seminorm on A, as k& — oo, and so, by (ii) of the Theorem A, in the
topology of A. In order to obtain our conclusion it is sufficient to show that
the inverses [t;] of the elements [t + k~!e] do not tend to the inverse [{g] of
[t]. To this end it is sufficient to construct a seminorm |- |o on A such that

l[tk“t(]“():l for all k=1,2,....

Since the elements [t;],k > 0, are linearly independent, the elements [ty —
to], k > 1, are linearly independent too, and so they can be included into a
Hamel basis (7;),7 = 1,2, ..., for A (one can easily see that such a countable
basis exists). Now, every element z in A can be written as

T = Z )‘7(1')777-7

where f; are linear functionals on A, and for each z € A only finitely many
values f;(z) are different from zero. We put now

jalo = 3 Ifi(a)l

Clearly it is a seminorm on A, and it is continuous, since all seminorms there
are continuous. We have also |n;]o = 1 for all i. Consequently, |[tx —1to]lo =1
for all k, and we are done.

The algebra of the above example is not metrizable. The author does not
know whether a similar construction is possible for an F-algebra (a comple-
tely metrizable topological algebra). It is also not known, whether it can
exist a complete topological algebra without proper topologically invertible
elements, such that some of its quotient algebras has such elements. Recall
that an element @ in a unital topological (not necessarily commutative) al-
gebra A is said topologically invertible, if there are nets (uq) and (vg) of
elements of A, such that lim, u,a = limgavg = e, and such an element is
said proper, if it is non-invertible. We have shown in [5], that a commutative
F-algebra with a discontinuous inverse must possess proper topologically in-
vertible elements. The constructed above example shows that such a result
fails to be true in case when the algebra in question is non-metrizable. In
fact, our algebra A has a discontinuous inverse, and cannot have proper to-
pologically invertible elements, since for such an element a the ideal T = a A
would be dense (for an arbitrary w in A the elements uavg are in I and tend
to u), and A has all ideals closed.
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