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A weak form of continuity

ERDAL EKICI

ABSTRACT. The aim of this paper is to introduce the notion of a new
class of functions which generalize classes of q-irresolute, a-continuous,
strongly a-irresolute, contra-continuous and contra a-continuous func-
tions. This class of functions is called slightly a-continuous. Moreover,
basic properties and preservation theorems of slightly o-continuous func-
tions are obtained and relationships between slightly a-continuous func-
tions and a-co-closed graphs are investigated.

1. Introduction

In recent years various classes of near functions were defined and studied
by various authors. In this paper, we introduce and study a new class of
functions generalizing a-irresolute functions [5], a-continuous functions [8],
strongly a-irresolute functions [2], contra-continuous functions [1] and contra
a-continuous functions [4]. Furthermore, basic properties and preservation
theorems of slightly a-continuous functions are obtained.

In Section 3, we obtain characterizations and basic properties of slightly
a-continuous functions. In Section 4 and in Section 5, we investigate rela-
tionships between slightly a-continuity and separation axioms and between
slightly a-continuity and connectedness, respectively. In Section 6, we in-
troduce a-co-closed graphs and we study relationships between slightly a-
continuity and a-co-closed graphs. In Section 7, we investigate relationships
between slightly a-continuity and compactness.

2. Preliminaries

Throughout the present paper, X and Y are always topological spaces.
Let A be a subset of X. We denote the interior and the closure of a set A
by int(A) and cl{A), respectively.
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A subset A of a space X is said to be preopen [7] if A C int(cl(A)), a-open
[10] if A C int(cl(int(A))). The complement of a preopen (a-open) set is
said to be preclosed (respectively a-closed). The collection of all preopen
(respectively preclosed, a-open, a-closed and clopen) subsets of X will be
denoted by PO(X) (respectively PC(X), aO(X), aC(X) and CO(X)).

It is shown in [10] that «O(X) is a topology for X. By a-cl(A), we denote
the closure of a subset A with respect to aO(X).

Definition 1 ([5]). A function f : X — Y is called a-irresolute if f~' (V)
is c-open set in X for each a-open set V of Y.

Definition 2 ([8]). A function f : X — Y is said to be a-continuous if
f~YV) is c-open in X for every open set V of Y.

Definition 3 ([2]). A function f : X — Y is said to be strongly o-
irresolute if for each = € X and each a~open subset V of Y containing f(z),
there exists a open subset U of X containing = such that f(U) C V.

Definition 4 ([1]). A function f : X — Y is called contra-continuous if
F7YV) is closed set in X for each open set V of Y.

Definition 5 ([4]). A function f: X — Y is called contra a-continuous
if f~1(V) is a-closed set in X for each open set V of Y.

3. Slightly a-continuous functions

Definition 6. A function f : X — Y is said to be slightly a-continuous if
for each z € X and each clopen subset V in Y containing f(z), there exists
an a-open subset U in X containing z such that f(U) C V.

Theorem 7. Let (X,7) and (Y,v) be topological spaces. The following
statements are equivalent for a function f: X —Y:

(1) f s slightly «-continuous;

(2) for every clopen set V. CY, f~HV) is a-open;

(3) for every clopen set V. C Y, f~HV) is a-closed;

(4) for every clopen set V. C Y, f~1(V) is a-clopen.

Proof. (1) = (2) : Let V be a clopen subset of Y and let z € f~1(V).
Since f{z) € V, by (1), there exists a a-open set U, in X containing z such
that U, € f~1(V). We obtain that f~Y(V) = | U,. Thus, f~1(V) is

z€f~1{V)
@-Opern.

(2) = (3) : Let V be a clopen subset of Y. Then, Y\V is clopen. By (2),
FHY\V) = X\f1(V) is a-open. Thus, f~1(V) is a-closed.

(3) = (4) : It can be shown easily.

(4) = (1) : Let V be a clopen subset in Y containing f(z). By (4),
f~HV) is a-clopen. Take U = f~1(V). Then, f(U) C V. Hence, f is
slightly a-continuous. U O
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Lemma 8 ([8]). If A € PO(X) and B € aO(X), then AN B € aO(A).

Theorem 9. If f : X — Y is slightly a-continuous and A € PO(X),
then the restriction f |a: A — Y is slightly a-continuous.

Proof. Let V be a clopen subset of Y. We have (f [4)" (V) = f1{(V)NA.
Since f~1(V) is c-open and A is preopen, it follows from the previous lemma
that (f |4)"'(V) is a-open in the relative topology of A. Thus, f |4 is
slightly o-continuous. t

Lemma 10 ([8]). If A€ aO(Y) and Y € aO(X), then A € aO(X).

Theorem 11. Let f: X — Y be a function and & = {Uy : « € I} be
a cover of X such that U, € aO(X) for each o € I. If [ |y, 1s slightly
a-continuous for each « € I, then f is a slightly a-continuous function.

Proof. Suppose that V is any clopen set of Y. Since f |y, is slightly
a-continuous for each a € I, it follows that (f |y, )" (V) € «(U,). We
have f~HV) = U (' (V)NUL) = U lv,) (V). Then, as a direct

ael agcl]
consequence of the previous lemma we obtain that f~1(V) € aO(X) which
means that f is slightly a-continuous. , : O

Theorem 12. Let f : X — Y be a function and let g : X — X x Y be
the graph function of f, defined by g(z) = (z, f(x)) for every x € X. If g is
slightly a-continuous, then f is slightly a-continuous.

Proof. Let V € CO(Y), then X x V € CO(X x Y). Since g is slightly
a-continuous, then f~HV) = g7 (X x V) € aO(X). Thus, f is slightly
a-continuous. ]

Remark 13. The following diagram holds:

contra-continuous = contra a-continuous = slightly a-continuous

fr

a-continuous

)

a-irresolute

fr

strongly a-irresolute
The following examples show that these implications are not reversible.
Example 14. Let X = {a,b,c,d} and 7 = {X,0,{d}, {a, ¢}, {a,c,d}}.
Let Y = {z,y,2z} and o = {V,0,{z},{z},{z,2}}. We define a function
[ (X,7) = (X,0) as follows: f(a) = =z, f(b) = f(c) = y and f(d) = 2.
Then f is slightly a-continuous, but it is not a-continuous.

Example 15. Let R and Q be the real numbers and rational numbers,
respectively. Let A = {z € R : z is rational and 0 < z < 1}. We define two
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topologies on R as 7 = {R, 0, A, R\A} and v = {R, 0, {0}}. Let f: (R,7) —
(R,v) be a function which is defined by f(z) =1ifz € Q and f(z)=0if
z ¢ Q. Then, f is slightly a-continuous, but it is not contra a-continuous
since for closed set R\{0}, f~*(R\{0}) = Q is not c-open.

The other implications are not reversible as shown in several papers [4, 5,
8].
Recall that a space is 0-dimensional if its topology has a base consisting
of clopen sets.

Theorem 16. If f: X — Y is slightly a-continuous and Y is 0-dimensio-
nal space, then f 1s a-continuous.

Proof. Let z € X and let V be an open subset of Y containing f(z). Since
Y is O-dimensional, there exists a clopen set U containing f(z) such that
U C V. Since f is slightly a-continuous, then there exists an a-open subset
G in X containing z such that f(G) C U C V. Thus, f is a-continuous. 0

Theorem 17. Let f : X = Y and g: Y — Z be functions. Then, the
following properties hold:

(1) If f is a-irresolute and g is slightly a-continuous, then go f : X — Z
is slightly a-continuous.

(2) If f is strongly a-irresolute and g is slightly a-continuous, then go f :
X — Z is slightly a-continuous.

Proof. (1) Let V be any clopen set in Z. Since g is slightly a-continuous,
g1 (V) is a-open. Since f is a-irresolute, f~*(g7H(V)) = (go f)"}(V) is
a-open. Therefore, g o f is slightly a-continuous.

(2) It can be obtained similarly. 0

Definition 18 ([14]). A function f: X — Y is called strongly a-open if
for every a-open subset A of X, f(A) is a@-openinY.

Theorem 19. Let f : X = Y and g : Y — Z be functions. If f is
strongly a-open and surjective and go f : X — Z is slightly a-continuous,
then g is slightly o-continuous.

Proof. Let V be any clopen set in Z. Since go f is slightly a-continuous,
(go f)"YV) = f~Hg™'(V)) is a-open. Since f is strongly a-open, then
F(F Y g (V) = g~ (V) is a-open. Hence, g is slightly a-continuous. [J

Combining the previous two theorems, we obtain the following result.

Theorem 20. Let f : X — Y be surjective, a-irresolute and strongly
a-open and g : Y — Z be a function. Then go f : X — Z is slightly
a-continuous if and only if g is slightly a-continuous.

Definition 21 ([3]). A filter base A is said to be a-convergent to a point

z in X if for any U € aO(X) containing z, there exists a B € A such that
BcU.
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Definition 22. A filter base A is said to be co-convergent to a point x
in X if for any U € CO(X) containing z, there exists a B € A such that
BcCU.

Theorem 23. If a function f : X — Y is slightly a-continuous if and
only if for each point x € X and each filter base A in X «-converging to x,
the filter base f(A) is co-convergent to f(z).

Proof. (=) Let z € X and A be any filter base in X a-converging to z.
Since f is slightly a-continuous, then for any V € CO(Y') containing f(z),
there exists a U € aO(X) containing z such that f(U) C V. Since A is
a-converging to z, there exists a B € A such that B C U. This means that
f(B) CV and therefore the filter base f(A) is co-convergent to f(z).

(<) Let z € X and V € CO(Y) containing f(z). If we take A to be
the set of all sets U such that U € aO(X) containing z, then A will be a
filter base which a-convergences to z. Thus, there exists U € A such that
f(U) C V. Hence, we obtain that f is slightly a-continuous. O

4. Separation axioms

In this section, we investigate relationships between slightly a-continuous
functions and separation axioms.

Definition 24 ([9]). A space X is said to be a-Tp if for each pair of
distinct points in X, there exists an o-open set of X containing one point
but not the other.

Definition 25 ([9]). A space X is said to be «-Tj if for each pair of
distinct points z and y of X, there exist a-open sets U and V containing «
and y, respectively, such that y ¢ U and z ¢ V.

Definition 26. A space X is said to be co-Tj if for each pair of distinct
points in X, there exists a clopen set of X containing one point but not the
other.

Definition 27. A space X is said to be co-T7 if for each pair of distinct
points z and y of X, there exist clopen sets U and V' containing z and y,
respectively, such that y ¢ U and z ¢ V.

Theorem 28. If f : X =Y is a slightly a-continuous injection and Y is
co-T, then X is o-T).

Proof. Suppose that Y is co-Ty. For any distict points z and y in X,
there exist V, W € CO(Y) such that f(z) € V, f(y) ¢ V, flz) ¢ W
and f(y) € W. Since f is slightly a-continuous, f~}(V) and f~}(W) are
a-open subsets of X such that « € f~1(V), y ¢ f~Y(V), = ¢ f~YW) and
y € f~H(W). This shows that X is o-T1. ]

7
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Definition 29 ([9]). A space X is said to be o-T, (a-Hausdorff) if for
each pair of distinct points z and y in X, there exist disjoint e-open sets U
and V in X such that z €e U and y € V.

Definition 30. A space X is said to be co-T% (co-Hausdorff) if for each
pair of distinct points z and y in X, there exist disjoint clopen sets U and
V in X such that z € U and y € V.

Theorem 31. If f: X — Y is a slightly o-continuous injection and Y 1s
co-Ty, then X is a-T5.

Proof. For any pair of distict points = and y in X, there exist disjoint
clopen sets U and V in Y such that f(z) € U and f(y) € V. Since f
is slightly c-continuous, f~1(U) and f~1(V) is a-open in X containing x
and y, respectively. We have f~1(U) N f~1(V) = 0. This shows that X is
O{—TQ. ]

Theorem 32. If f,g: X =Y are slightly a-continuous functions and Y
is co-Hausdorff, then E = {x € X : f(z) = g(z)} is a-closed in X.

Proof. If z € X\E, then it follows that f(z) # g(z). Since Y is co-
Hausdorff, there exist f(z) € V € CO(Y) and g(z) € W € CO(Y) such that
VNW = 0. Since f and g are slightly a-continuous, J7HV) and g~ Y(W) are
a-open in X with z € f~1(V) and 2 € g~ (W). Set O = F'Vyng Yw).
Then, O is a-open and f(0) N g(O) = 0. Hence, z ¢ a-cl(E). This shows
that F is a-closed in X. O

Theorem 33. If f: X = Y is slightly a-continuous function and Y is
co-Hausdorff, then E = {(z,y) € Xx X : f(z) = f(y)} is a-closed in X x X .

Proof. Let (z,y) € (X x X)\E. It follows that f(z) # f(y). Since Y is
co-Hausdorff, there exist f(z) € V € CO(Y) and f(y) € W € CO(Y) such
that VNW = 0. Since f is slightly a-continuous, f~(V) and f~1(W) are
c-open in X with z € f~}(V) and y € f~Y(W). Take U = f~1(V) and
G = [71(W). Hence, (U x G) N E = (). We have that U x G is a-open in
X x X and containing (z,y). This means that £ is a-closed in X x X. 0O

Definition 34. A space is called co-regular (respectively, strongly o-
regular) if for cach clopen (respectively, a-closed) set F and each pointz ¢ F,
there exist disjoint open sets U and V such that F ¢ U and z € V.

Definition 35. A space is said to be co-normal (respectively, strongly
a-normal) if for every pair of disjoint clopen (respectively, a-closed) subsets
Fy and Fy of X, there exist disjoint open sets U and V such that F, ¢ U
and Fo C V.

Theorem 36. If f is slightly a-continuous injective open function from
a strongly c-regular space X onto o space Y, then Y is co-regular.
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Proof. Let F be a clopen set in Y and y ¢ F. Take y = f(z). Since f
is slightly a-continuous, f~1(F) is an a-closed set. Take G = I HF). We
have ¢ G. Since X is strongly a-regular, there exist disjoint open sets U
and V such that G C U and z € V. We obtain that F = (G) c f(U)
and y = f(z) € f(V) such that f(U) and f(V) are disjoint open sets. This
shows that Y is co-regular. 0

Theorem 37. If f is slightly a-continuous injective open function from
a strongly a-normal space X onto a space Y, then Y is co-normal.

Proof. Let Fy and F, be disjoint clopen subsets of Y. Since [ is slightly
a-continuous, f!(Fy) and f~1(F,) are a-closed sets. Take U = )
and V = f~1(F,). We have U NV = (. Since X is strongly c-normal, there
exist disjoint open sets A and B such that U ¢ 4 and V ¢ B. We obtain
that Iy = f(U) C f(A) and F, = f(V) C f(B) such that f(A) and f(B)
are disjoint open sets. Thus, Y is co-normal. 0

5. Connectedness

In this section, we study relationships between slightly a-continuous func-
tions and connectedness.

Lemma 38. The following properties are equivalent for a subset A of a
space X:

(1) A is clopen;

(2) A is a-closed and a-open;

(3) A is a-closed and preopen.

Theorem 39. If f : X — Y is slightly o-continuous surjective function
and X is connected space, then Y is connected space.

Proof. Suppose that Y is not a connected space. Then there exists no-
nempty disjoint open sets I/ and V such that Y = U U V. Therefore, U and
V are clopen sets in V. Since f is slightly a-continuous, f~(U) and i)
are a-closed and a-open in X and hence clopen in X. Moreover, Yo
and f~1(V) are nonempty disjoint and X = S7HU)Y U f~Y(V). This shows
that X is not connected. This is a contradiction. By contradiction, Y is
connected. ' ]

Definition 40. A topological space X is called hyperconnected [13] if
every open set is dense.

Remark 41. The following example shows that slightly a-continuous
surjections do not necessarily preserve hyperconnectedness.

Example 42. Let X = {a,b,c¢}, 0 = {X,0,{b},{c},{b,c}} and 7 =
{X,0,{a}}. Then the identity function f : (X,7) — (X,0) is slightly a-
continuous surjective, (X, 7) is hyperconnected, but (X, ) is not hypercon-
nected.
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6. a-Co-closed graphs

In this section, we investigate relationships between a-co-closed graphs
and slightly a-continuous functions.

Recall that for a function f : X — Y, the subset {(z, f(z)) : z € X} C
X x Y is called the graph of f and is denoted by G(f).

Definition 43. The graph G(f) of a function f : X — Y is said to be -
co-closed in X x Y if for each (z,y) € (X x Y)\G(f), there exist U € aO(X)
containing z and V € CO(Y) containing y such that (U x V)NG(f) = 0.

Lemma 44. The graph G(f) of a function f : X — Y is a-co-closed in
X xY if and only if for each (z,y) € (X xY)\G(f), there ezist U € aO(X)
containing ¢ and V € CO(Y) containing y such that f(U)NV = 0.

Theorem 45. If f : X — Y is slightly a-continuous and Y 1is co-
Hausdorff, then G(f) is a-co-closed in X xY.

Proof. Let (z,y) € (X xY)\G(f), then f(z) # y. Since Y is co-Hausdorff,
there exist U € CO(Y) and V € CO(Y) with f(z) € U and y € V such
that U NV = (. Since f is slightly a-continuous, there exists A € aO(X)
containing = such that f(A) C U. Therefore, we obtain y € V € CO(Y)
and f(A) NV = 0. This shows that G(f) is a-co-closed. O

Theorem 46. If f : X =Y is a-continuous and Y is co-Ty, then G(f)
18 a-co-closed in X x Y.

Proof. Let (z,y) € (X xY)\G(f), then f(z) # y and there exists a clopen
set V of Y such that f(z) € V and y ¢ V. Since f is a-continuous, there
exists U € aO(X) containing z such that f(U) C V. Therefore, we obtain

FO)N(Y\V) =0 and Y\V € CO(Y) containing y. This shows that G(f)
is a-co-closed in X x Y. a

Theorem 47. Let f : X — Y have an a-co-closed graph G(f). If f is
injective, then X 1s a-Tp.

Proof. Let x and y be any two distinct points of X. Then, we have
(z, f(y)) € (X x Y)\G(f). By definition of a-co-closed graph, there exist
a a-open set U of X and V € CO(Y) such that (z, f(y)) € U x V and
f(U)NV = @; hence U N f~1(V) = 0. Therefore, we have y ¢ U. This
implies that X 1s a-Tp. |

Theorem 48. Let f : X = Y have an a-co-closed graph G(f). If f is a
surjective strongly a-open function, then'Y is a-Ts.

Proof. Let y; and yy be any distinct points of Y. Since f is surjective
f(z) =y for some z € X and (z,y2) € (X x Y)\G(f). By a-co-closedness
of the graph G(f), there exist an a-open set U of X and V € CO(Y') such
that (z,y2) € U x V and (U x V)NG(f) = 0. Then, we have f(U)NV = 0.
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Since f is strongly o-open, f(U) is a-open and f(z) = y1 € f(U). This
implies that Y is a-T5. 1

Definition 49. A space X is said to be mildly compact [12] if every
clopen cover of X has a finite subcover. A subset A of a space X is said to
be mildly compact relative to X if every cover of A by clopen sets of X has
a finite subcover. A subset A of a space X is said to be mildly compact if
the subspace A is mildly compact.

Theorem 50. If a function f : X — Y has an a-co-closed graph G(f),
then f~Y(K) is a-closed in X for every subset K which is mildly compact
relative to Y.

Proof. Assume that K is mildly compact relative to Y and z ¢ f~1(K).
For each y € K, we have (z,y) € (X x Y)\G(f) and there exist U, € aO(X)
containing z and V;, € CO(Y') containing y such that f(Uy) NV, = 0. Since
{KNV,:y & K} is a clopen cover of the subspace K, there exists a finite
subset K1 C K such that K C | {V, : k € K1}. Set U ="{U,, : k € K;},
then U € aO(X) containing z and f(U)NK = 0. Therefore UNf~1(K) =0
and hence z ¢ a-cl(f~!(K)). This shows that f~1(K) is a-closed in X. [

Theorem 51. Let Y be a mildly compact space. If a function f: X =Y
has an a-co-closed graph G(f), then f is slightly a-continuous.

Proof. Suppose that ¥ is mildly compact and G(f) is a-co-closed. First,
we show that a clopen set of Y is mildly compact. Let V be a clopen set of Y
and let {H, : o € I'} be a cover of V by clopen sets H, of V. For each a € I,
there exists a clopen set K, of X such that H, = K,NV. Then, the family
{Ko : a € ITU(Y\V) is a clopen cover of Y. Since Y is mildly compact,
there exists a finite subset Iy C I such that ¥ = {J{K, : a € i} U (Y\V).
Therefore, we obtain V' = |J{H, : a € Iy}. This shows that V is mildly
compact. For any clopen set V, f~!1(V) is a-closed in X and hence f is
slightly a-continuous. (W

7. Covering properties

In this section, we investigate relationships between slightly a-continuous
functions and compactness.

Definition 52. A space X is said to be a-compact [6] if every a-open
cover of X has a finite subcover. A subset A of a space X is said to be
a-compact relative to X [11] if every cover of A by a-open sets of X has
a finite subcover. A subset A of a space X is said to be a-compact if the
subspace A is a~-compadct.

Theorem 53. If a function f: X — Y is slightly a-continuous and K is
a-compact relative to X, then f(K) is mildly compact in Y.

8
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Proof. Let {H, : o € I} be any cover of f(K) by clopen sets of the
subspace f(K). For each « € I, there exists a clopen set K, of ¥ such that
Hy = K N f(K). For each 2 € K, there exists o € I such that f(z) € K,
and there exists U, € aO(X) containing z such that f(U,) C K,,. Since
the family {U, : z € K} is a cover of K by a-open sets of K, there exists a
finite subset Ky of K such that K C {Uy : z € Ky}. Therefore, we obtain
F(K) c U{f(Usz) : € Ky} which is a subset of | J{K,, : z € Ko}. Thus
f(K) =\{H,, : z € Ko} and hence f(K) is mildly compact. O

Corollary 54. If f : X — Y is a slightly a-continuous surjection and X
is a-compact, then Y is mildly compact.

Definition 55. A space X is said to be:

(1) mildly countably compact {12] if every clopen countable cover of X
has a finite subcover;

(2) mildly Lindelof [12] if every cover of X by clopen sets has a countable
subcover;

(3) countably a-compact if every a-open countable cover of X has a finite
subcover;

(4) a-Lindelof if every a-open cover of X has a countable subcover.

Theorem 56. Let f : X — Y be a slightly a-continuous surjection. Then
the following statements hold:

(1) If X is aw-Lindeldf, then Y is mildly Lindeldf.

(2) If X is countably c-compact, then Y is mildly countably compact.

Proof. We prove (1), the proof of (2) being entirely analogous.
Let {V, : @ € I} be any clopen cover of Y. Since f is slightly a-continuous,
{f~1(V4) : @ € I} is an a-open cover of X. Since X is a-Lindeldf, there

exists a countable subset Iy of I such that X = |J{f~1(V,) : @ € Iy}. Thus,
we have Y = | J{V, : @ € [y} and Y is mildly Lindeldf. 0

Definition 57. A space X is said to be:

(1) a-closed-compact if every a-closed cover of X has a finite subcover;

(2) countably a-closed-compact if every countable cover of X by a-closed
sets has a finite subcover;

(3) a-closed-Lindelof if every cover of X by a-closed sets has a countable
subcover.

Theorem 58. Let f : X — Y be a slightly a-continuous surjection. Then
the following statements hold:

(1) If X is a-closed-compact, then Y is mildly compact.

(2) If X is a-closed-Lindeldf, then Y is mildly Lindeldf.

(3) If X is countably a-closed-compact, then' Y is mildly countably com-
pact.

Proof. It can be obtained similarly as the previous theorem. O
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