A weak form of continuity

ERDAL EKICI

ABSTRACT. The aim of this paper is to introduce the notion of a new class of functions which generalize classes of α -irresolute, α -continuous, strongly α -irresolute, contra-continuous and contra α -continuous functions. This class of functions is called slightly α -continuous. Moreover, basic properties and preservation theorems of slightly α -continuous functions are obtained and relationships between slightly α -continuous functions and α -co-closed graphs are investigated.

1. Introduction

In recent years various classes of near functions were defined and studied by various authors. In this paper, we introduce and study a new class of functions generalizing α -irresolute functions [5], α -continuous functions [8], strongly α -irresolute functions [2], contra-continuous functions [1] and contra α -continuous functions [4]. Furthermore, basic properties and preservation theorems of slightly α -continuous functions are obtained.

In Section 3, we obtain characterizations and basic properties of slightly α -continuous functions. In Section 4 and in Section 5, we investigate relationships between slightly α -continuity and separation axioms and between slightly α -continuity and connectedness, respectively. In Section 6, we introduce α -co-closed graphs and we study relationships between slightly α -continuity and α -co-closed graphs. In Section 7, we investigate relationships between slightly α -continuity and compactness.

2. Preliminaries

Throughout the present paper, X and Y are always topological spaces. Let A be a subset of X. We denote the interior and the closure of a set A by int(A) and cl(A), respectively.

all

.3),

eful

cow,

33,

Received March 22, 2004.

²⁰⁰⁰ Mathematics Subject Classification. 54C10, 54C08, 54C05.

Key words and phrases. α -open, clopen, slightly α -continuity, α -co-closed graph.

A subset A of a space X is said to be preopen [7] if $A \subset int(cl(A))$, α -open [10] if $A \subset int(cl(int(A)))$. The complement of a preopen $(\alpha$ -open) set is said to be preclosed (respectively α -closed). The collection of all preopen (respectively preclosed, α -open, α -closed and clopen) subsets of X will be denoted by PO(X) (respectively PC(X), $\alpha O(X)$, $\alpha C(X)$ and CO(X)).

It is shown in [10] that $\alpha O(X)$ is a topology for X. By α -cl(A), we denote the closure of a subset A with respect to $\alpha O(X)$.

Definition 1 ([5]). A function $f: X \to Y$ is called α -irresolute if $f^{-1}(V)$ is α -open set in X for each α -open set V of Y.

Definition 2 ([8]). A function $f: X \to Y$ is said to be α -continuous if $f^{-1}(V)$ is α -open in X for every open set V of Y.

Definition 3 ([2]). A function $f: X \to Y$ is said to be strongly α -irresolute if for each $x \in X$ and each α -open subset V of Y containing f(x), there exists a open subset U of X containing x such that $f(U) \subset V$.

Definition 4 ([1]). A function $f: X \to Y$ is called contra-continuous if $f^{-1}(V)$ is closed set in X for each open set V of Y.

Definition 5 ([4]). A function $f: X \to Y$ is called contra α -continuous if $f^{-1}(V)$ is α -closed set in X for each open set V of Y.

3. Slightly α -continuous functions

Definition 6. A function $f: X \to Y$ is said to be slightly α -continuous if for each $x \in X$ and each clopen subset V in Y containing f(x), there exists an α -open subset U in X containing x such that $f(U) \subset V$.

Theorem 7. Let (X,τ) and (Y,v) be topological spaces. The following statements are equivalent for a function $f:X\to Y$:

- (1) f is slightly α -continuous;
- (2) for every clopen set $V \subset Y$, $f^{-1}(V)$ is α -open;
- (3) for every clopen set $V \subset Y$, $f^{-1}(V)$ is α -closed;
- (4) for every clopen set $V \subset Y$, $f^{-1}(V)$ is α -clopen.

Proof. (1) \Rightarrow (2): Let V be a clopen subset of Y and let $x \in f^{-1}(V)$. Since $f(x) \in V$, by (1), there exists a α -open set U_x in X containing x such that $U_x \subset f^{-1}(V)$. We obtain that $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$. Thus, $f^{-1}(V)$ is α -open.

- $(2) \Rightarrow (3)$: Let V be a clopen subset of Y. Then, $Y \setminus V$ is clopen. By (2), $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is α -open. Thus, $f^{-1}(V)$ is α -closed.
 - $(3) \Rightarrow (4)$: It can be shown easily.
- $(4) \Rightarrow (1)$: Let V be a clopen subset in Y containing f(x). By (4), $f^{-1}(V)$ is α -clopen. Take $U = f^{-1}(V)$. Then, $f(U) \subset V$. Hence, f is slightly α -continuous.

Lemma 8 ([8]). If $A \in PO(X)$ and $B \in \alpha O(X)$, then $A \cap B \in \alpha O(A)$.

Theorem 9. If $f: X \to Y$ is slightly α -continuous and $A \in PO(X)$, then the restriction $f|_A: A \to Y$ is slightly α -continuous.

Proof. Let V be a clopen subset of Y. We have $(f|_A)^{-1}(V) = f^{-1}(V) \cap A$. Since $f^{-1}(V)$ is α -open and A is preopen, it follows from the previous lemma that $(f|_A)^{-1}(V)$ is α -open in the relative topology of A. Thus, $f|_A$ is slightly α -continuous.

Lemma 10 ([8]). If $A \in \alpha O(Y)$ and $Y \in \alpha O(X)$, then $A \in \alpha O(X)$.

Theorem 11. Let $f: X \to Y$ be a function and $\Sigma = \{U_\alpha : \alpha \in I\}$ be a cover of X such that $U_\alpha \in \alpha O(X)$ for each $\alpha \in I$. If $f \mid_{U_\alpha}$ is slightly α -continuous for each $\alpha \in I$, then f is a slightly α -continuous function.

Proof. Suppose that V is any clopen set of Y. Since $f|_{U_{\alpha}}$ is slightly α -continuous for each $\alpha \in I$, it follows that $(f|_{U_{\alpha}})^{-1}(V) \in \alpha(U_{\alpha})$. We have $f^{-1}(V) = \bigcup_{\alpha \in I} (f^{-1}(V) \cap U_{\alpha}) = \bigcup_{\alpha \in I} (f|_{U_{\alpha}})^{-1}(V)$. Then, as a direct consequence of the previous lemma we obtain that $f^{-1}(V) \in \alpha O(X)$ which means that f is slightly α -continuous.

Theorem 12. Let $f: X \to Y$ be a function and let $g: X \to X \times Y$ be the graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If g is slightly α -continuous, then f is slightly α -continuous.

Proof. Let $V \in CO(Y)$, then $X \times V \in CO(X \times Y)$. Since g is slightly α -continuous, then $f^{-1}(V) = g^{-1}(X \times V) \in \alpha O(X)$. Thus, f is slightly α -continuous.

Remark 13. The following diagram holds:

en

is

en

be

if

if

us

s if

ng

(*). |ch

is

is

contra-continuous \Rightarrow contra α -continuous \Rightarrow slightly α -continuous

 $\begin{array}{c} \uparrow \\ \alpha\text{-continuous} \\ \uparrow \\ \alpha\text{-irresolute} \\ \uparrow \\ \text{strongly } \alpha\text{-irresolute} \end{array}$

The following examples show that these implications are not reversible.

Example 14. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{d\}, \{a, c\}, \{a, c, d\}\}$. Let $Y = \{x, y, z\}$ and $\sigma = \{Y, \emptyset, \{x\}, \{z\}, \{x, z\}\}$. We define a function $f: (X, \tau) \to (X, \sigma)$ as follows: f(a) = x, f(b) = f(c) = y and f(d) = z. Then f is slightly α -continuous, but it is not α -continuous.

Example 15. Let \mathbb{R} and \mathbb{Q} be the real numbers and rational numbers, respectively. Let $A = \{x \in \mathbb{R} : x \text{ is rational and } 0 < x < 1\}$. We define two

topologies on \mathbb{R} as $\tau = \{\mathbb{R}, \emptyset, A, \mathbb{R} \setminus A\}$ and $v = \{\mathbb{R}, \emptyset, \{0\}\}$. Let $f : (\mathbb{R}, \tau) \to (\mathbb{R}, v)$ be a function which is defined by f(x) = 1 if $x \in \mathbb{Q}$ and f(x) = 0 if $x \notin \mathbb{Q}$. Then, f is slightly α -continuous, but it is not contra α -continuous since for closed set $\mathbb{R} \setminus \{0\}$, $f^{-1}(\mathbb{R} \setminus \{0\}) = \mathbb{Q}$ is not α -open.

The other implications are not reversible as shown in several papers [4, 5, 8].

Recall that a space is 0-dimensional if its topology has a base consisting of clopen sets.

Theorem 16. If $f: X \to Y$ is slightly α -continuous and Y is θ -dimensional space, then f is α -continuous.

Proof. Let $x \in X$ and let V be an open subset of Y containing f(x). Since Y is 0-dimensional, there exists a clopen set U containing f(x) such that $U \subset V$. Since f is slightly α -continuous, then there exists an α -open subset G in X containing x such that $f(G) \subset U \subset V$. Thus, f is α -continuous. \square

Theorem 17. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then, the following properties hold:

- (1) If f is α -irresolute and g is slightly α -continuous, then $g \circ f : X \to Z$ is slightly α -continuous.
- (2) If f is strongly α -irresolute and g is slightly α -continuous, then $g \circ f : X \to Z$ is slightly α -continuous.
- *Proof.* (1) Let V be any clopen set in Z. Since g is slightly α -continuous, $g^{-1}(V)$ is α -open. Since f is α -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is α -open. Therefore, $g \circ f$ is slightly α -continuous.
 - (2) It can be obtained similarly.

Definition 18 ([14]). A function $f: X \to Y$ is called strongly α -open if for every α -open subset A of X, f(A) is α -open in Y.

Theorem 19. Let $f: X \to Y$ and $g: Y \to Z$ be functions. If f is strongly α -open and surjective and $g \circ f: X \to Z$ is slightly α -continuous, then g is slightly α -continuous.

Proof. Let V be any clopen set in Z. Since $g \circ f$ is slightly α -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is α -open. Since f is strongly α -open, then $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is α -open. Hence, g is slightly α -continuous. \square

Combining the previous two theorems, we obtain the following result.

Theorem 20. Let $f: X \to Y$ be surjective, α -irresolute and strongly α -open and $g: Y \to Z$ be a function. Then $g \circ f: X \to Z$ is slightly α -continuous if and only if g is slightly α -continuous.

Definition 21 ([3]). A filter base Λ is said to be α -convergent to a point x in X if for any $U \in \alpha O(X)$ containing x, there exists a $B \in \Lambda$ such that $B \subset U$.

 $\tau) \rightarrow$ = 0 if hous

[4, 5,

sting

nsio-

Since that

ibset . □

, the

 $\rightarrow Z$

 $\circ f$:

pous, V) is

 \Box en if

f is uous,

ioùs, then

t. ongly ghtly

ooint that **Definition 22.** A filter base Λ is said to be co-convergent to a point x in X if for any $U \in CO(X)$ containing x, there exists a $B \in \Lambda$ such that $B \subset U$.

Theorem 23. If a function $f: X \to Y$ is slightly α -continuous if and only if for each point $x \in X$ and each filter base Λ in X α -converging to x, the filter base $f(\Lambda)$ is co-convergent to f(x).

Proof. (\Rightarrow) Let $x \in X$ and Λ be any filter base in X α -converging to x. Since f is slightly α -continuous, then for any $V \in CO(Y)$ containing f(x), there exists a $U \in \alpha O(X)$ containing x such that $f(U) \subset V$. Since Λ is α -converging to x, there exists a $B \in \Lambda$ such that $B \subset U$. This means that $f(B) \subset V$ and therefore the filter base $f(\Lambda)$ is co-convergent to f(x).

(\Leftarrow) Let $x \in X$ and $V \in CO(Y)$ containing f(x). If we take Λ to be the set of all sets U such that $U \in \alpha O(X)$ containing x, then Λ will be a filter base which α -convergences to x. Thus, there exists $U \in \Lambda$ such that $f(U) \subset V$. Hence, we obtain that f is slightly α -continuous.

4. Separation axioms

In this section, we investigate relationships between slightly α -continuous functions and separation axioms.

Definition 24 ([9]). A space X is said to be α - T_0 if for each pair of distinct points in X, there exists an α -open set of X containing one point but not the other.

Definition 25 ([9]). A space X is said to be α - T_1 if for each pair of distinct points x and y of X, there exist α -open sets U and V containing x and y, respectively, such that $y \notin U$ and $x \notin V$.

Definition 26. A space X is said to be co- T_0 if for each pair of distinct points in X, there exists a clopen set of X containing one point but not the other.

Definition 27. A space X is said to be co- T_1 if for each pair of distinct points x and y of X, there exist clopen sets U and V containing x and y, respectively, such that $y \notin U$ and $x \notin V$.

Theorem 28. If $f: X \to Y$ is a slightly α -continuous injection and Y is $co-T_1$, then X is $\alpha-T_1$.

Proof. Suppose that Y is co- T_1 . For any distict points x and y in X, there exist V, $W \in CO(Y)$ such that $f(x) \in V$, $f(y) \notin V$, $f(x) \notin W$ and $f(y) \in W$. Since f is slightly α -continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are α -open subsets of X such that $x \in f^{-1}(V)$, $y \notin f^{-1}(V)$, $x \notin f^{-1}(W)$ and $y \in f^{-1}(W)$. This shows that X is α - T_1 .

Definition 29 ([9]). A space X is said to be α - T_2 (α -Hausdorff) if for each pair of distinct points x and y in X, there exist disjoint α -open sets U and V in X such that $x \in U$ and $y \in V$.

Definition 30. A space X is said to be co- T_2 (co-Hausdorff) if for each pair of distinct points x and y in X, there exist disjoint clopen sets U and V in X such that $x \in U$ and $y \in V$.

Theorem 31. If $f: X \to Y$ is a slightly α -continuous injection and Y is $co-T_2$, then X is $\alpha-T_2$.

Proof. For any pair of distict points x and y in X, there exist disjoint clopen sets U and V in Y such that $f(x) \in U$ and $f(y) \in V$. Since f is slightly α -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ is α -open in X containing x and y, respectively. We have $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. This shows that X is α - T_2 .

Theorem 32. If $f, g: X \to Y$ are slightly α -continuous functions and Y is co-Hausdorff, then $E = \{x \in X : f(x) = g(x)\}$ is α -closed in X.

Proof. If $x \in X \setminus E$, then it follows that $f(x) \neq g(x)$. Since Y is co-Hausdorff, there exist $f(x) \in V \in CO(Y)$ and $g(x) \in W \in CO(Y)$ such that $V \cap W = \emptyset$. Since f and g are slightly α -continuous, $f^{-1}(V)$ and $g^{-1}(W)$ are α -open in X with $x \in f^{-1}(V)$ and $x \in g^{-1}(W)$. Set $O = f^{-1}(V) \cap g^{-1}(W)$. Then, O is α -open and $f(O) \cap g(O) = \emptyset$. Hence, $x \notin \alpha$ -cl(E). This shows that E is α -closed in X.

Theorem 33. If $f: X \to Y$ is slightly α -continuous function and Y is co-Hausdorff, then $E = \{(x,y) \in X \times X : f(x) = f(y)\}$ is α -closed in $X \times X$.

Proof. Let $(x,y) \in (X \times X) \setminus E$. It follows that $f(x) \neq f(y)$. Since Y is co-Hausdorff, there exist $f(x) \in V \in CO(Y)$ and $f(y) \in W \in CO(Y)$ such that $V \cap W = \emptyset$. Since f is slightly α -continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are α -open in X with $x \in f^{-1}(V)$ and $y \in f^{-1}(W)$. Take $U = f^{-1}(V)$ and $G = f^{-1}(W)$. Hence, $(U \times G) \cap E = \emptyset$. We have that $U \times G$ is α -open in $X \times X$ and containing (x,y). This means that E is α -closed in $X \times X$. \square

Definition 34. A space is called co-regular (respectively, strongly α -regular) if for each clopen (respectively, α -closed) set F and each point $x \notin F$, there exist disjoint open sets U and V such that $F \subset U$ and $x \in V$.

Definition 35. A space is said to be co-normal (respectively, strongly α -normal) if for every pair of disjoint clopen (respectively, α -closed) subsets F_1 and F_2 of X, there exist disjoint open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

Theorem 36. If f is slightly α -continuous injective open function from a strongly α -regular space X onto a space Y, then Y is co-regular.

) if for sets $\it U$

or each U and

id Y is

lisjoint ince f ning x t X is

and Y

is coh that V) are $^{1}(W)$. shows

dY is X imes X.

e Y is) such V) are) and pen in

 $\{ x \in \Gamma \ | \ \alpha \}$

ongly ibsets

from

 $\subset U$

Proof. Let F be a clopen set in Y and $y \notin F$. Take y = f(x). Since f is slightly α -continuous, $f^{-1}(F)$ is an α -closed set. Take $G = f^{-1}(F)$. We have $x \notin G$. Since X is strongly α -regular, there exist disjoint open sets U and V such that $G \subset U$ and $x \in V$. We obtain that $F = f(G) \subset f(U)$ and $y = f(x) \in f(V)$ such that f(U) and f(V) are disjoint open sets. This shows that Y is co-regular.

Theorem 37. If f is slightly α -continuous injective open function from a strongly α -normal space X onto a space Y, then Y is co-normal.

Proof. Let F_1 and F_2 be disjoint clopen subsets of Y. Since f is slightly α -continuous, $f^{-1}(F_1)$ and $f^{-1}(F_2)$ are α -closed sets. Take $U = f^{-1}(F_1)$ and $V = f^{-1}(F_2)$. We have $U \cap V = \emptyset$. Since X is strongly α -normal, there exist disjoint open sets A and B such that $U \subset A$ and $V \subset B$. We obtain that $F_1 = f(U) \subset f(A)$ and $F_2 = f(V) \subset f(B)$ such that f(A) and f(B) are disjoint open sets. Thus, Y is co-normal.

5. Connectedness

In this section, we study relationships between slightly α -continuous functions and connectedness.

Lemma 38. The following properties are equivalent for a subset A of a space X:

- (1) A is clopen;
- (2) A is α -closed and α -open;
- (3) A is α -closed and preopen.

Theorem 39. If $f: X \to Y$ is slightly α -continuous surjective function and X is connected space, then Y is connected space.

Proof. Suppose that Y is not a connected space. Then there exists nonempty disjoint open sets U and V such that $Y = U \cup V$. Therefore, U and V are clopen sets in Y. Since f is slightly α -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are α -closed and α -open in X and hence clopen in X. Moreover, $f^{-1}(U)$ and $f^{-1}(V)$ are nonempty disjoint and $X = f^{-1}(U) \cup f^{-1}(V)$. This shows that X is not connected. This is a contradiction. By contradiction, Y is connected.

Definition 40. A topological space X is called hyperconnected [13] if every open set is dense.

Remark 41. The following example shows that slightly α -continuous surjections do not necessarily preserve hyperconnectedness.

Example 42. Let $X = \{a, b, c\}$, $\sigma = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\}$ and $\tau = \{X, \emptyset, \{a\}\}$. Then the identity function $f: (X, \tau) \to (X, \sigma)$ is slightly α -continuous surjective, (X, τ) is hyperconnected, but (X, σ) is not hyperconnected.

6. α -Co-closed graphs

In this section, we investigate relationships between α -co-closed graphs and slightly α -continuous functions.

Recall that for a function $f: X \to Y$, the subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

Definition 43. The graph G(f) of a function $f: X \to Y$ is said to be α -co-closed in $X \times Y$ if for each $(x,y) \in (X \times Y) \setminus G(f)$, there exist $U \in \alpha O(X)$ containing x and $V \in CO(Y)$ containing y such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 44. The graph G(f) of a function $f: X \to Y$ is α -co-closed in $X \times Y$ if and only if for each $(x,y) \in (X \times Y) \setminus G(f)$, there exist $U \in \alpha O(X)$ containing x and $V \in CO(Y)$ containing y such that $f(U) \cap V = \emptyset$.

Theorem 45. If $f: X \to Y$ is slightly α -continuous and Y is co-Hausdorff, then G(f) is α -co-closed in $X \times Y$.

Proof. Let $(x,y) \in (X \times Y) \setminus G(f)$, then $f(x) \neq y$. Since Y is co-Hausdorff, there exist $U \in CO(Y)$ and $V \in CO(Y)$ with $f(x) \in U$ and $y \in V$ such that $U \cap V = \emptyset$. Since f is slightly α -continuous, there exists $A \in \alpha O(X)$ containing x such that $f(A) \subset U$. Therefore, we obtain $y \in V \in CO(Y)$ and $f(A) \cap V = \emptyset$. This shows that G(f) is α -co-closed.

Theorem 46. If $f: X \to Y$ is α -continuous and Y is co- T_1 , then G(f) is α -co-closed in $X \times Y$.

Proof. Let $(x,y) \in (X \times Y) \setminus G(f)$, then $f(x) \neq y$ and there exists a clopen set V of Y such that $f(x) \in V$ and $y \notin V$. Since f is α -continuous, there exists $U \in \alpha O(X)$ containing x such that $f(U) \subset V$. Therefore, we obtain $f(U) \cap (Y \setminus V) = \emptyset$ and $Y \setminus V \in CO(Y)$ containing y. This shows that G(f) is α -co-closed in $X \times Y$.

Theorem 47. Let $f: X \to Y$ have an α -co-closed graph G(f). If f is injective, then X is α - T_0 .

Proof. Let x and y be any two distinct points of X. Then, we have $(x, f(y)) \in (X \times Y) \setminus G(f)$. By definition of α -co-closed graph, there exist a α -open set U of X and $V \in CO(Y)$ such that $(x, f(y)) \in U \times V$ and $f(U) \cap V = \emptyset$; hence $U \cap f^{-1}(V) = \emptyset$. Therefore, we have $y \notin U$. This implies that X is α - T_0 .

Theorem 48. Let $f: X \to Y$ have an α -co-closed graph G(f). If f is a surjective strongly α -open function, then Y is α - T_2 .

Proof. Let y_1 and y_2 be any distinct points of Y. Since f is surjective $f(x) = y_1$ for some $x \in X$ and $(x, y_2) \in (X \times Y) \setminus G(f)$. By α -co-closedness of the graph G(f), there exist an α -open set U of X and $V \in CO(Y)$ such that $(x, y_2) \in U \times V$ and $(U \times V) \cap G(f) = \emptyset$. Then, we have $f(U) \cap V = \emptyset$.

Since f is strongly α -open, f(U) is α -open and $f(x) = y_1 \in f(U)$. This implies that Y is α -T₂.

Definition 49. A space X is said to be mildly compact [12] if every clopen cover of X has a finite subcover. A subset A of a space X is said to be mildly compact relative to X if every cover of A by clopen sets of X has a finite subcover. A subset A of a space X is said to be mildly compact if the subspace A is mildly compact.

Theorem 50. If a function $f: X \to Y$ has an α -co-closed graph G(f), then $f^{-1}(K)$ is α -closed in X for every subset K which is mildly compact relative to Y.

Proof. Assume that K is mildly compact relative to Y and $x \notin f^{-1}(K)$. For each $y \in K$, we have $(x,y) \in (X \times Y) \setminus G(f)$ and there exist $U_y \in \alpha O(X)$ containing x and $V_y \in CO(Y)$ containing y such that $f(U_y) \cap V_y = \emptyset$. Since $\{K \cap V_y : y \in K\}$ is a clopen cover of the subspace K, there exists a finite subset $K_1 \subset K$ such that $K \subset \bigcup \{V_{y_k} : k \in K_1\}$. Set $U = \bigcap \{U_{y_k} : k \in K_1\}$, then $U \in \alpha O(X)$ containing x and $f(U) \cap K = \emptyset$. Therefore $U \cap f^{-1}(K) = \emptyset$ and hence $x \notin \alpha \text{-}cl(f^{-1}(K))$. This shows that $f^{-1}(K)$ is $\alpha \text{-}closed$ in X. \square

Theorem 51. Let Y be a mildly compact space. If a function $f: X \to Y$ has an α -co-closed graph G(f), then f is slightly α -continuous.

Proof. Suppose that Y is mildly compact and G(f) is α -co-closed. First, we show that a clopen set of Y is mildly compact. Let V be a clopen set of Y and let $\{H_{\alpha}: \alpha \in I\}$ be a cover of V by clopen sets H_{α} of V. For each $\alpha \in I$, there exists a clopen set K_{α} of X such that $H_{\alpha} = K_{\alpha} \cap V$. Then, the family $\{K_{\alpha}: \alpha \in I\} \cup (Y \setminus V)$ is a clopen cover of Y. Since Y is mildly compact, there exists a finite subset $I_{0} \subset I$ such that $Y = \bigcup \{K_{\alpha}: \alpha \in I_{0}\} \cup (Y \setminus V)$. Therefore, we obtain $V = \bigcup \{H_{\alpha}: \alpha \in I_{0}\}$. This shows that V is mildly compact. For any clopen set V, $f^{-1}(V)$ is α -closed in X and hence f is slightly α -continuous.

7. Covering properties

In this section, we investigate relationships between slightly α -continuous functions and compactness.

Definition 52. A space X is said to be α -compact [6] if every α -open cover of X has a finite subcover. A subset A of a space X is said to be α -compact relative to X [11] if every cover of A by α -open sets of X has a finite subcover. A subset A of a space X is said to be α -compact if the subspace A is α -compact.

Theorem 53. If a function $f: X \to Y$ is slightly α -continuous and K is α -compact relative to X, then f(K) is mildly compact in Y.

raphs

 $X \subset X$

be lpha-

 $\mathcal{O}(X)$ $\equiv \emptyset$.

ed in

 $\mathcal{O}(X)$

dorff,

such

 $\mathcal{O}(X)$

 $\mathcal{O}(Y)$

G(f)

lopen

there

btain

G(f)

f is

have

 $_{
m exist}$

and

This

is a

ective

dness such

 $= \emptyset$.

Proof. Let $\{H_{\alpha}: \alpha \in I\}$ be any cover of f(K) by clopen sets of the subspace f(K). For each $\alpha \in I$, there exists a clopen set K_{α} of Y such that $H_{\alpha} = K_{\alpha} \cap f(K)$. For each $x \in K$, there exists $\alpha_x \in I$ such that $f(x) \in K_{\alpha_x}$ and there exists $U_x \in \alpha O(X)$ containing x such that $f(U_x) \subset K_{\alpha_x}$. Since the family $\{U_x : x \in K\}$ is a cover of K by α -open sets of K, there exists a finite subset K_0 of K such that $K \subset \{U_x : x \in K_0\}$. Therefore, we obtain $f(K) \subset \bigcup \{f(U_x) : x \in K_0\}$ which is a subset of $\bigcup \{K_{\alpha_x} : x \in K_0\}$. Thus $f(K) = \bigcup \{H_{\alpha_x} : x \in K_0\}$ and hence f(K) is mildly compact.

Corollary 54. If $f: X \to Y$ is a slightly α -continuous surjection and X is α -compact, then Y is mildly compact.

Definition 55. A space X is said to be:

- (1) mildly countably compact [12] if every clopen countable cover of X has a finite subcover;
- (2) mildly Lindelöf [12] if every cover of X by clopen sets has a countable subcover;
- (3) countably α -compact if every α -open countable cover of X has a finite subcover;
 - (4) α -Lindelöf if every α -open cover of X has a countable subcover.

Theorem 56. Let $f: X \to Y$ be a slightly α -continuous surjection. Then the following statements hold:

- (1) If X is α -Lindelöf, then Y is mildly Lindelöf.
- (2) If X is countably α -compact, then Y is mildly countably compact.

Proof. We prove (1), the proof of (2) being entirely analogous.

Let $\{V_{\alpha}: \alpha \in I\}$ be any clopen cover of Y. Since f is slightly α -continuous, $\{f^{-1}(V_{\alpha}): \alpha \in I\}$ is an α -open cover of X. Since X is α -Lindelöf, there exists a countable subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}): \alpha \in I_0\}$. Thus, we have $Y = \bigcup \{V_{\alpha}: \alpha \in I_0\}$ and Y is mildly Lindelöf. \square

Definition 57. A space X is said to be:

- (1) α -closed-compact if every α -closed cover of X has a finite subcover;
- (2) countably α -closed-compact if every countable cover of X by α -closed sets has a finite subcover;
- (3) α -closed-Lindelöf if every cover of X by α -closed sets has a countable subcover.

Theorem 58. Let $f: X \to Y$ be a slightly α -continuous surjection. Then the following statements hold:

- (1) If X is α -closed-compact, then Y is mildly compact.
- (2) If X is α -closed-Lindelöf, then Y is mildly Lindelöf.
- (3) If X is countably α -closed-compact, then Y is mildly countably compact.

Proof. It can be obtained similarly as the previous theorem. \Box

References

- [1] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci. 19 (1996), 303-310.
- [2] G. L. Fao, On strongly α -irresolute mappings, Indian J. Pure Appl. Math. 18 (1987), 146–151.
- [3] S. Jafari, Rare α -continuity. (Submitted)

of the

that

 K_{α_x}

Since

ists a

btain

Thus

nd X

of X

itable

finite

Then

uous,

ver; losed

table

Then

com-

- [4] S. Jafari and T. Noiri, Contra-α-continuous functions between topological spaces, Iran. Int. J. Sci. 2 (2001), 153–167.
- [5] S. N. Maheshwari and S. S. Thakur, On α-irresolute mappings, Tamkang J. Math. 11 (1980), 209–214.
- [6] S.N. Maheshwari and S.S. Thakur, On α -compact spaces, Bull. Inst. Math. Acad. Sinica 13 (1985), 341–347.
- [7] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [8] A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb, α -Continuous and α -open mappings, Acta Math. Hungar. 41 (1983), 213-218.
- [9] G. B. Navalagi, α -Neighbourhoods. (Unpublished)
- [10] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [11] T. Noiri and G. Di Maio, *Properties of \alpha-compact spaces*, Rend. Circ. Mat. Palermo (2) Suppl. 18 (1988), 255–273.
- [12] R. Staum, The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math. 50 (1974), 169–185.
- [13] L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, Holt, Rinehart and Winston, New York, 1970.
- [14] M. L. Thivagar, Generalization of pairwise α -continuous functions, Pure Appl. Math. Sci. 33 (1991), 55-63.

DEPARTMENT OF MATHEMATICS, CANAKKALE ONSEKIZ MART UNIVERSITY, TERZIO-GLU CAMPUS, 17020 CANAKKALE, TURKEY

E-mail address: eekici@comu.edu.tr