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Some elementary zero-free regions for Dirichlet
series and power series

NicOLAE CIPRIAN BONCIOCAT AND ALEXANDRU ZAHARESCU

ABSTRACT. Adapting some elementary methods used by a number of
authors to investigate the location of roots of polynomials with complex
coefficients, we present some results which provide zero-free regions for
Dirichlet series and power series.

1. Introduction

A classical result of Cauchy states that all the zeros of a complex polyno-
mial P(z) = ag + a1z + -+ + a,2", a, # 0, lie in the disc |z| < r, where r is
the unique positive root of the algebraic equation |a,|2” = 3.7} as|z. An
important generalization of this result is Pellet’s theorem [19]:

If the equation |ay|zF = E?:()’#k lailzt (0 < k < n, aga, # 0) has
two positive roots v and Ry (0 < ri < Ry), then the complez polynomial
P(z) = ag+ a1z + -+ ayz™ has no zeros in the annulus ry < |z| < Ry, and
precisely k zeros in the disc |z] <1y .

Walsh [23] established another more direct proof of this result and re-
marked that his proof remains valid in the case of a power series and its
zeros inside its disc of convergence. He also devised a sort of converse of
Pellet’s theorem (see also Ostrowski [18]). Fujiwara [7] employed a very
simple method to obtain the following sharp result:

Let P(z) = ap+ajz+---+a,2" be a polynomial with complex coefficients,
of degree n > 2, and py,. .., un € (0,00) such that ';217 +o ;71: < 1. Then
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oll the roots of P are contained in the disk |z| < R, where

1
,!an~j! J
’ ‘anl

R = max <u

1<) <n
Another old result is the following theorem of Kojima (see [10]. [11]):

All the zeros of the polynomial f(z) = ag + a12™ + -+ + apz™ with all
a; # 0, 0 = ng < my < -+ < ny, lie on the disc lz| < r, where r =
max||ag/ai|™, '2(147'/@'7'_.1["11‘], m; = (nj — nj,_})"l, i=12,... k.

Further estimates for the absolute values of the roots of a given polynomial
with complex coeflicients have been provided by Cowling and Thron (see [4],

[5]):

Let f(z) = ag+a12™ +- - -+a 2" with all a; 0,0 =mng <ny <+ <y,
and m; = (n; ~—71‘7M.1)“’1, J=L2,... k. Letrg=0,r,=1andry,...., 70
be arbitrary positive constants. Then all the zeros of f lie in the disc
(L+rio) Jai—1 1™

rj |a;]

|z < M = max
j=1,..k

Fujiwara [7] also provided information on the possible location of zeros of
a given power series with complex coefficients. Some refinements of Pellet’s
theorem, and of Fujiwara’s bounds, have been obtained by Marden in [14]
(see also [15]). Results on the location of zeros in the case of multivariate
polynomials have been established by Cargo and Shisha [2], and Mond and
Shisha [17].

Riddell [20] considered the case when a complex polynomial P(z) = 2" +
a2+ a2+ ap has one |ag| large in comparison with the other
la;| and proved using Pellet’s theorem that then P(z) has n — k zeros near
0 and one zero near each of the k values of (~—ak)%,

Some bounds for the zeros of a complex polynomial P(z) can be obtained
by using results on the numerical range and the numerical radius of the Fro-
benius companion matrix of P(z). Some sharp results in this direction have
been obtained by Chien [3], Fujii and Kubo [6], and Kittaneh [9]. Other
companion matrices can be obtained by a similarity transformation of the
Frobenius companion matrix of P(z). Linden [12], [13] used such generalized
companion matrices based on some special multiplicative decompositions of
the coefficients of a polynomial P(z), in order to find estimates for the zeros
of P(z). This was settled by mainly applying Gershgorin’s theorem to the
companion matrices, or by computing their singular values and using majo-
rization relations of Weyl between the singular values and the eigenvalues of
a matrix.
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Another method to investigate the location of zeros of a complex poly-
nomial is to consider its expansion with respect to a system of orthogonal
polynomials. A famous result in this direction was obtained by Turdn [22]:

If a complex polynomial P(z) = ag + ayz + -+ - + anz™ of degree n has the
Hermate ezpansion P(z) = Y, arHg(z), then all the zeros of P(z) lie in
the strip

1 k|

(@) < 3(L+ max 25

)-

The same holds for the strip

n—l

[Im(z)] < 5 Z |k ),

Further results in this direction using other systems of orthogonal po-
lynomials were obtained by Schmeisser [21], Gautschi [8], de Bruin [1],
Milovanovi¢ and Rajkovi¢ [16].

In the present paper we adapt the methods from [7], [10], [11], [4] and [5]
to provide some elementary zero-free regions for Dirichlet series and power
series. The results in Section 2 below, which have very simple proofs, are
quite flexible, and might prove to be useful in various applications.

2. Zero-free regions for Dirichlet series and power series

In this section we present some results which provide zero-free regions for
Dirichlet series and power series with complex coefficients.

Proposition 1. Let ¢(s) be a Dirichlet series convergent for R(s) = o >
A, and let f;, i =1,2,..., be a sequence of functions defined for R(s) > A
and bounded on vertical lines, such that

oofns
:7; 7’1,(5)

for any s with R(s) > A. We assume that there exist an mieger 7 > 1, o real
number o > A and a sequence of positive real numbers M1, 1o, 13, ... Such

that
X
Z prp <1
k=1, k#j
1 Mk> my
suplo — <0<1nf10 C—
k>I; g;i, e my b g.L Kk M,
where m; = infy(g)=y | fi(s)] and M; = supw6 Y=o |fi(8)] for any i.
Then ©(s) # 0 for any s with R(s) =
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Proof. Let us fix a complex number s, with R(s) = 0. Using the triangle
inequality, we write

'S ) - a0 [«2
Pl ey R T

a
The first inequality from (2) implies that f > pl; . %]& for any k > j,
or lik% > %M(;’L for any k > j. The second inequality from (2) implies that
N\ O oy 3
z >uk-ﬁ—iforanyk<j,oruk% >%}iforanyk<j. We add the
above inequalities for all k£ # 7, and, using also (1), we obtain
o o0
™ms my Mk
G2 D > >
k=1, k#j k=1, k#j
Therefore |p(s)| > 0, by (3). Hence ¢(s) # 0 for any s with R(s) =0. O

Next, we use similar arguments to establish further results on the possible
location of zeros of the corresponding functions.

Proposition 2. Let ¢(s) be a Dirichlet series convergent for R(s) > A,
and let f;, i1 =1,2,..., be a sequence of functions defined for R(s) > A and
bounded on vertical lines, such that

ols) = Y 12
n=1

for any s with N(s) > A. Let py = 0, let pa,ps, ... be a bounded sequence
of positive real numbers, and let j > 2 be an integer for which p; > 1. Then
any zero s of @ with R(s) = a for which 3 oo | My /1% is convergent belongs
to the halfplane

: : 1Ty pj+1 M1
R(s) > min<log 4 , logjp ——- 1
) 2 S Wt )My o3 LT )y

. Pk1 My 41
inf  loguy SkELkSL
kil 5 O (L ) My,

where My, = SUDgR(s)=0 | fn(s)] and mp = infg(s)=y | fn(s)| for any n.
Proof. Let s be a zero of ¢ with R(s) = o and the sum ) .2, Mp/n’

convergent. By the triangle inequality,

, | f5(3)] o fu(s)] my M
lo(s)] > —fj—r —~ k:],quéj TeT 2 ]—j —~ k:l,zk'#.j e (4)
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Let us assume that s does not belong to the disc from the statement of the
proposition. Then we have successively:
paMy (1 +p1)M
20 >

pj—1Mj_y
(=17
v A
jU
i1 M4
(G+1)°
Pj+a Mo (1 + pjp1) Mg
(J+2)°

Adding these inequalities and using the fact that the sequence {y;} is boun-
ded and the sum }"°° . M, /n? is convergent, so that the sums on both sides
are finite, after appropriate cancellation we obtain

0]
mj/jg > Z Mk/ka.
! k=1, k#j3
Therefore by (4) it follows that |(s)| > 0, hence s is not a zero of ¢, and
we obtain a contradiction. O

Proposition 3. Let ¢(s) be a Dirichlet series convergent on the halfplane
R(s) > A, and let f;, 1 = 1,2,..., be a sequence of functions defined for
R(s) > A and bounded on vertical lines, such that

pls) =y I—’;;(;Sl
n=1

Jor any s with R(s) > A. Let py, po, p3, ... be a bounded sequence of positive
real numbers, with py = 1. Then any zero s of ¢ with R(s) = o for which
o 1 My, /n” is convergent lies in the halfplane

1 M- 1 M,
(14 p2) 2. suplogw( + 1) Mg

p1my k>2 K g M,

R(s) < max { log,

where my = infpg)=y | f1(s)| and My = supgg)=y |fa(s)] for any n.

Proof. Let s be a zero of ¢ with R(s) = o such that the sum ) | M, /n°
is convergent. Using the triangle inequality, we have

(o) 2 1766} = Y N 2 oy - 7 22 (5
k=2 k=2
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Let us assume that

1 M- 1 )
(1+ pa) 2. Suplogm( + pg1 ) Mgy

R(s) > max { lo
&2 H1my k>2 K i My

Then we obtain successively

pmy (1 + po) My

10 20
po M> (1 + p3) My
H2My e
3 My (1 + pg) My
T30 4
pha My (1 + p5)Ms

>
4(7 50”

Adding these inequalities, the sums on both sides are finite, and after ap-
propriate cancellation of terms we obtain m; > Yoreo My /k®. Then, by
(5) it follows that |o(s)] > 0, so s is not a zero for ¢, and we obtain a
contradiction. U

Denote as usual N = {0,1,2,...}, N* = {1,2,...}. We consider now a
suitable class of permutations on N.

Proposition 4. Let p(s) be a Dirichlet series convergent in the halfplane
R(s) > M, and let f;, i = 1,2,..., be a sequence of Jfunctions defined for
R(s) > A and bounded on vertical lines, such that

ns

p(s) =" fa(s)
n=1

for any s with R(s) > M. Let § € Sy~ be a permutation of N* without fized
points and let A = {i € N" 10 > 0(i)}, B = {i e N* ;4 < 0(:)}. We assume
that there exist a real number o > M, a bounded sequence of positive real
numbers fi1, 4o, ... and an integer § > 1 with Lagy) > 1 such that

sup log oy ) inf lngl_ HiMs
€BiAL0G) 2 i€Ai#3007) 0 (14 pggy) Moy

and

(=1 1oy mgg)
(7)°
pogmoy - (LF toxgg)) Moz,
0G)" oGy
where My, = supyy gy | fn(8)] and my = infg oy | fn(s)] for any n.
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Then p(s) # 0 for any s with R(s) = o for which the sum Yore My /n°
18 convergent,

Proof. Let us assume that s is a zero of ¢, with R(s) = o, and such that
the sum »>° | M, /n° is convergent. Using as before the triangle inequality,
we have

o ()] ‘ 4 =M
0= lio(s)| > =TI el > >

L]
L B P k=1 kre0)
On the other hand, by the conditions from the statement of the proposition
we derive successively that
M (L + oy
19 )
paMy (1 + pogay) Mz
20 9(2)0

i My (L pog-1y) M1y
(J—1)° 0(j —1)°
15 M; (=1 + poz))meg)
A 0(5)°
i1 M (L + pogi41)) Mpgj41)
(G +1)°

Ho5) M)
0(5)

Since the sequence (11;) is bounded and the sum Y omeey My /0 is convergent,

we may add these inequalities to obtain my;)/0(7)7 > 332, wz0(j) M/ k7.
Combining with (6), this leads to a contradiction. O

Using a standard change of variable, one obtains the following analogs of
the above results for power series with complex coefficients.

Corollary 1. Let ¢(z) be a power series with complex coefficients, with,
radius of convergence R > 0, and let f;, i = 0,1,2,..., be a sequence of
locally bounded functions defined on the disc |z| < R, such that

p(z) = filz) -7
1=0

for any z with |z| < R. We assume that there exist an integer j > 0, a real
number 0 < p < R and a sequence of positive real numbers B0y 41, s -
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such that

1 k
sup | — - —=
k<j \ Mk My
where m; = inf|,j=, | fi(2)| and M; = supy,—,|fi(2)| for any i.
Then @(z) # 0 for any z with |z| = p.

Corollary 2. Let o(z) be a power series with complex coefficients, with
radius of convergence R > 0, and let f;, i = 0,1,2,..., be a sequence of
locally bounded functions defined on the disc |z| < R, such that

o(z) =Y _ filz) -7
=0

for any z with |z| < R. Let py = 0, let gy, g, ... be a bounded sequence of
positive real numbers, and let j > 1 be an integer for which p; > 1. Then
any zero zg of @ for which Y ooy M; - |2o|* is convergent belongs to the disc
A+pj-g)Mjy (Sltp)mg (L ) My

iy Topiri M T ki1, § e Mg

|z} < max

where M; = SUP|,ji5) | fi(2)| and m; = infj,— 0 | fi(2)| for any i.

Corollary 3. Let ¢(2) be a power series with complex coefficients, with
radius of convergence R > 0, and let f;, i = 0,1,2,..., be a sequence of
locally bounded functions defined on the disc |z| < R, such that

p(z) =Y fil2) -2
=0

for any z with |z| < R. Let pi1,pa,... be a bounded sequence of positive
real numbers. Then any zero zy of @ for which the sum Y oo, M; - |zo|" is
convergent satisfies

My inf P My
(L+p) M7 k21 (1 + peg1) My
where mo = inf|,|= 1, 1fo(2)] and M; = sup|, i, fi(2)] for any i.

|20] > min

Corollary 4. Let ¢(z) be a power series with complez coefficients, with
radius of convergence R > 0, andlet f;,+=0,1,2,..., be a sequence of locally
bounded functions defined on the disc |z| < R, such that p(2) = Y50, fi(2)-2"
for any z with |z] < R. Let o € LN be a permutation of N without fized
points, and let A= {1 e N:i>0@i)}, B={i e N:i<o(i)}. We assume
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that there exist a real number 0 < p < R, a bounded sequence of positive real
numbers po, b1, 2, ... and an integer j > 0 with Bo(j) > 1 such that

1 1
(1+ ucf(i))Ma(i)) =@ : pi M 7=
sup ( <p< inf (
( Ma(i)

i M, s \U+u.,
L) Hil i£5.00) Hots))

and

uiMip' > (=14 po(y)me(p°Y,
. o
BoliyMoP” > (L o) Moz(gyp” O,

where m; = infy, 1, | fi(2)| and M; = supj,j—, | fi(2)] for any .
Then @(z) # 0 for any z with |z| = p and for which the sum 3y oo, M; - p
18 convergent.

We remark that the results from this section could be restated in the
context of lacunary series, and the corresponding sums would run over those
indices i; for which f;; # 0.
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