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On the degree of approximation of functions
of two variables by some operators

LUCYNA REMPULSKA AND MARIOLA SKORUPKA

ABSTRACT. We introduce operators of Szész-Mirakyan and Baskakov
type in polynomial weighted spaces of functions of two variables. We
prove a theorem on the degree of approximation and a Voronovskaya
type theorem for these operators. Similar results for Bernstein, Szdsz-
Mirakyan and Baskakov operators of functions of one variable were given
in [3-6].

1. Introduction

1.1. Approximation properties of Szdsz-Mirakyan and Baskakov opera-

(n];)kf <§> |

tors, i.e.,

i) =3 (

k=0
z € Ry = [0,00), n € N = {1,2,..}, in polynomial weighted spaces Cp,
p € Ng = NU {0}, were examined in [1].

In [3-6] approximation theorems for modified Bernstein, Szdsz-Mirakyan
and Baskakov operators in spaces of differentiable functions of one variable
were given.

In this paper we shall establish analogues of results given in [3-5] for
certain positive linear operators in polynomial weighted spaces of differen-
tiable functions of two variables. The operators introduced in this note
contain classical Sz4sz-Mirakyan and Baskakov operators of functions of two
variables.
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Theorems given in Section 3 show that the order of approximation of r
times differentiable functions by considered operators improves as r € N
increases.

1.2. Let p,¢ € Ny and let
wo(@) =1, wp(e)i=(1+a?)", if p>1,z€Ry (1)

wp,g(2,y) = wy(z)wg(y),  (z,) € R = Ry x Ry. (2)
Denote by Cp 4 = Cp4(R2) the polynomial weighted space, i.e., the set of

all real-valued functions f continuous on R3 for which wy, ,f is bounded on
R2 and the norm is defined by the formula

[ £llpig = 1 Gy Mlpg = sup{wpg(e, 9)| f(z,9)] : (z,y) € RE}. (3)
Moreover, let CT = CT(R2), with a fixed r € Ny, be the class of all
[ € C,, having the r-th partial derivatives on RZ and ff,,rf)ﬂ,.y,» € Crempr—m
forall 0 <i<m <.
For example, f(z,y) = (az +by+¢)", a, b, c = const. € R and r € Ny, is
function belonging to C”.
It is obvious that C° = Cop and Cp, 4, C Cpy 0, if p1,02,¢1,92 € Ny and
p1 < p2, 1 < qa. Moreover for f € Cp 4 C Cp, 4, we have ||fllp,q <

| fllp1,q1- In particular we have Cyo C C, , for p,q € Ny and 1 fllp.q < 11fllo,0
for f € C(),().

1.3. Let f € Cyo and let w(f) be its modulus of continuity ([7]), i.e.,
w(f;s,t) - = sup{|f(z,y) — f(u,v)| : (z,9), (u,v) € RE,
]-’L'—"U:]SS, !y“UlSt}, s,t € Ry.
It is known ([7]) that if f € Cyo and Aq, A2 = const. > 0, then
w(fiA18,A0t) < w(f;M18,0) +w(f;0, Ast)
(A +Dw(f;5,0) + (A + D w(f;0,1)
< (MH+HA+2w(f;s,t) for s, t>0.

If, moreover, f is uniformly continuous on R%, then lim+w( fis,t)=0.
5,0—0

1.4. Denote by ) the set of all infinite matrices A = [ank(-)], n € N,
k € Ny, of continuous functions on Ry satisfying the following conditions:

(i) ang(z) >0 for z€Ry, neN, ke Ng,

o0
(i) > ank(z)=1 for € Ry, n €N,
k=0
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. (o]
(ili) the series Y k®ay;(z) is uniformly convergent on Ry for every n,s
k=0
N and its sum F,, ;(; A) is function such that wskF, s is bounded on Ry,

(iv) for every s € N there exists a positive constant M (s, A) independent
on z € Ry and n € N such that for the function

o0 8§
Trs(z; A) := Zank(x) (—g — :L> , TE€Rp, neN, (6)
k=0

there holds the inequality
was (2) | Thj2s(z; A)] < Mi(s,A)n™°, 2 €Rg, neN. (7)
Definition. Let 4, B € Q, A = [a,x(-)], B = [bn ()], and let r € Ny. For
f € C" we define the operators
Luy(f32,y) = Loy (f; A, By 7,y)

=0 " an(a) bnk(y)Z:}!dsf (%,-f;) , @
§=0

§=0 k=0

(z,y) € B3, n € N, where dsf (% E) is the s-th differential of f at point

n

(%,%) and A:E:il?—-%, Ay=y—£ je. d0f<l E) :f<l —’g) and

n n’n n'n

(i B 9 (i k Nk
() =5 (5) 2 (38 (- 2) 7 (-4

If r =0, then

(o]

Bufi09) = 33 any(@)bor() £ (£,5) ) €, men (a0

3=0 k=0 "
We mention that formulas (8) and (10) contain the case of identical ma-
trices A, B.

In Section 2 we shall prove that L, (f), n € N, is an operator from the
space C" into Cr.,, and we shall give some auxiliary inequalities.

In Section 3 we shall give a theorem on the degree of approximation of
J €C7 by Ly, (f) and a Voronovskaya type theorem.

We shall denote by My (c, 3), k € N, suitable positive constants depending
only on indicated parameters «, 3.

2. Lemmas
The properties (i)-(iv) of A, B € Q and (8)~(10) imply that
Ly (1;2,9) = 1, (z,y) €R3, neN, reN, (11)
and, moreover, L,..(f) is well-defined for every f(z,y) = zPy9, p,q € Np.

14
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Applying Holder’s inequality and (1), (2), (6), (7) and (10), we immedia-
tely obtain the following

Lemma 1. For fized A, B € Q and p,q € N there exists My = Ms(p,q, A,
B) > 0 such that

wp,q(%y)Ln;O (|t = z|Plz — y|%; A, By z,y)
L _ P
< (wap (@) Tnop(a; A))2 (wog(y) Trppg(y; B))? < Man =R
for all (z.y) € R3 and n € N.

Now we shall prove the main lemma.

Lemma 2. Let A,B € Q and r € Ng. Ifr =0, then for every f € C° we
have .

| Laso(F)lloo < Iflloo,  neEN. (12)

If r € N, then there exists M3 = M3(r, A, B) > 0 such that for every f € C”

and n € N we have
r 3§

U Znir (Dl < MY 0 Ll s (13)

5=0 =
The formulas (8)-(10) and (i) and inequalities (12) and (13) show that
L. (f) is a positive linear operator from the space C™ into Cy .

Proof. It r = 0, then by (1)~(3), (10) and (11) we get
L0 ()00 < I lloo 1 Lnso (15, Moo = . 1lo,0,

for every f € C* and n € N.
If r € N, then by (8)-(10) it results that

r 1 8 , s
[ZERE I DD DN (N L

§=0} 1==0

|t — =z —y]!

Wy —s5,r—s (t) Z)

X Lnyo ST,y

From (1) and (2) we get
(Wr—srms(t,2)) "= (1 4+177) (1 4+277F)
<A A4+ 4+ t—a") A +y  + 2~y
for (z,y), (t,2) € RZ and 0 < s < r, which implies that
Wrp (2, Y) 1 L (Fr 29,

r 38 5 (S) 4 (]‘4)
<D 2 ) Myl 30 Qs ),
s=0 =0 Jj=
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wy (2, i ,
Q],(:I;,y) = M"’Ln;o ('tﬁxls llzwyll;m7y) 3
U)7'~—S,7‘—-s(x1 y)

Qolryy) = 2 e =y y)
wr—s(z)

wy (T, » ,
Q3(mvy) = M»LH;O ('t - J;IT ' ‘Z - y'17$7y) 3
wr~s(y)
Qa(z,y) = wrr(2,y) Lo (It — 2" |z = y|" " 2,y) .
Applying Lemma 1 and (1) and (2), we get
wy(z) wr(y)
wr*s(l') ws—'i(l') wr«s(y) Uy (J)
A+a"*)(L+2°7) (L+y* )1 +y)  (15)
1+zr 1+

Qi(z,y) < My(i,s, A, Byn~*/?

< Ms(i,s, A, B)

< M4(7.’:37T7 AaB)’
forneN, (z,y) € R, and 0 <4 < s < r. Analogously we obtain
Qj(z,y) < Ms(i,s,7, A, B), J=2,3,4, (16)

for (z,y) € R3, n € Nand 0 <4 < s < r, where Ms(4, s,r, A, B) is a positive
constant.
The inequality (13) follows from (14)-(16). O

3. Theorems

3.1. First we shall give a theorem on the degree of approximation of
function f € C" by Ly..(f). The formulas (8) and (11) and Lemma 2 imply
that

Ln;T(f;'Tay) - f(a:,y)
2 1 ik (17)
=30 ans@) buey) (Z 2 (LE) - sta)
7=0 k=0 §=0
forall f € C™, r € Ny, (z,y) € R2 and n € N.

Theorem 1. Let A,B € Q and r € Nyg. Then there exists Mg =
Me(r, A, B) > 0 such that for every f € C" and n € N we have

T 1 1
el = Flrerrin < Mon™? Yo (1D im0z}, 8
n H +1,r41 6 ; iy \/;;L‘ \/ﬁ )

where w(f) is the modulus of continuity of f defined by (4).
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Proof. Let r = 0. The property (i) of A, B and (17) imply that

ILn;O(ﬁ-’I;ay) - f(x,y)] < Zzanj )bnk(y) |f

j=0 k=0
and by (4) and (5) we have

ik J k
e} — < [ P I
FAs ) —fay) S wlfi1s-a) |- -y
] k 11
< EAY R
= \/En 'E+\/ﬁ f,\/ﬁ,\/’ﬁ

From the above and by (1), (2), (11) and Lemma 1 we get

——yl+2]w
n

w11 (z,Y)| Lny(f52,y) — f(z,9)]

1 1
f3 NN (Vnwia(z,y) Lagp (|t —
+Vnwii(z,y) Lo (12 = yl; 2,9) +2)
1 1
V)
for all (z,y) € R% and n € N, which yields (18) for r = 0.

Considering 7 € N, we apply the following Taylor formula of f € C7 at a
fixed point (g, o) € RZ:

fw

<(2My+2) wl f;

Flm,y) = 3 5 d°F (@0, 0)
s=0

1
b [ (S (5, 5) — S (0, 0)) d
(r—1"Jo

(19)

for (z,y) € Rf, where (Z,9) := (0 + t(z — z0), %0 + t(y — yo)) and d" f(z0, yo)
and d" f(z,§) are differentials of f with Az =z — 2y and Ay =y — yo (see,
e.g., [2]). Taking (z;,yx) := %,% in (19) instead of (zg,yp), we obtain

from (17) and (19) that

Ln;r(f§$ay) - f(mry) =
(20)

X [ (=8N d (35, 56) — d7f (25, 9%)) di.
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By assumptions on f € CT and by (9), (4) and (5) we can write
!dr.f(jjagk) - drf(ffj:yk)l

ik
< Z ( ) rr iy (37]7yk) fi:l,y,(’ltj,yk)’ T — ;’; y— =

n

S I A
E ) (B ) (513

) i

J
X T - = - —
n YT h

i

for 0<¢<1,neNand j,k € Ny. Using (21) to (20), we get
| Lnir (f z,y) — f(z,y))
3
1 1 (22)
’L) (‘fm‘r zyu 717) Z}/p(m y)

p=1

for (z,y) € R% and n € N, where
Y1(2,y) = v/n Ly (|t — 2["" )z — gyl 2,y)

Yale,y) = VA Lo (jt — o iz — oI ;2,5)

Y3(2,y) =2 Lno (It — 2|z —yls2,y) .
Next, by (1), (2) and Lemma 1 we get
Yi(z,y) < My(i,r)n=2 (1427770 (1447,

Yy(z,y) < Mg(i,r)n"2 (1 + zrhi) (1+ yi+1) ’

Ya(z,y) < My(i,r)n"2 (1+ xr“i) (1+ yz) :
which imply that

wT+1,7‘+1( ( ay) < Mlﬂ(iar) n-%’ (23)

v Y
for all (z,y) € R2, n € N, 0 <i<randp=123, where My_1(,7)
are positive constants. From (22) and (23) the estimate (18) immediately
follows.
The proof is complete. ]
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From Theorem 1 we derive the following

Corollary 1. If f € C", r € Ny, and the partial derivatives f(,.,z
0 <1 <7, are uniformly continuous on RO, then

lim n? ”Lnr(f) - f“r+1,7'+1 =0,

=30

for every A, B € Q2. This shows that

lim 774'5 (Ln;r(f;xvy) - f(fl;,y)) =0

00

at every (z,y) € R2.

3.2. Now we shall prove the following Voronovskaya type theorem.
Theorem 2. Let A, B € Q, r € Ny and let f € C"*2. Then
Ly (f5 A, By z,y) — f(z,y)

(=) &
(T+1‘

fi:i}_l (-'L y) nyr+l— 1(3) A) Tn;i(y§ B)

(24)

D7 (r+1) .
= (r JE 2)! Zf(”ﬁ’ (@, y) Tnirgo—i (25 A) Tnii(y; B)

_rt2
+ Ogyin 2 as n — oo,

at every (z,y) € R2, where Tys is defined by (6). In particular, if r =0 and
f € C?, then

Ln;O(f;A7B§$7y) - f(xvy)
= f'lc(m:y) Tn;l(m; A) + f;(m7y)Tn;1(y;B)

5 (2ao,) Togp (@5 A) + 262 (2,3) Tot (55 4) Tos (3 B)

+le/,2(37:?/) Tn2(y; B) ) + 0wy (ﬂ_l) as n — 0o,

(25)

at every (z,y) € R2.

Proof. Let (z,y) € R be a fixed point. First we shall prove (25).
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By the Taylor formula of f € C? at the point (z,y) we have

P(25) = e+ e (L -2)
+ fylz,y) <-S —y> + —;- (f;’z(ru;y) <—]T; ~w>2
+ 2fay(z,y) (% - m) (g ~ y) + fip(2,9) (S — y) 2) 0
(1 8e8) () (1),

for all j,k € Ng and n € N, where ;(¢, z) = pi(t,z;2,y), i = 0,1,2, are
functions belonging to Cop and  lim (¢, 2) = @;i(z,y) = 0. From (10),
(t,2)—=(2zy)
(26) and (6), we get that
Lno(fiz,y)
= fz,9) + f2(z,9) Top (z; A)
. p 1
+ fy(@,y) Tt (y; B) + 5 {f22(2.9) Toa(z: 4)

+ 215y (2, y) Tt (25 4) Tt (5 B) + f1p (2, ) T (y; B)}
2
+ D Lo (01 (4, 2)(t — )27 (2 — ) 2, y)

=0

(27)

By Holder’s inequality we have
|Lnio (ilt, 2)(t — 2)*7 (2 — y)¥; 2, )| o8)
1 4o ; 1
< (Bmo (97 (1,2)52,9)) (Lngo ((t = 2)" "%z — )% 2,9)) 2
for n € N and i = 0,1,2. The properties of ¢; and Corollary 1 imply that
dm Lo (@} (62);2,y) = 9f(,y) =0 for i=0,1,2.  (29)
From (28), (29) and Lemma 1, we deduce that
Ly (goi(t, z)(t — .'I:)Q‘i(z - y)i;x,y) = 0gy (n“l) as N — 0o, (30)
for 2 =10,1,2. Now (25) immediately follows from (30) and (27).

Let r € N. Denoting Az; = L g and Ay, = % —y, we get from (8) and

n

(9)
: (;ngs‘] (l E) . (31)

gl n'n
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where El\? L % , 0 < s <7, are defined for Az; and Ay, ie.,

n?

s |k 5—1 i
Iy (52 ) ey T a)' (82)

mS—‘lryl n

. r42-—5
f(s) J K
xs—-iyi 1) n
n o

r4+2—3 J k
+ Z Pigs | —5 3 e (Ayk)q7
g=0

nn

where differentials g;fii)—iyf (z,y) are defined for Az; and Ay, and

Pigs(ty2) = igs(t,z;3,y) are functions belonging to the space Cpg and

« )hH(l )(pi,q,s(t,z) = ; qs(z,y) = 0. From (32) and (33) we deduce that
4 -3 T,y

425

Ik

0
42 .

+7§:¢ _j_ E (Am-)”?"”(A )P

P\ 7 Ye)

p=0

where 1, s € Cp o and « )IIII(I )wp,s(t,z) = 1, s(z,y) = 0. Consequently we
2)=3{(x,y

have
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where hy» € Coo and  lim  hy,(¢,2) = hy(z,y) = 0. Next, by elemen-
(t2)— (2,)

tary calculations, we get that

Z

(19r+23 SHQT

_._ds+pf(3/ )

pz(, p! Y ~ = (9-
(1) (§~dif(zy) | a1 (ny) | d*2f(z,y)
sl (Z (g - s)! +(r+l~s)!+(r+2——s)!>

ly)

5 g=s

S (1) o FEER (11 Y

5=0 s=0

e

g=0

a2 (2,y) [
) Z;(

It is well known that

. <’f‘+1
S
=0

for r € Ny. Consequently we have

~ (1) 'S P f () (1 o
Z( D p!(my :f(ﬂc,y)+(r+l)!d+1f(m,y

p=0
(=) (r+1)

) dr+2f(z,y).

From (31), (34), (35) and (10) we deduce that

(=1)"
(r+1)!

Ly (d/’":i;" (x,y);w,y>

Ly (dr“”f(m,y); fv,y>

Ly (fi2,y) = fl@,y) Lno(Lz,y) +

(~1)(r +1)
(r+2)!
42
+ 37 L (b (1, 2)(t — )P (2 — y)Ps 2, y)

p=0
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for n € N. Further by (10), (32) and (6) we get that

e

Ln;O dr+]f(£:« U) A, B z.y

r+1
_ r+1 0 (r4) i, N
- ZO i f:cl“f'l*iyl(x?y) X Ln;O ((t - )T Z(z - y)la l;y) (37)
=
r+1
= Z L, ?/)Tn;r-fr].*i(-'t; A) Tn;i (y; B)
i=0

and, analogously,

Ln;O dr+2f([l;’ y); A’ B; Yy

742 "9 (38)

i(ma y) Tn;r+2—z L3 A) 7 n;i(?ﬁ B)-

Pz — p)?; IB?yH
. 1
< (Lo (3, (8, 2)5 2, 1)) 2 (39)

X Lo ((t — z)20+2-P) (z =) 2,y

and by properties of functions h,,, 0 < p <7+ 2, and Corollary 1 we have
i Lo (hy (8 2);2,y) = by (2,y) = 0. (40)
From (39), (40) and Lemma 1 it results that

Linyo (hp,r(ts z)(t — 33)”2“_77(3 - Z/)p;x,y) = Ogy nT ) as m— 00, (41)

at every fixed point (z,y) € R? and for 0 < p <7 + 2.
Using (36), (37), (38) and (41) we immediately obtain the desired assertion
(24) and we complete the proof. O

4. Examples

4.1. Consider matrices A =



ON THE DEGREE OF APPROXIMATION OF FUNCTIONS 63

for z € Ry, n € N and k € Ny. By results given in [1] we see that A, B € Q
and analogously as in (8)-(10) we can define the following operators for
F€C™(R?), r €Ny, and n € N:

1. Szdsz-Mirakyan operator Lil}}(f; ) = L,{lg(f- A A, -,
2. Baskakov operator LT{L?,}(f;-,-) {2}(f B,B,-,"),
3. Szasz-Mirakyan and Baskakov operator LT{L;,}(f; L) = {3}(]‘ A B, ).

For the classical Szadz-Mirakyan and Baskakov operators the next formu-
las hold [1]

Sp(t —zi2) =0 =V, (t — 3y 2), z€Ry, mneN,
which by the above formulas and (10) yield
Lt~ zzy) =0 = Lz ys2,y)

for (z,y) € R3, n € N, i = 1,2,3. Hence Theorem 1 and Theorem 2 imply
the following corollaries.

Corollary 2. Let f € C", r € Ng. Then
lim n? (sz’l(f;m,y) —f(w,y)) =0, 1=12,3,
=300 !

at every (2,y) € R2.

Corollary 3. Let f € C%. Then
lim n (L{z}(f,m y) — f(:I;,y))

wilz)f2(z, ) + @) fp () if i=
or(2)fa (T, y) + () oo (z,y) if i =3,

at every (z,y) € R3, where ¢;(z) = L and py(z) = (Hl)

4.2. Now we shall consider continuous functions f(-,-) with partial deri-
vatives of order m, 0 <m <7, on I? = I x I, where I = [0,1] and r € Ng is
a fixed number. We define the Bernstein polynomial

By (f32,y) ZZPW :L)pnk(v)iM,

sl
7==0 k=0 5=0

(z,y) € I?, n € N, where

puta) = () F0-arh, kemo, aer,
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and d° f % % is the s-th differential of f defined by (9).

Arguing as in the proof of Theorem 1, we obtain for By,,(f) the following
inequality:
,

r 1 1
By (f;x, - , <M 2 (T)_ PR
(yr?ilél o (fi2,9) = fz,y)] < Mu(r)n 22201 Sar i T

1

for n € N, where M1(r) is a positive constant and w(g;-,-) is the modulus
of continuity of g continuous on I? (see [7]).

It is obvious that for B,.,(f;-,-) we also can derive an analogue of
Theorem 2.

Similar theorems for functions of one variable were given in [3].
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