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Banach-Stone theorems for Banach bundles

TERJE HOIM AND D. A. ROBBINS

ABSTRACT. We prove two Banach-Stone type theorems for section spaces
of real Banach bundles. The first theorem assumes that the duals of all fi-
bers are strictly convex, and the second considers disjointness-preserving
operators. In each case, the result generalizes the corresponding Banach-
Stone theorem for spaces of continuous vector-valued functions.

The classic Banach-Stone theorem has the form: let X and Y be compact
Hausdorff spaces, and let T': C(X) — C(Y) be an isometric isomorphism.
Then there is a homeomorphism ¢ : ¥ — X and a map ¢ € C(Y) with
[¥(y)] =1 for all y € Y, such that for each a € C(X) and y € Y, we have
(Ta)(y) = ¥(y)a(éd(y)). (Note that if we are speaking of real Banach spaces,
then the scalar-valued map ¢ has values +1.) Conversely, every such function
% and homeomorphism ¢ together determine an isometric isomorphism of
C(X) and C(Y).

Since the time of the first formulation of this theorem (for compact metric
spaces) by Banach [3, page 172], and its extension by Stone [17], there has
been a large literature on pairs of spaces (E,F) which have what in the
survey article [7] is termed the strong Banach-Stone property: let X and
Y be compact Hausdorff spaces, and E and F be Banach spaces such that
C(X, E) (the space of continuous E-valued functions on X) is isometrically
isomorphic to C'(Y, F') via the map T : C(X, E) — C(Y, F); then there exists
a homeomorphism ¢ : ¥ — X and a map ¢ : Y — I(E, F), the space of
isometric isomorphisms from E to F, such that ¢ is continuous in the strong
operator topology, and (To)(y) = 9 (y)[o(S(y)))-

Noting that, say, elements of C(X, F) take their values in a fixed space [,
it is reasonable to ask what might happen in a situation where continuous
vector-valued functions take their values in spaces which vary with z € X.
This vague notion is made more precise in the definition of a Banach bundle.
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In the following, X and Y will always be compact Hausdorff spaces. and
all Banach spaces will be assumed real. If 7 : £ — X (shortly, n) is a
Banach bundle ( = bundle of Banach spaces) with fibers {E; : z € X},
we will assume that for all z € X, E; # {0}. The total space &£ carries
a topology such that the relative topology on each fiber E, is its original

Banach space topology. We can regard £ as the disjoint union |J{E, :
z € X}. (Alternatively, we can think of £ as J{{z} x E; : z € X}; this
is the approach of [8], which uses fibered vector spaces.) See [8] or [14]
for details on the construction of Banach bundles; we summarize here the
most important properties for our purposes. We denote by I'(7) the space of
sections ( = continuous choice functions) o : X — &£ of the bundle 7 : £ — X;
I'(7) is a Banach C'(X)-module under the sup-norm, pointwise addition, and
pointwise multiplication of sections ¢ by elements a € C(X).

As noted in, say, [15] or [12], the intuitive point to keep in mind is that
when o € I'(w), then the values o(z) vary continuously over (possibly dif-
ferent) spaces F;. For example, for a fixed Banach space E, we can regard
C(X, E), up to isometric isomorphism, as the space of sections of the trivial
bundle p : 7 = X x E — X, where X x F is given the product topology.
Here, the total space 7 = X x E = [ J{{z} x E : z € X} can be thought
of as a union of copies of E, and an element o € C(X, E), which we usually
think of as having values which vary continuously over the fixed set E, can
be interpreted as a section in I'(p) which varies in a very nice way between
coples of E.

Given a Banach bundle 7 : £ — X, the function z + |lo(z)]| is upper
semicontinuous for each o € I'(w). If this function is continuous for each
o €T(n),wewillcall v : £ — X a continuous bundle. We say that 7 : £ — X
is separable if there exists a countable collection {o,} C I'(n) such that
{on(z)} is dense in E, for cach z € X.

In any Banach bundle 7 : £ = X, for z € X, there is an isometric injection
o ¢ B = T(r)* given by (for o € T(n)) (0, 4(f)) = (0(2), f) = {0, f 0 eva),
where ev, : I'(n) — E;, 0 — o(z), is the evaluation map at z. Moreover,
there is a map p, : I'(7)* — EJ such that p, o j, is the identity on E}; that
is, By is a retract of I'(7)*. We have ||p,|| = 1, and p, is an isometry when
restricted to j.(Ez).

Denote by H = H(n) the space Homx(I'(w), C(X)) of all C(X)-module
homomorphisms from I'(7) to C(X). As noted in [15], we can identify H

with the space of choice functions H : X — [J{EZ : z € X} such that the
function = > (o(z), H(z)) is continuous for each o € I'(x). Then H is a
Banach space under the norm ||H|| = sup{||H ()| : z € X'}. Following [10],
say that H norms n: & — X if for each z € E, C £ we have

Il = sup{|(z, H(z))| : H € H,[|H|| < 1}.
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In {10], following Definition 4.4, there is a catalogue of continuous bundles
7 which are known to be normed by #H. These include e.g. 1) the trivial
bundles p: X x E — X, where E is a Banach space and I'(p) is isometrically
isomorphic to C(X, E) (the constant maps from X to BE* will do the job);
2) bundles all of whose fibers are Hilbert spaces; 3) separable bundles; and
4) bundles whose base space X is extremally disconnected.

We say that = is strongly normed by M provided that for each z € X we
have

{H(z) : H € #, | H|| = [|H(z)||} = EZ.

The strongly normed bundles include cases 1) and 3) above.

Note that, in either event, if H € H and ¢ € I'(7), then the map z
Jx(H (x)) is weak* continuous from X to I'(m)* (because z + (o(z), H(z)) =
(0, Jo(H(z))) is in C(X) for each ¢ € I'(7)) and that if a € C(X),0 € '(n),
and fo € B}, then (a0, 5, (1)) = a(x) (0, 1o (f,))

[Historical note: Banach bundles ( = “bundles of Banach spaces”) and

their section spaces have been around under a variety of labels for some
time, to a variety of ends. The terminology includes “upper semicontinuous
function modules” [5]; “Banach function modules” [4]; and “bundles of to-
pological vector spaces” [8]. A more categorical discussion of the matter
can be found in e.g. [11], and the paper [10] and some of its references are
also relevant. Indeed, the basic ideas go back as far as 1949 [9] and 1951
[13], under the terminology “continuous sums” (of Banach spaces). The tie
between Banach bundles and function modules can be summarized by the
following: the section space of any Banach bundle is a function module,
and, conversely, any Banach €' (X)-module M has a norm-decreasing repre-
sentation as a space of sections of a certain “canonical” (see [14]) Banach
bundle; if M is C(X)-locally convex (sce [11]), this representation is an iso-
metric isomorphism. The connections between and among Banach bundles,
function modules and continuous products (sums) of Banach spaces are also
elucidated and exploited in [6].]

In all that follows, unless explicitly stated otherwise, let 7 : &€ — X and
£:F — Y be continuous bundles of (real) Banach spaces over the compact
Hausdorff spaces X and Y. Suppose that T : I(m) — I'(¢) is an isometric
isomorphism. We seek analogues of the Banach-Stone theorem appropriate
for section spaces. The difficulty in finding them is a result of there not
being a complete description of the dual spaces I'(m)*. However, if we think
of C(X) as being “scalars” for I'(r), then the existence of a norming ()
provides a partially satisfactory replacement.

We note briefly that without at least some restrictions on our bundles,
it is almost impossible to say anything. For example, let X = [0,1], and
let Y = [0,1] x [0,1], and let X; and ¥; be X and Y with their discrete
topologies. If m : £ — X and p : F — Y are the canonical bundles (as
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described in [14]) of the spaces co(X4) and ¢o(Yy), viewed as modules over
C(X) and C(Y) respectively, then I'(m) =~ ¢p(X4) =~ co(Yy) =~ I'(p), but
certainly X and Y are not homeomorphic.

As in the introduction, for Banach spaces E and F, denote by I(E, F)
the space of isometric isomorphisms 1T' : E — F. Given the bundles =
€ - X and £ : F — Y, and a homeomorphism ¢ : ¥ — X, we can endow

U{I(Egyy, Fy) : y € Y}, the disjoint union of the I{Ey,, Fy), with the weak
topology generated by Y, ¢, and I'(w). In this topology, we have Sy, — Sy
if and only if yo — y in Y and Sy, [0(d(ya))] = Sylo(¢(y))] in the bundle
topology of ¢ for each ¢ € I'(w).

It is easy to write down a condition which is sufficient to generate an
isometric isomorphism T": I'(n) — I'(€).

Proposition 1. Let 7 : £ - X and £ : F — Y be Banach bundles,
let ¢ Y — X be a homeomorphism, and suppose there ezists a map ¢ :

Y = U{I(Eyy), Fy) : y € Y} which is continuous with respect to the weak
topology generated by Y, ¢, and I'(w). Then the map T : T'(xw) — I'(¢) defined
by

(To)(y) = b{y)lo(e(y))]

i8 an isometric isomorphism.

Proof. Since each 9(y) is an isometric isomorphism, and since ¢ is a ho-
meomorphism, it is easy to check that ||To|| = |lo]|. Clearly T is linear.
That To € T'(§) whenever o € I'(n) follows from the continuity of ¢, o, and
. Finally, note that T'(I'(n)) is a (closed) C(Y )-submodule of I'(¢) : for, if
b e C(Y), then for some a € C(X) we have b = a o ¢, by the scalar-valued
Banach-Stone theorem. Thus, for o € I'(7), we have

(b-To)y) = bly)- (To)(y)
a(d(y)) - ¢ ()[o((y))]
= P(y)[(ao)(d(y))],

and since ac € I'(n), we have b-T'o € T'(£). Tt is easily checked that {(T'o)(y) :
o € I'(m)} = F, for each y € Y, and so by the bundle version of the Stone-

Weierstrass Theorem (see e.g. [8]), since T'(I'(w)) is dense in I'(€), it is all of
(). 0

We prove the converse for two cases of isometric isomorphisms T : I'(7) —
I'(£).

The first is a special case of [2, Theorem 2.8]. Denote by extr(Z) the
extreme points of the unit ball of the Banach space Z. Using our language of
bundles and section spaces, let 7 : £ — X and € : F — Y be Banach bundles
with all fibers non-zero such that F, has a trivial centralizer foreach y € Y,
and let T : T(n) — T'(£) be an isomorphism such that T*(extr(T'(£)*) C
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extr(D'(m)*). Then there is a function ¢ : ¥ — X onto a dense subset of X

andamap v : Y — (J{Z, :y € Y} (where Zy is the family of operators from
E4y) to Fy which take extreme points of the unit ball in Ey(y) to extreme
points in the unit ball of F,) such that

(To)(y) = p(y)[o(b(y))]
for all o € T'(m). Since a strictly convex space has a trivial centralizer, it
follows in particular that if all Fy are strictly convex, then the equality
displayed above holds.

This result is also related to that of [16]: let & and F be Banach spaces
such that both E* and F* are strictly convex; that is, such that each point
of the unit spheres Sp-, Sp+ is an extreme point of the respective unit balls
B+, Bp-. Then (E, F) satisfies the strong Banach-Stone property.

The following remark is known, and the result is crucial for the succeeding
development.

Lemma 2 (see [5] and [4], Theorem 4.5). Let 7w : £ — X be any Banach
bundle. Then g € extr(T(n)*) if and only if there exists some = € X and
Jz € extr(E}) such that g = f, 0 evy = jo(fz).

The next lemmas are analogous to those in [16].

Let 7 : £ — X be a bundle such that E is strictly convex for each z € X
for convenience we will call w a dual strictly convez bundle. In Lemma 3
through Lemma 6, T : T'(w) — T'(¢) will denote an isometric isomorphism
between the section spaces of the dual strictly convex bundles 7 : & — X
and £ : F —Y.

Lemma 3. Letw: & = X and £ : F — Y be dual strictly convez bundles.
Gwen y € Y and gy € Fy, there is an z € X and f, € E) such that

T (jy(gy)) = J:r(f'c)

Proof. Since T' is an isometric isomorphism, so is T* : I'(€)* — I'(w)*; then
T™(extr(T'(£)*) C extr(D(m)*). If gy = 0, we are done: choose any z € X,
and let f, = 0. Otherwise, g,/ |lgy]| has norm 1, and hence is an extreme
point of BFy*- Thus, 7% (jy(gy/ llgyll)) = 1/ llgyll T*(3y(gy)) = ju(fz) for some
z € X and f; € extr(E}). Multiply through by ||g,]| . O

Lemma 4. Let 7 : £ — X and £ : F — Y be dual strictly convex
bundles. Let y € Y, gy,g; # 0 € Ej. Denote T*(Gy(gy)) = jul(fz) and
T*(jy(gy)) = Ju (for). Then @ = 2.

Proof. Suppose that z # z'. We have T*(jy(gy + g9y)) = T*(jy(gy)) +
Tf"(jy(g;)) = Jo(fz) + jur ;,) = fan (fg’c',,) for some 2" € X anq for € bm/'; by
Lemma 3. If, say, 2" = z, then we can write 0 € I'(7)* as a linear combina-

tion of elements from j,» (EY,) = jz(Ej) and ju (E},); this is a contradiction,

i8
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since spaces of the form {j(E}) : € X} are linearly independent in I'(7)*
(because o(z) and o(z') can be assigned arbitrarily). Similarly, z” # 2/, and
so all three points are distinct. But then the same contradiction to linear in-
dependence occurs when we look at the equation j(fe) +jur (fL) = Jur (fin)-
Hence, z = 2. O

Note that, as a result of Lemmas 3 and 4, given y € Y, there is a well-
defined x € X such that T*(jy (F))) C j.(£;). Write z = ¢(y).

Lemma 5. Let m: & = X and £ : F — Y be dual strictly convex bundles,
and let y € Y be fized. Then the map ¢(y)* : Fy — B3y W(y) (gy) =

Pa) (T (Jy(gy)); is an isometric isomorphism, and the map ¢ : Y — X,

?

described above, 15 a bijection.

Proof. Fix y. As defined above, we have ¥(y)* = py() o T* o jy, where
Pg(y) 18 the retraction map mentioned in the discussion preceding Lemma
1. Since both j, and T are isometries, and since pgy(, is a retract of jy(y),
it follows easily that ¢ (y)* is an isometry; evidently it is also linear. Note
now that if ¢ (y)*(gy) = je(fz) and ¥(y')* (gy) = jo(fz), then y' = y; to see
this, work with (7%)~! : I'(m)* — T(£)* as in Lemma 3. (Note that this
is tantamount to saying that ¢ : ¥ — X is injective.) If f, € E}, then
there exists a y € Y such that (7%)7'(jz(fs)) = jy(gy), and so we have
V() (9y) = Po) [T (Jy(gy))] = fz. This shows both that (y)* is surjective
and that ¢ is surjective. a

It now follows that for each y € Y there is an isometric isomorphism
Y(y) : Egy) — Fy, whose adjoint is the map (y)* mentioned above. Let

gy € Fy and o € I'(7) be arbitrary. We have

(To) (y), 9y> {0, (Jy(%)))
(U (@(W)): Py (T (y(9y))
(o (b)), ¥ (y)*(9y))
{((W)lo(o¥))], 9y) »

ie.,
(To)(y) = p(y)lo(dH)]
Lemma 6. Let 7m:E — X and € : F — Y be dual strictly convex bundles,

and suppose that the bundle ¢ is normed by H(€). Then the map ¢:Y — X
as giwen above is a homeomorphism.

Proof. We have already noted that ¢ is bijective. Since X and Y are
compact Hausdorff, we need only show that ¢ is continuous, and to do this it
will suffice to show that whenever yo, — ¥ in Y, we have a(zo) = a(é(ya)) —
a(z) = a(é(y)) in R for any a € C(X). (It is here that our proof diverges
from that of [16].)
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Let a € C(X), let o € I'(m) be such that (To)(y) # 0, and choose H €
H(¢) such that (To)(y), H(y)) = (T'o,5,(H(y))) # 0. From earlier remarks,
we have gy, ((ya)) = jy, (H(y)) weak® in ()", Writing T*(j, (H(y))) =
Jz(fz), etc., we have

(T(a0), jy, (H(y,))) (00, T (jy, (H(ya))))

U'(xa) < G:jza (fx,:))

a(za) (Ta, jy, (H (4, )))

(T'(a0), jy(H(y)))

a(z)(To, j,(H(y))),

where the last equality follows as in the second row of the display. Since

(10, yo (H (ya))) — (To, Jy(H(y))) # 0, we must have a(zq) = a(z). O

In summary, we have the following, which as noted earlier is a special case
of [2, Theorem 2.8]:

g

Proposition 7. : Suppose that = : € — X and § : F — Y are dual
strictly convex bundles of Banach spaces. Suppose also that & is normed by
H(E). LetT : T(m) — I'(€) be an isometric isomorphism. Then there exist a
homeomorphism ¢ : Y — X and isometric isomorphisms P(y) : E¢(y) - I,
such that for each o € T(n) we have

(To)(y) = p(y)o(¢(y)].

Moreover, the map v : Y — | {1( By, Fy) : y € Y} ds conlinuous in the
weak topology generated by Y, ¢, and ().

In the second case we consider, we can eliminate restrictions on the geo-
metry of the duals of the fibers of the bundles. To do this, we will make an
assumption about the nature of the isometric isomorphism T : I'(m) — I'(¢).
Following [7], we will say that an operator T : [(w) — T(€) is disjoininess-
preserving provided that whenever o, 7 € I'(w) with lo(@)|llIm(z)]| = 0 for all
z € X, then |[(To)(y)|l (T7) ()| = 0 for all y € V. (Disjointness-preserving
operators in the context of vector lattices have been studied, for instance, in

[1].)

Lemma 8. Suppose that 7 : & — X and §: F =Y are Banach bundles
over the compact Hausdorff spaces X and Y, and let T' - I(m) = T'() be a
disjoininess-preserving isometric isomorphism. Let y € Y. Then there exists
a well-defined = = ¢(y) € X such that T*(jy(extr(Fy)))) C jo(extr(EL)).

Proof. As before, T* takes extr(I'(€)*) into extr(I'(n)*). Thus, for y €
Y and gy € extr(Fy), there exist z € X and f, € extr(E?) such that
T*(4y(9y)) = j=(fs). Suppose now that T*(jy(gy))' = J.(fz) alnd that
T*(5y(9y)) = ju (1), where gy, g} € extr(F). We claim that z = o',

If not, there are disjoint open neighborhoods V and V' of z and z’, res-
pectively, and sections 0,7 € (), with arbitrarily chosen values at z and
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z', respectively, such that o is supported on V and 7 is supported on V',
Since o and 7 have disjoint supports, so do To and T'r. Then we have
T(o +7),4y(9y) +dy(9y)) = (o +7T*(Gylgy) + dy(gy))
iz(fa) +J
(0(a), fa) + (o
+(r(2), £2) +<»r<x
(o(2), fa) + (Uy

because of our assumptions about the supports of ¢ and 7. On the other
hand,

T'(o+7), Jy (g9y) + Jy(g;) = ((To)(y) + (T7)(y), gy + (]7
(To)(y)s gy + 9y ) (say)
(

0, T*(5y(9y)) + T* 5y (9,))

) (4,
<U Jo(fx) + Jar f;;/)>
( )>f'c> < (-’If"), f;;)
(o(2), fa)

again using the disjointness of the supports of o and 7, and hence of T'o and
Tr. It follows that

7(z"), for ) = 0.

But since 7(z') can be chosen arbitrarily, this forces f,, = 0, a contradiction,

since f;., € extr(E}). 0

Lemma 9. Let T : I'(r) — I'(§) be a disjointness-preserving isometric
isomorphism. Then the map ¢ : Y — X established in Lemma &8 is a bijec-
tion. Moreover, for each y € Y there 1s an 1sometric isomorphism of Ey ()
and Fy

Proof. To show that ¢ : Y — X is a bijection, we can work with (7*)~! to
establish that there is a map ¢’ : X — Y such that (T*)~!(jz(extr(EL)))
extr(FF o (s )) and such that ¢’ o ¢ is the identity on Y’; this is the same
argument as used in Lemma 5. It is easy to check that, say, jy(F;) is
weak* closed in I'(€)* for each y € Y; this, together with the fact that the
weak* closed span of extr(Fy) is all of F is enough to show that the norm-

continuous map T™* takes j J(Fy) to ]¢(y)(E;(y )) isometrically; (7%)~! does
likewise. This establishes an isometric isomorphism t(y)* : Fy — E;;(y), and
hence an isometric isomorphism t(y) : Egq,y — Fy. O
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It then follows, as in the earlier discussion, that for each o € I'(n), we
have

(To)(y) = v(y)[o(8(y)]-
If we now add the condition that ¢ be normed by #(¢), we obtain the
analogue to Lemma 6.

Lemma 10. Suppose that 7 : £ — X and & © F — Y are bundles of
Banach spaces, and that ¢ is normed by H(E). Suppose that T : I'(w) — r')
18 a disjointness-preserm’ng isometric isomorphism, and let p:Y = X be
the bijection established in Lemma 9. Then ¢ is a homeomorphism.

Proof. This follows in exactly the same fashion as in Lemma 6. 0
Thus, we can summarize our results on disjointness-preserving operators.

Proposition 11. Suppose that 7 : & — X and £:F =Y are continuous
bundles of real Banach spaces, and that £ is normed by H(€). Suppose that
T:T(r) = T(€) is a disjointness-preserving isometric isomorphism. Then

there is a homeomorphism ¢ 1 Y — X and a map Y :Y — U{I(E¢(y), F)):
y € Y}, the disjoint union of the spaces of isometric wsomorphisms from
Eyyy to By, such that for each o € P(r) and y €Y we have

(To)(y) = p(y)[o(p(y)].

Moreover, the map P is continuous in the weak topology generated by Y, ¢,
and I'(r).

Proof. Exactly as before. | 4

We note that in both cases under consideration, which are summarized in
Propositions 7 and 11, the relevant isometries T are represented as weighted
composition operators. In particular, the case when T is a disjointness-
preserving operator has precursors going back to [1].

In both Propositions 7 and 11, the weak topology on U{[(Ecb(y), E):ye
Y} determined by Y, ¢, and I'(m) has the property that, for fixed y €Y, the
relative topology on I (E¢(y), Fy) is the strong operator topology. In the case
where both 7 : X x F — X and £:Y X F —Y are trivial bundles, with E*
and F* both strictly convex, and section spaces isometrically isomorphic to
C(X, E) and C(X, F), we not surprisingly obtain the result of [16).

Note that in Lemmas 6 and 10, we make no assumption on whether 7 is
normed by H(r). It turns out that this follows automatically once we can
establish the existence of the homeomorphism ¢ : ¥ — X and the map

Y — U{I(E¢(y),l7;/) ryevYlh

Proposition 12. Suppose that 7: £ — X and §:F =Y are continuous
real bundles, and suppose that § is normed (strongly normed) by H(E). Sup-

19
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pose also that there exist an isometric isomorphism T : I'(n) — T'(¢), a

homeomorphism ¢ : Y — X, and a map ¥ Y — U{I(Eyy), Fy) 1 v €
Y}, continuous in the weak topology generated by Y, ¢, and I'(n) such that
(To)(y) = ¥(y)|o(d(y)] for each o € T'(n). Then H(w) is isometrically iso-
morphic to H(E), and 7 is normed (strongly normed) by H(x).

Proof. Let H € H(£). Let o € I'(n), and define a choice function A(H) :

X = W{E; : @ € X} by (o(2), MH)(2)) = ((To) (¢7" (), H(¢™(2))) =
(o(z),(y)* (3, (H (y)))), where y = ¢ (z). Since ¢! is continuous,
and since y — {((T'0)(y), H(y)) is continuous on Y, it follows that z
(o(x), \(H)(z)) is continuous on X. Since ¢ was arbitrary, we have
AMH) € H(r). Since E, is isometrically isomorphic to Fy-1(,y, it follows
that ||H (¢! (2))|| = IA(H) ()], and hence that [|A(H)|| = |H|| . Evidently,
H > X(H) is linear, and it is straightforward to check that X is injective. If

we then define, for H' € H(n), u(H') : Y — U{Fy : y € Y} in an analogous
fashion, we see that p o X is the identity on H (). Finally, if z € B, C £, and
if we choose o € I'(7) such that o(z) = z, then

lzll = o) = Jo(@@)ll = l¢w)ebw)l
1(To) (y)|
sup{|((To) (¢~ (), H(¢™ (2)))] : H € H(&). [|H]| <1}
sup{|(o(x), \(H)(2))] : MH) € H(x), |AH)] < 1},

so that H(w) is norming. To show that H(m) is strongly norming if H(£)
is strongly norming, we need only note the isometric isomorphisms of the
Eg,) and Fy and apply the definition of strongly norming. O

Given the existence of the maps ¢ and ¥ as in the statement of Proposition
12, we can also establish one more relationship. Recall from [10] that the
space 'y, () of weakly continuous sections of the continuously normed bundle

7 : & — X is defined by o € Ty(n) ifand only if 0 : X — J{Ey : 2 € X}
is a choice function such that the function z — (o (z), H(z)) is in C(X) for
all H € H(w). It is shown in [15] that ', (n) is a Banach space under the
sup-norm. We then have

Proposition 13. Let 7 : £ — X and € : F — Y be bundles satisfying
the conditions of Proposition 12. Then I'y(7) is isometrically isomorphic to

[y (6).

Proof. 1t is enough to recall from Proposition 4 of [15] that () is dense
in [,y (w) in the topology defined by 7, — 7 if and only if the functions z
(T(z), H(x)) converge uniformly on X to the function « — (7(z), H(z)) for
all H € H(r). O
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‘That is, under the conditions of Proposition 12, an isometric isomorphism
of I'(r) and I'(€) induces an isometric isomorphism of the corresponding
spaces of weakly continuous sections.

Propositions 12 and 13 yield two immediate corollaries in summary.

Corollary 14. Let 7 : £ = X and € : F - Y be dual strictly convez
bundles such that & is normed by H(E), and suppose that there exists some
isometric isomorphism T : T'(w) —» I'(€). Then  is normed by H(r), H(r)
and H (&) are isometrically isomorphic, and Ty (m) and Iw(€) are isometri-
cally isomorphic.

Corollary 15. Suppose that m: & — X and £ : F — Y are bundles such
that & is normed by H(E), and suppose that there ezists some disjointness-
preserving isomelric isomorphism T : T(n) — T(€). Then w is normed by
H(m), H(n) and H(E) are isometrically isomorphic, and Ty(m) and Ty (€)
are isometrically isomorphic.

Finally, there is a weaker topology that we can put on |J{7 (Bgy, Fy) ry €
Y} when £ is normed by 7(¢), namely the topology generated by Y, ¢, I'(n),

and (). In this topology, we have Sy, — S, in U{I(Eyy), Fy) :y € Y}
if and only if yo ~ y and (S, (7(#(ya)), H(va)) — (Sy(o(d(1)), H(y))
in R for each 0 € I'(r) and H € H(£). As in Proposition 1, it is then
straightforward to describe general sufficient conditions for T'y, () and Iy (€)
to be isometrically isomorphic.

Proposition 16. Let 7 : £ -+ X and £ : F — Y be any continuous real
bundles which are normed by H(r) and H(£). Suppose also that T : ['(1r) —
I'(§) and S: H(x) — H(E) are isometric isomorphisms and thal ¢:Y — X

is @ homeomorphism. Assume further that ¥ :Y — Ul By, Fy) ty €Y}
is a choice function which is continuous with respect to the topology generated
by Y,$,I'(m), and H(€), and that for all 0 € T(n), H € H(x), andy € Y we
have ((T'o)(y), S(H)(y)) = (o(p(v)), H(p(y))). Then there is an isometric
isomorphism T' : Ty (1) — Ty (€) such that

(T'o)(y) = ¥(y)lo(b(y))]
for each o € Ty ().

Now, if we are given normed (or strongly normed) bundles 7 : & — X
and £ : F — Y, and an isometric isomorphism T : Ty (m) — T'y(€), it
would be pleasant to arrive at results, even in special cases, which serve as
converses. We are unable to do this; the difficulties stem from not being able
to completely identify the extreme points in, say, Iy (7)*.
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