Uniform factorization for compact sets of operators acting from a Banach space to its dual space

KRISTEL MIKKOR AND EVE OJA

ABSTRACT. Let X be a Banach space. We prove a uniform factorization result that describes the factorization of compact sets of compact and weakly compact operators acting from X to X^* via Hölder continuous homeomorphisms having Lipschitz continuous inverses. This yields a similar factorization result for compact sets of 2-homogeneous polynomials.

1. Introduction and the main result

Let X and Y be Banach spaces. We denote by $\mathcal{L}(X,Y)$ the Banach space of all continuous linear operators from X to Y and by $\mathcal{K}(X,Y)$ and $\mathcal{W}(X,Y)$ its subspaces of compact and weakly compact operators.

Our main result relies on the following isometric version of the famous Davis-Figiel-Johnson-Pelczyński factorization construction [DFJP] due to Lima, Nygaard, and Oja [LNO].

Let a be the unique solution of the equation

$$\sum_{n=1}^{\infty} \frac{a^n}{(a^n+1)^2} = 1, \ a > 1.$$

Let X be a Banach space and let K be a closed absolutely convex subset of B_X , the closed unit ball of X. For each $n \in \mathbb{N}$, put $B_n = a^{n/2}K + a^{-n/2}B_X$.

Received December 6, 2005.

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary 46B04, 46B20, 46B28, 46B50, 47A68, 47B07; Secondary 46B25.

Key words and phrases. Banach spaces, compact subsets of weakly compact operators, uniform factorization, uniform compact factorization, 2-homogeneous polynomials.

This research was partially supported by Estonian Science Foundation Grant 5704.

The gauge of B_n gives an equivalent norm $\|\cdot\|_n$ on X. Set

$$||x||_K = \Big(\sum_{n=1}^{\infty} ||x||_n^2\Big)^{1/2},$$

define $X_K = \{x \in X : ||x||_K < \infty\}$, and let $J_K : X_K \to X$ denote the identity embedding. Then $X_K = (X_K, ||\cdot||_K)$ is a Banach space and $||J_K|| \le 1$. Moreover X_K is reflexive if and only if K is weakly compact, and J_K is compact if and only if K is compact; in this case X_K is separable.

For a Banach space X, let us consider the following infinite direct sums in the sense of ℓ_2 :

$$W_X = \left(\sum_K (X^*)_K^*\right)_2 \text{ and } Z_X = \left(\sum_L (X^*)_L^*\right)_2,$$

where K and L run, respectively, through the weakly compact and compact absolutely convex subsets of B_{X^*} . The spaces W_X and Z_X are reflexive. In Theorem 1 below, which is our main result, they will, respectively, serve as universal factorization spaces for all compact sets of the spaces $\mathcal{W}(X, X^*)$ and $\mathcal{K}(X, X^*)$.

Theorem 1. Let X be a Banach space. Let $W = W_X$ and $Z = Z_X$. Then, for every compact subset C of $\mathcal{W}(X,X^*)$, there exist norm one operators $u,v \in \mathcal{W}(X,W)$, and a linear mapping $\Phi: \operatorname{span} \mathcal{C} \to \mathcal{W}(W,W^*)$ which preserves finite rank and compact operators such that $S = v^* \circ \Phi(S) \circ u$, for all $S \in \operatorname{span} \mathcal{C}$. The mapping Φ restricted to $\mathcal{C} \cup \{0\}$ is a homeomorphism satisfying

$$||S - T|| \le ||\Phi(S) - \Phi(T)||$$

$$\leq \min \Big\{ \mathrm{d}, \mathrm{d}^{3/4} \Big(\frac{1}{4} + \frac{1}{\ln a} \Big)^{3/4} \|S - T\|^{1/4} \Big\}, \ S, T \in \mathcal{C} \cup \{0\},$$

where $d = \text{diam } C \cup \{0\}$. In particular, if $-S \in C$ for some $S \in C$, then

$$\|\Phi(S)\| \leq \min\Big\{\frac{\mathrm{d}}{2}, \Big(\frac{\mathrm{d}}{2}\Big)^{3/4} \Big(\frac{1}{4} + \frac{1}{\ln a}\Big)^{3/4} \|S\|^{1/4}\Big\}.$$

Moreover, if C is contained in $K(X, X^*)$, then W is everywhere replaced by Z, and u and v are compact operators.

Remark 1. By [LNO] a "good" estimate of a is $\exp(4/9)$. Hence

$$\frac{1}{4} + \frac{1}{\ln a} \approx \frac{5}{2}.$$

Remark 2. Observe that diam $\Phi(\mathcal{C} \cup \{0\}) = \text{diam } \mathcal{C} \cup \{0\}$ in Theorem 1.

The proof of Theorem 1 is contained in Section 2. It uses techniques from the recent paper [MO]. In Section 3, Theorem 1 is applied to get a similar factorization result for compact sets of 2-homogeneous polynomials.

Our notation is rather standard. A Banach space X will always be regarded as a subspace of its bidual X^{**} under the canonical embedding. The closure of a set $A \subset X$ is denoted by \overline{A} . The linear span of A is denoted by span A.

2. Proof of Theorem 1

The proof of Theorem 1 uses Lemmas 2 and 3 below. These lemmas are, respectively, immediate consequences of Lemmas 4 and 5 of [MO] (because $\mathcal{W}(X,Y)$ and $\mathcal{K}(X,Y)$ are canonically isometrically isomorphic (under the mapping $S \to S^{**}$) with the subspaces of the weak*-weak continuous operators of $\mathcal{W}(X^{**},Y)$ and $\mathcal{K}(X^{**},Y)$, respectively).

Lemma 2. Let X and Y be Banach spaces. Let C be a compact subset of $W(Y, X^*)$. Then there exist a weakly compact absolutely convex subset K of B_{X^*} , which is compact whenever C is contained in $K(Y, X^*)$, and a linear mapping $\Phi : \operatorname{span} C \to W(Y, (X^*)_K)$ such that $S = J_K \circ \Phi(S)$, for all $S \in \operatorname{span} C$, and $\|J_K\| = 1$. Moreover, if $S \in \operatorname{span} C$, then

(i) S has finite rank if and only if $\Phi(S)$ has finite rank,

(ii) S is compact if and only if $\Phi(S)$ is compact. The mapping Φ restricted to $\mathcal{C} \cup \{0\}$ is a homeomorphism satisfying

$$||S-T|| \le ||\Phi(S) - \Phi(T)||$$

$$\leq \min \Big\{ \mathrm{d}, \mathrm{d}^{1/2} \Big(\frac{1}{4} + \frac{1}{\ln a} \Big)^{1/2} \| S - T \|^{1/2} \Big\}, \ S, T \in \mathcal{C} \cup \{0\},$$

where $d = diam \ \mathcal{C} \cup \{0\}$; in particular, if $-S \in \mathcal{C}$ for some $S \in \mathcal{C}$, then

$$\|\Phi(S)\| \le \min \left\{ \frac{\mathrm{d}}{2}, \left(\frac{\mathrm{d}}{2}\right)^{1/2} \left(\frac{1}{4} + \frac{1}{\ln a}\right)^{1/2} \|S\|^{1/2} \right\}.$$

Lemma 3. Let X be a Banach space. Let C be a compact subset of $\mathcal{W}(X,X^*)$. Then there exist a weakly compact absolutely convex subset K of B_{X^*} , a norm one operator $J \in \mathcal{W}(X,(X^*)_K^*)$, and a linear mapping Φ : span $C \to \mathcal{W}((X^*)_K^*,X^*)$ satisfying conditions (i) and (ii) of Lemma 2 such that $S = \Phi(S) \circ J$, for all $S \in \text{span } C$. Moreover, if C is contained in $K(X,X^*)$, then K is compact and $J \in K(X,(X^*)_K^*)$. The mapping Φ restricted to $C \cup \{0\}$ is a homeomorphism satisfying the conclusions of Lemma 2.

Proof of Theorem 1. Let $K \subset B_{X^*}$, $J \in \mathcal{W}(X, (X^*)_K^*)$, and $\varphi : \operatorname{span} \mathcal{C} \to \mathcal{W}((X^*)_K^*, X^*)$, respectively, be the weakly compact absolutely convex subset, the norm one operator, and the linear mapping given by Lemma 3.

Since $\varphi(\mathcal{C})$ is a compact subset of $\mathcal{W}((X^*)_K^*, X^*)$, we can apply Lemma 2. Let $L \subset B_{X^*}$ and $\psi : \operatorname{span} \varphi(\mathcal{C}) \to \mathcal{W}((X^*)_K^*, (X^*)_L)$, respectively, be the weakly compact subset and the linear mapping given by Lemma 2.

Let $I_K: (X^*)_K^* \to W$ and $I_L: (X^*)_L^* \to W$ denote the natural norm one embeddings, and let $P_K: W \to (X^*)_K^*$ and $P_L: W \to (X^*)_L^*$ denote the natural norm one projections. It is straightforward to verify (observing that diam $\varphi(\mathcal{C} \cup \{0\}) = d$) that the mappings $u = I_K \circ J$, Φ , $v = I_L \circ J_L^*|_X$, and Φ defined by $\Phi(S) = P_L^* \circ \psi(\varphi(S)) \circ P_K$, $S \in \text{span } \mathcal{C}$, have desired properties. In particular, for all $S \in \text{span } \mathcal{C}$,

$$S = \varphi(S) \circ J = J_L \circ \psi(\varphi(S)) \circ J$$

$$= J_L \circ (P_L \circ I_L)^* \circ \psi(\varphi(S)) \circ P_K \circ I_K \circ J$$

$$= J_L \circ I_L^* \circ P_L^* \circ \psi(\varphi(S)) \circ P_K \circ u$$

$$= v^* \circ \Phi(S) \circ u,$$

and therefore

$$||S - T|| \le ||\Phi(S) - \Phi(T)||, S, T \in \mathcal{C} \cup \{0\}.$$

The "moreover" part uses that φ and ψ preserve compact operators. It also uses that K is a compact set and $J \in \mathcal{K}(X, (X^*)_K^*)$ whenever $\mathcal{C} \subset \mathcal{K}(X, X^*)$ (see Lemma 3) and that, in this case, $\varphi(\mathcal{C})$ is a compact subset of $\mathcal{K}((X^*)_K^*, X^*)$, implying (see Lemma 2) the compacity of the set L and operator J_L .

3. Uniform factorization for compact sets of 2-homogeneous polynomials

Let us point out the following immediate consequence of Theorem 1.

Corollary 4. Let X be a Banach space and let $Z = Z_X$. Then, for every compact subset C of $K(X, X^*)$, there exist norm one operators $u, v \in K(X, Z)$ and a linear mapping Φ : span $C \to K(Z, Z^*)$ such that $S = v^* \circ \Phi(S) \circ u$, for all $S \in \text{span } C$. The mapping Φ restricted to $C \cup \{0\}$ is a homeomorphism satisfying the conclusions of Theorem 1.

We will apply Corollary 4 to 2-homogeneous polynomials on a Banach space X.

Let $\mathcal{L}(^nX)$ denote the Banach space of all continuous *n*-linear forms on X and let $\mathcal{L}^s(^nX)$ denote its subspace of symmetric *n*-linear forms. Denote by $s: \mathcal{L}(^nX) \to \mathcal{L}^s(^nX)$ the symmetrization operator and recall that s is a linear norm one projection onto $\mathcal{L}^s(^nX)$.

Let $\mathcal{P}(^{n}X)$ denote the Banach space of all continuous *n*-homogeneous polynomials on X. Then for each $P \in \mathcal{P}(^{n}X)$ there is a unique $A_{P} \in$

 $\mathcal{L}^s(^nX)$ satisfying $P(x) = A_P(x, \dots, x)$ for each $x \in X$. The correspondence $P \to A_P$ is an isomorphism between $\mathcal{P}(^nX)$ and $\mathcal{L}^s(^nX)$ satisfying

$$||P|| \le ||A_P|| \le \frac{n^n}{n!}||P||, \ P \in \mathcal{P}(^nX),$$

(see, e.g., [D, p. 5, Corollary 1.6 and Theorem 1.7]).

Recall that $P \in \mathcal{P}(^nX)$ is weakly uniformly continuous on the closed unit ball B_X of X if for each $\epsilon > 0$ there are $x_1^*, \ldots, x_n^* \in X^*$ and $\delta > 0$ such that if $x, y \in B_X$, $|x_i^*(x-y)| < \delta$ for $i = 1, \ldots, n$, then $|P(x) - P(y)| < \epsilon$. Let $\mathcal{P}_{wu}(^nX)$ denote the subspace of $\mathcal{P}(^nX)$ consisting of the polynomials that are weakly uniformly continuous on B_X . The corresponding subspace of $\mathcal{L}^s(^nX)$ is denoted by $\mathcal{L}^s_{wu}(^nX)$. Notice that $\mathcal{P}_{wu}(^nX)$, with the norm induced from $\mathcal{P}(^nX)$, is a Banach space (see [AP]).

For each $P \in \mathcal{P}(^{n}X)$ there is a linear operator $T_{P}: X \to \mathcal{L}^{s}(^{n-1}X)$ defined by $(T_{P}x_{1})(x_{2},...,x_{n}) = A_{P}(x_{1},x_{2},...,x_{n})$. Clearly, the correspondence $A_{P} \to T_{P}$ is a linear isometry. According to [AP], $P \in \mathcal{P}_{wu}(^{n}X)$ if and only if $T_{P} \in \mathcal{K}(X,\mathcal{L}^{s}(^{n-1}X))$. Moreover, if $P \in \mathcal{P}_{wu}(^{n}X)$, then $T_{P} \in \mathcal{K}(X,\mathcal{L}^{s}_{wu}(^{n-1}X))$.

In this paper we shall be interested in the case n=2. In this case $\mathcal{L}^s_{wu}(^1X)=\mathcal{L}^s(^1X)=X^*$ and therefore $\mathcal{K}(X,\mathcal{L}^s_{wu}(^1X))=\mathcal{K}(X,\mathcal{L}^s(^1X))=\mathcal{K}(X,X^*)$. This enables us to apply Corollary 4 to get the following uniform factorization result for compact sets of 2-homogeneous polynomials. Recall that

$$s(A)(x_1, x_2) = \frac{1}{2} \Big(A(x_1, x_2) + A(x_2, x_1) \Big), \ x_1, x_2 \in X, \ A \in \mathcal{L}(^2X).$$

Theorem 5. Let X be a Banach space and let $Z = Z_X$. Then, for every compact subset C of $\mathcal{P}_{wu}(^2X)$, there exist norm one operators $u, v \in \mathcal{K}(X, Z)$, and linear mappings $\Psi : \operatorname{span} C \to \mathcal{P}_{wu}(^2Z)$ and $\psi : \operatorname{span} C \to \mathcal{L}(^2Z)$ such that, for all $P \in \operatorname{span} C$,

$$P(x) = \psi(P)(ux, vx), \ x \in X,$$

and

$$s(\psi(P)) = A_{\Psi(P)}.$$

The mappings Ψ and ψ restricted to $\mathcal{C} \cup \{0\}$ satisfy

$$\max \left\{ \|P - Q\|, \|\Psi(P) - \Psi(Q)\| \right\} \le \|\psi(P) - \psi(Q)\|$$

$$\leq 2 \min \Big\{ \mathrm{d}, \mathrm{d}^{3/4} \Big(\frac{1}{4} + \frac{1}{\ln a} \Big)^{3/4} \| P - Q \|^{1/4} \Big\}, \ P, Q \in \mathcal{C} \cup \{0\},$$

where $d = diam \ \mathcal{C} \cup \{0\}$. In particular, if $-P \in \mathcal{C}$ for some $P \in \mathcal{C}$, then

$$\|\Psi(P)\| \le \|\psi(P)\| \le \min\left\{d, 2^{1/4}d^{3/4}\left(\frac{1}{4} + \frac{1}{\ln a}\right)^{3/4}\|P\|^{1/4}\right\}.$$

Proof. Let \mathcal{C} be a compact subset of $\mathcal{P}_{wu}(^2X)$. Then

$$\mathcal{K} := \{T_P : P \in \mathcal{C}\} \subset \mathcal{K}(X, X^*).$$

The set K is compact because the correspondence $P \to A_P \to T_P$ is continuous. Notice that

$$\mathrm{diam}\ \mathcal{K}\cup\{0\}\leq 2d$$

because $||T_P - T_Q|| = ||A_P - A_Q|| \le 2||P - Q||$ for all $P, Q \in \mathcal{P}(^2X)$.

Applying Corollary 4 to the compact subset $\mathcal{K} \subset \mathcal{K}(X, X^*)$, there are norm one operators $u, v \in \mathcal{K}(X, Z)$ and a linear mapping $\Phi : \operatorname{span} \mathcal{K} \to \mathcal{K}(Z, Z^*)$ such that $T_P = v^* \circ \Phi(T_P) \circ u$, for all $T_P \in \operatorname{span} \mathcal{K}$. Now, $\Phi(T_P) \in \mathcal{K}(Z, Z^*)$, but $\Phi(T_P)$ need not be of the form T_Q for some $Q \in \mathcal{P}(^2Z)$. Let us therefore consider the mapping $\sigma \in \mathcal{L}(\mathcal{K}(Z, Z^*), \mathcal{L}^s(^2Z))$ defined by

$$\sigma(S)(z_1,z_2) = rac{1}{2} \Big((Sz_1)(z_2) + (Sz_2)(z_1) \Big), \; S \in \mathcal{K}(Z,Z^*), \; z_1,z_2 \in Z.$$

Observe that, in fact, $\sigma(S) \in \mathcal{L}^s_{wu}(^2Z)$ for all $S \in \mathcal{K}(Z, Z^*)$. Indeed, let $S \in \mathcal{K}(Z, Z^*)$. Then $\sigma(S) = A_Q$ for some $Q \in \mathcal{P}(^2Z)$. Since

$$(\sigma(S))(z_1, z_2) = \frac{1}{2} \Big((Sz_1)(z_2) + (S^*z_1)(z_2) \Big), \ z_1, z_2 \in Z,$$

we have $T_Q = (S + S^*)/2$. Hence $T_Q \in \mathcal{K}(Z, Z^*)$ and therefore $Q \in \mathcal{P}_{wu}(^2Z)$ meaning that $\sigma(S) \in \mathcal{L}^s_{wu}(^2Z)$.

This permits us to define a linear mapping Ψ : span $\mathcal{C} \to \mathcal{P}_{wu}(^2Z)$ by

$$\Psi(P)(z) = \sigma(\Phi(T_P))(z, z), \ z \in Z, \ P \in \operatorname{span} \mathcal{C},$$

meaning that

$$A_{\Psi(P)} = \sigma(\Phi(T_P)), P \in \text{span } \mathcal{C}.$$

We also define a linear mapping ψ : span $\mathcal{C} \to \mathcal{L}(^2Z)$ by

$$\psi(P)(z_1, z_2) = (\Phi(T_P)z_1)(z_2), \quad z_1, z_2 \in Z, \ P \in \text{span } \mathcal{C}.$$

Let now $P \in \text{span } \mathcal{C}$. We have for all $x \in X$

$$P(x) = (T_P x)(x) = (v^* \Phi(T_P) u x)(x) = \psi(P)(u x, v x)$$

and we have for all $z_1, z_2 \in Z$

$$s(\psi(P))(z_1, z_2) = \frac{1}{2} \Big(\psi(P)(z_1, z_2) + \psi(P)(z_2, z_1) \Big)$$

= $\sigma(\Phi(T_P))(z_1, z_2) = A_{\Psi(P)}(z_1, z_2).$

Let us finally consider the mappings Ψ and ψ restricted to $\mathcal{C} \cup \{0\}$. For all $P, Q \in \text{span } \mathcal{C}$, we have, since ||u|| = ||v|| = 1,

$$||P - Q|| = \sup_{\|x\| \le 1} ||(P - Q)(x)|| = \sup_{\|x\| \le 1} |(\psi(P) - \psi(Q))(ux, vx)|$$

$$< ||\psi(P) - \psi(Q)||.$$

We also have

$$\|\Psi(P) - \Psi(Q)\| \le \|A_{\Psi(P)} - A_{\Psi(Q)}\| = \|s(\psi(P) - \psi(Q))\|$$

$$\le \|\psi(P) - \psi(Q)\|.$$

For all $P, Q \in \mathcal{C} \cup \{0\}$, using the definition of ψ and Corollary 4, we have $\|\psi(P) - \psi(Q)\| = \|\Phi(T_P) - \Phi(T_Q)\|$

$$\leq \min \left\{ 2d, 2^{3/4} d^{3/4} \left(\frac{1}{4} + \frac{1}{\ln a} \right)^{3/4} ||T_P - T_Q||^{1/4} \right\}.$$

Since

$$||T_P - T_Q|| = ||A_P - A_Q|| \le 2||P - Q||,$$

we have

$$\begin{split} \|\psi(P) - \psi(Q)\| &\leq \min \left\{ 2\mathrm{d}, 2^{3/4} \mathrm{d}^{3/4} \Big(\frac{1}{4} + \frac{1}{\ln a} \Big)^{3/4} 2^{1/4} \|P - Q\|^{1/4} \right\} \\ &= 2 \min \left\{ \mathrm{d}, \mathrm{d}^{3/4} \Big(\frac{1}{4} + \frac{1}{\ln a} \Big)^{3/4} \|P - Q\|^{1/4} \right\} \end{split}$$

as needed.

If, in particular, $P, -P \in \mathcal{C}$, then the desired estimate for the norm of $\psi(P) = (\psi(P) - \psi(-P))/2$ immediately follows from the above.

References

- [AP] R. M. Aron and J. B. Prolla, Polynomial approximation of differentiable functions on Banach spaces, J. Reine Angew. Math. 313 (1980), 195-216.
- [DFJP] W. J. Davis, T. Figiel, W. B. Johnson, and A. Pelczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327.
- [D] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Mathematics Studies, 57. Notas de Matematica, 83. North-Holland Publishing Co., Amsterdam-New York, 1981.
- [LNO] Å. Lima, O. Nygaard, and E. Oja, Isometric factorization of weakly compact operators and the approximation property, Israel J. Math. 119 (2000), 325-348.
- [MO] K. Mikkor and E. Oja, Uniform factorization for compact sets of weakly compact operators, (submitted).

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF TARTU, J. LIIVI 2, EE-50409 TARTU, ESTONIA

E-mail address: kristelm@math.ut.ee, eveoja@math.ut.ee