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. Boundedness of superposition operators on the
sequence spaces (wp),(®)

ANNEMAI RAIDJOE

ABSTRACT. For a solid sequence space A and a sequence of modulus
function @ = (1), let A(®) = {z = (z1): ®(z) = (er(Jze])) € A}. Pro-
vided another sequence of moduli ¥ = (¥r), we give neccesary and
sufficent conditions for the local boundedness and boundeduness of super-
position operators from (wo),(®) into €,(¥) in the case 1 <p, g < oo.

1. Introduction

Let N and R denote the set of all natural numbers and the set of all
real numbers, respectively. Let w be the vector space of all real sequences
T = (zy) = (zg)ren. By the term sequence space we shall mean any linear
subspace of w.

A well-known classical Banach sequence space is

[eS] 1/p
p = 7 = (3) € w: |lzflg, = Z]:L‘;J”) (1<p< o).
k=1

By (wo)p (1 <p < 00) we denote the space of all sequences z = (zg) € w
such that

l n
im — P
117511 - g“l lzi P = 0.

For p =1 we write wg instead of (’UJO)l-
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It is known that (wp), can be equipped with the norm

1 9i+l_q 1/p
2/l (wo), = sup 5 DN

We remark that on the space (wp), also the norm

1/p
lzl = sup < Z iwk|p>

k=1

is determined which is equivalent to || - ||(,), (see, for example, [7], p. 39).
Moreover (see [9], p. 523),

ri+l__‘1
1 n 1 2
. o .
hTILn o 1?»«1: [zp]P = 0 = i{gn 5 ]é?i lzkP = 0. (1.1)

Let A and 4 be two sequence spaces and let f: N x R — R be a function
with f(k,0) =0 (k € N). A superposition operator Pr: X — p is defined by

Pr(e) = (flk,zi)) € p (z = (zx) € N).
In some results we need the following conditions:

(B) the functions f(k,-) (k € N) are bounded on every bounded subset
of real numbers;
(C) the functions f(k,-) (k € N) are continuous.

The local boundedness and boundedness of superposition operators on wg
have been studied by Pluciennik [12]. The ideas presented by him are very
useful for our considerations. In this paper we give necessary and sufficent
conditions for local boundedness and boundedness of superposition opera-
tors on certain generalized sequence spaces defined by wy and a sequence of
modulus functions.

Following Maddox [8] and Ruckle [13] we give

Definition. A function ¢: [0,00) — [0,00) is called a modulus function
(or, simply, a modulus), if
() p) =0 « t=0,
() @t +u) <o(t) +e(u)  (t, u>0),
(iii) ¢ is nondecreasing,
(iv) ¢ is continuous from the right at 0,
(v) ¢ is unbounded.

From (i)-(iv) it follows that a modulus ¢ is continuous everywhere on
[0, 00).
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The sequence space A is called solid if (y;) € A whenever (z) € A and
lye] <zl (k € N),

Let ® = (yx) be a sequence of moduli. For a solid sequence space X we
consider the solid sequence space (cf. [4]-[6])

M®) = {z = (z¢): ®(=) = (ox(lzil)) € A}

It is known (see [5] or Proposition 2.3) that on A(®) we may define cer-
tain natural F-seminorm (F-norm) under some restrictions on F-seminormed
(normed) sequence space .

Let ¥ = (3;) be another sequence of moduli. We investigate the local
boundedness and boundedness of superposition operators Pr: (wp)p(®) —
£4(¥) (1 < p,q < o0). Our results extend corresponding theorems about the
boundedness of superposition operators from [12].

2. Auxiliary results

In this section we formulate some definitions, known propositions and
lemmas which are needed in the proofs of main results.

Recall that an F-seminorm on a vector space V is a functional g: V — R
satisfying, for all z,y € V', the axioms
(N1) g(0) =0,
(N2) g(z +y) < g(z) + g(y),
(N3) g(az) < g(z) for all scalars « with |a| < 1,
(N4) lisz'n g(a,z) = 0 for every scalar sequence (ay) with 1171Ln oy = 0.

A Fréchet norm (or an F-norm) is an F-seminorm with the condition
(N5) g(z) =0=z2=0.
A topological sequence space in which all coordinate functionals 7y, Te(x) =

Tk, are continuous is called a K-space. A BK-space is defined as a K-space
which is also a Banach space.

An F-seminorm g on a solid sequence space A is said to be absolutely
monotone if g(y) < g(z) for all z = (z3), y = (yx) from X with |yx| < |z]
(k € N).

An F-seminormed solid sequence space (), g) is called an AK-space if for
any z = (z) € A,

lim 2™ = 2,
m—roQ
where z™ = (.’I)gm') with .‘LLm] =z} if K <m and mgm] = () otherwise.

Let (X, g) and (u,h) be two F-seminormed sequence spaces. Recall that
the superposition operator Py: A — p is said to be locally bounded if for any
z € A there exist numbers @ > 0 and 8 > 0 such that for all z € X with
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g(z — z) < a we have h(Pf(z) — P;(z)) < 8. The superposition operator Py
is called bounded if sup{h(P¢(z)): g(z) < o} < oo for every p > 0.

For a sequence space A we use the notation
M ={(z)€X:2, >0 (k e N)}.

Kolk [6] characterized the superposition operators Py: (wg)p(®) — £4(¥)
in the case when 0 < p, g < oo and (C) holds. Using, in addition, the remarks
of Pluciennik ([11], Remark 1; [12], Remark 1) we may formulate

Proposition 2.1. Let 1 < p,q < o0, ® = () be a sequence of strictly
increasing moduli and ¥ = () a sequence of moduli. If there exist a number
§ > 0 and sequences (ay) € £ and (¢;)°, € €7 such that

Wl F (RO < a4+ 27 (r (12)7, (2.1)

whenever (pg(Jt]))P < 246, 20 <k < 2771, 1 € Ng = {0,1,...}, then Py acts
(wo)p(@) into £y (W). Condition (2.1) is necessary for Pr: (wg)p(®) — £4(P)
whenever (B) is satisfied.

Proposition 2.1 may be modified as follows.

Proposition 2.2. Let 1 < p,qg < 00, © = (@) be a sequence of strictly
increasing moduli and ¥ = () a sequence of moduli. If there exist a number
§ >0 and sequences (by) € £ and (d;)2y € £} such that

Wi (| (k1)) < i + di2 9 (e (J2]))77, (2.2)

whenever gy ([t]) < 2¥/P3, 28 < k < 2741, 5 € Ny, then Py acts (wp),(®) into
Ly(¥). Condition (2.2) is necessary for Pr: (wg)p(®) — £4(¥) whenever (B)
18 satisfied.

Proof. Let a = b] and ¢; =d!. If 1 < ¢ < oo, then (2.1) gives
Wi (kD) < 0/ + /1279 oy ()P,

whenever @ (Jt]) < 2V/P58, 20 <k < 21 4 € Ny. So, we get (2.2).
Conversely, by (1.1) it is not difficult to see that (2.2) yields Py: (wp)p(®)
= £,(0). O

If (A, g) is an F-seminormed space, then for the topologization of A\(®) it
is natural to use the functional g¢, where

ga(z) = g(®()).

Kolk ([5], Theorem 2) proved the following statement about the topologiza-
tion of A(P).
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Proposition 2.3. Let (X, g) be a solid F-seminormed (F-normed or nor-
med) AK-space. If g is absolutely monotone, then g is an absolutely mo-
notone F-seminorm (F-norm) on A(®) for an arbitrary sequence of moduli
® = (). Moreover, (\(®),ge) is an AK-space.

It is known that for 1 < p < oo the spaces (wg), and ¢, are solid BK-
AK-spaces with absolutely monotone norms g = || - l(we), and A = |- ¢,
respectively. So, by Proposition 2.3, the topologies on the sequence spaces
(wo)p(®) and £,(T) are given by F-norms

9a(z) = [12(@)ll(wo),»  hw (@) = [[T()]ls,.

By a finite sequence we mean a sequence = = (z) for which there exists
ko € N such that x; = 0 if k£ > ko. Let ¢ be the set of all finite sequences.
For any k € N let ef = (Oki)ieny with 6g; = 1 if k = ¢ and §;; = 0 otherwise.

The following three lemmas are proved by the author in [10], Lemmas
2.3-2.5.

Lemma 2.4. Let A, p be two solid BK-AK-spaces with absolutely mono-
tone norms and let ® = (@), ¥ = (Yi) be two sequences of moduli. Assume
that ¢ C X and Py maps A(®) into p(¥). If Py is locally bounded, then f
satisfies (B).

Lemma 2.5. Let W = (v,) be the sequence of moduli, r € N and 1 < ¢ <
oc. If the functions f(k,-) (k =1,...,7) are bounded on o bounded subset
of real numbers T C R, then there exists a number M > 0 such that

<M.
£

sup
t1,..,t €T

D k(1 te) e
k=1

Lemma 2.6. Let 1 < p,q < 0o and assume that f satisfies (B). If for
every (3 > 0 there is a number 9(3) > 0 such that for every finite sequence
x = (k) we have

¥ (Pr())e, < 9(B),
provided

oG

> (erllze))? < 7,

k=1

then there exists a sequence a(B) = (ar(8)) € £ with a(B)|l¢, < 9(B) such
that for each k € N,

Pie(1f (B, 1)]) < ar(B) -+ 279877199 (B) (i (J2]))7/
whenever o (|t]) < 8.
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3. Boundedness of P; on (wy),(P)

Let ® = (pg) and ¥ = (1)) be two sequences of moduli. By the definition
of a modulus it is not difficult to see that, for a fixed sequence z = (2), the
sets

Tm(%) = {t €R: 1ISI}63_J§Xm(pk(It B Zk[) = %}

are bounded for every m € N and s > 0.

First we characterize the local boundedness of superposition operators on

(’U)O)p(q))-

Theorem 3.1. Let 1 < p,q < oo. If the moduli ¢ (k € N) are strictly
increasing, then a superposition operator Pr: (wg)y(®) — £4(¥) is locally
bounded if and only if f satisfies (B).

Proof. Necessity of condition (B) follows from Lemma 2.4.

Conversely, suppose that f satisfies (B), Py maps (wg),(®) into £,(¥) and
z = (z) € (wo)p(®P). By Proposition 2.1, there exist a number § > 0 and
sequences (ag) € €% and (¢;)2, € £+ such that

(@ (1S (5, OD)T < ax + 27 (pr(8]))?, (3.1)

whenever (o ([t]))P < 2%, 28 < k < 21 5 € Ny, Since by (1.1),

2i+1__1

linr —14 5 VP =

Jlim 2 > lor (D)) =0,
k=2t

there exists 7 € N with
2tFE
270 3 (er(la))P <2770 (i > 7). (3.2)
k=21

Let £ = (zx) € (wp)p(®) be such that

1@ (2 = 2)|l (g, < 27287 (3.3)
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Then by (ii) from the definition of modulus function, Minkowski’s inequality,
(3.2) and (3.3), for i > 7, we have

i+l _q l/p
(2” Y (on (lwkl))”)

k=2t
9i+1 _q 1/1’ 9itl__q 1/1’
< (Ti > (Wk(1$k~zkl))p> + (24 > (wk(lzkI))p>
k=21 k=2t
9it1_1 1p
<@l = 2Mwop + | 275 D (er (2D)P
k=21

< 271§l P omigtr = gl/p,
Consequently, if i > 7, then
20H1 g
D (or () < 26 (3.4)
k=2i
and 5o (@ (|lze))? < 28 (28 < k < 2*1). Thus, in this case, by (3.1) we
get :
W1 (B, 2i)1)T < ak + 27 (er(l2x]))”- (3.5)
Further, since the functions f(k,-) (i <7, 2¢ <k < 2'71) are bounded on
bounded subset of real numbers Ty, (%) with m = 27 — 1 and 2 = 271§1/7,
by Lemma, 2.5 there exists M > 0 such that

2F 1

D @l f (B, za))? < MO (3.6)

k=1
Finally, by (ii), Minkowski’s inequality and (3.4)-(3.6), we conclude

1T (Ps(z) = Pr(2)lle,

o Y 0o 2i+1-] 1/a
< Z (b (L f (b, zi)])) ) + (Z > (¢k(|f(k-fﬂk)’))q>
=1

o0 ]/l]
+ Z (i (1S (K, 2k)] >

k:l

!\J

oo 2itl.q L/ 21+t Y

SM+ > > w 2612 Y (rllz))”
=7 k=91 k=21

+ (1% (Pr(2))]le,
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1/q
< M +||(a)]* + (5261) + 19 (Pr(2)lle,

< M+ a7 4+ (5 )20 + 19(Ps (2)]le,.

So, putting @ = 27167 and B = M + |[(ax) )7 + (6 |(c)Zqlle)/? +
1 (P (2) e, we have |[B(P; (¢)— Py (2) Hepéﬁwheneverg@(:r 2<a O

Now we give necessary and sufficent conditions for boundedness of super-
position operators from (wp),(P) into £,(¥).

Theorem 3.2. Let 1 < p,q < ooc. A superposition operator Py:

(wo)p(®) — £4(V) is bounded if and only if for every p > 0 there are se-
gquences a(o) = (ax(0)) € £F and c(0) = (ci(0))2y € £F such that

i (Lf (ks 1)]) < ak (o) + ei0)27 % (i ([8]))P/ (3.7)

whenever g ([t]) < 2Py 2 < k < 211 i € Ny. Furthermore, for every
>0,

n(0) < vp(e) < (1 +2Y9)n4(0),

where
nr(0) = sup {|W(Pr(a)lle, = 12(2)lluy), < 0}

and

vi(e) = inf {|a(o)lle, + "|e(o Me, = (3.7) holds for
er(ft) < 2770,2" <k <27 e Ny}

Proof. Sufficiency. Suppose that for every o > 0 there are sequences a(p)
and c(p) from £ such that the inequality (3.7) holds if @i(|t]) < 2¢/Pp,
20 <k <2 i e Ny Let o> 0and z = (z1) € (wp),(P) be such that

12 ()l (wa), < €

Then oy (lzi]) < 2P0 (28 <k < 2!, i € Ny) and (3.7) yields

i (1f (k2)]) < axlo) + ei(@)27 2 (x (i ])P77.
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So we have
oo 2ttt 1/a
12 (Pr(z))le, = (Z Z (b (1f (ks zi)]))7 )
0o 211 — e 0o 20+l Y
SN @] {3 (o wnllzm))
=0 =21 =0 fk=2¢
o0 2i+1_1 g
< lla(o)lle, + (Z )92 Z (Wk(ll'kl))p)
220 k=9t

o] l/q
< lla(o)lle, + (Zm@))qu)

i=0
< lla(o)lle, + & “lic(@)lle, < o0
whenever {[@(z)lf(y,), < o

The inequality (o) < v¢(o) is obvious because

18 (Pr(2)le, < llalo)lle, + 0"/ %lc(o)le,
and [|9(2) ), < o-

Necessity. Let Py be a bounded superposition operator acting from (wg),(®)
into £4(¥) and = = (zx) € (wo),(P). For fixed o > 0 we have

1/q
N (Pr(z)lle, = (Z(d)k(lfkn)!)> < ny(e)

k=1
whenever
gi+l | 1/P
19 ()} oy, = sup [ 27 S (gokufck;))p) <o
120 k=2t

We define, for every ¢ € Ny,

9i+1_1 La 2i+1 1

¢i(o) = sup ( > (?/Jk(lf(k,rﬂk)l))"> 1270 ) (orllze])” < P
k=21 k=21

Since f satisfies (B) by Lemma 2.4, we see that ¢ (o) < oo (1 € Np).
Therefore, by definition of ¢&;(g), for every € > 0 there exists a sequence
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y(o,€) = (yx(o,€)) such that

2i+1_1
S (oellyelo. o)) < 2P (3.8)
k=21
and
2i+1_1 Va
(o) < ( ) («/}k(rfw,yk(g,e))l))q) -5 (39)
k=27

for any i € Ng. If 7 € {0,1,2,...} and g(0,&) = (gr(0,€)) is a sequence with
_ yrlo,€) i1 <k <2,
e(0,€) = _ ;
Ir(:e) {D if k> 27,
then by (3.8) we have
1270, €Nl (we), < o

Next we show that &(e) = (¢:(0))2, € £F and [|E(o)lle, < ny(0). Indeed,
using (3.9), we get

a\ /g

IA

i=0 k=21

; 1/q 7 /e .
<Z(éi(£)))q) ( Z 7/)/{ ]f k Jk o€ ))D) ) + ;
0

IN

1/g - g
(wk<1f(k,yk<gge)>»>>q> + (Z (%)q>
k 7220
< WPy (e, eN)le, -+ < mylo) +¢ < oo.
Thus

i

o0 /g 1/q
lic(e)lle, = (Z(éi(é’))(I) = lim (Z(Ei(g))q> <nrlo) +e.

< T—300 <
=0 =0

While € > 0 is arbitrary, then &(o) € £ with [|[&(0)lle, < n7(0).
On the other hand, for every 7 € Ny,

i+l _q 1/q
( > (qmuf(k,mk)n)q) < &(o)

k=21

whenever
i1y

273" (pnllar)) < &

k=21



BOUNDEDNESS OF SUPERPOSITION OPERATORS 13

Applying Lemma 2.6 to the previous inequality with g7 = 207, 9(B) = & (o)
and f(k,t) = 0 for k # 2,2* + 1,...,2%! — 1, we can find a sequence
a(p) € £ such that

21+l
Y (a(0))? < lla(o)ll}, < (@(0))",
k=2¢
Vi(1f (R, 1)) < axe) + 217 279 97P/95;(0) (o3 (81))P/4 (3.10)

provided o (|zx]) < 2/Pp, 28 < k < 2V*1. Putting ¢;(o) = 21/¢ 0~ P/9E;(0) we
have (3.7).

So we get
0o oo 21+l 1 o]
la@)IE, = Y er(@)’ =3 3 (anle) < 3 (e = Il
k=1 120 =27 =0

which yields
la(o)lle, < lé(ole, < nyplo).
By (3.10) it follows

ar(0) + 27 (0) (i (1£))P/1 < ar(o) + 2792119719, (0) (o (|1]))P/
< lla(o)lle, + 2“2'/‘721/‘]@*?/(1”0(9)Heq(Zi/pQ)p/q
<n70) + 2" &(0)le, < nsle) +2Y4n5(0)
= (1+2Y%)n¢ (o)
whenever o (|zx|) < 2¢/Pp and i € Ny. Hence
v(o) < (14294 ().

4. Applications

The sequence spaces €, and (wp), (1 < p < o) can be considered as
the spaces £,(®) and (wq),(®), where & = (px) with @(t) = t (k € N).
So, Theorems 3.1 and 3.2 allow us to formulate extensions of the results of
Pluciennik ([12], Theorems 2 and 3) about the boundedness of superposition
operators on wyg.

Proposition 4.1. Let 1 < p,g < oo. A superposition operator Py
(wo)p — £y is locally bounded if and only if f satisfies (B).

Proposition 4.2. Let 1 < p,q < oo. A superposition operator Py
(wo)p — L4 is bounded if and only if for every p > 0 there are sequences
a(e) = (ax(e)) € £} and c(o) = (ci(0))2y € € such that

£ (k,1)] < ag(o) + ci(@)27¥/9)|P/ (4.1)
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whenever [t| < 2P o 2 < k< 2 4 e Ny. Furthermore,

m;(e) < 7r(0) < (14297 (0)
for every o > 0 with

77(e) = sup {IPr@)le, el < 07}
and
7r(e) = inf {{la(e)le, + Qp/q”C(Q)ng: (4.1) holds for
1) < 2P, 28 < k<21 e Ny}

As generalizations of the spaces £, and wy we consider the multiplier
sequence spaces of Maddox type

oo
fpu) = {m €w: Y |upmlP < oo} ,

k=1

1 T
—drcw: lim= PR =
wo(p, u) {J, € w h}ln - Z lug ] O} ,

k=1

where u = (uy) is a sequence with ug 5 0 (k € N) and p = (p.) is a bounded
sequence of positive numbers (cf. [3]).

In the case up = 1 (& € N) the spaces £(p,u) and wo(p,u) are known as
the sequence spaces of Maddox type ¢(p) and wy(p), respectively (see, for
example, [2] and [7]). Some authors ([1], [14]) consider the space ¢(p,v) for
special multipliers

up = k™R g = kP (> 0).

To apply our theorems for the multiplier spaces of Maddox type, we put
r = max{1,supy pr} and define the sequence of moduli ¢ = (¢y) by

ou(t) = (jup])?'™ (k€ N).

Then the spaces £(p,u) and wq(p, u) we may consider as the spaces £,(®) and
(wo)- (D), respectively. The corresponding F-norms on £(p,u) and wq(p, )
are determined, respectively, by

o 1/r
ga(z) = (Z !’H-kwkipk)
k=1
and
gitl_q 1/r

gaiz) =sup | = Ut P
() =sup | 5 AZ| |
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Let ¢ = (gx) be another bounded sequence of strictly positive numbers
and v = (v;) be a sequence such that vy # 0 (k € N). Now, putting
s = max{1,supy, ¢x} and defining the sequence of moduli ¥ = (1) by

k() = (log[t)™° (k€ N),
from Theorems 3.1 and 3.2 we get the following statements about the boun-
dedness of superposition operators on multiplier sequence spaces of Maddox
type.

Proposition 4.3. A superposition operator Ps: wo(p,u) — £(q,v) is lo-
cally bounded if and only if f satisfies (B).

Proposition 4.4. A superposition operator Py: wo(p,u) — £(q,v) is
bounded if and only if for every p > 0 there are sequences a(p) = (ax(p)) € Zjl”
and c(0) = (¢i(0))2y € £F such that
vif (k)] < arle) + ci(0)2 % juyt?/% (42)
whenever Jugt] < 28 o, 2 < k < 2%1 § € Ny. Furthermore,

iir(e) < 7o) < (1+ 21974 (o),

for every o > 0 with
(o) = sup {1 @)y + Nollupioa < 07}

and

vr(e) = inf {{la(o)lle + ollc(e)lle : (4.2) holds for
lugt]P* < 20, 28 <k < 2777 i€ Ny}
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