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Functorial properties of Cayley constructions

ULRICH KNAUER, YANMING WANG, AND XIA ZHANG

ABSTRACT. We describe the construction of the Cayley graph of a se-
migroup as a functor and investigate certain reflection and preservation
properties of this functor. We also investigate it with respect to several
product constructions including pullbacks.

We present some elementary results which describe the construction of
Cayley graphs starting from semigroups with certain connection sets. The
tool of description is the category theory. We will use set notation also for
proper classes. :

Take C= {(5,C) | S a semigroup, C' C S} and Morc((S, C),(T,D)) =
{f1f:8— T a semigroup homomorphism and f(C) C D}. Then {C,
Morc} is a category.

Let D be the category of digraphs, i.e., directed graphs whose morphisms
are graph homomorphisms.

As usual we define the Cayley graph of a semigroup S with connection
set ' C S as Cay(S,C) = (S, E), where the pairs (s, sc) are elements of E
for all s € S and ¢ € C, that is, we use the right action. The set of edges of
Cay(S,C) is denoted by E(Cay(S,C)). The notation Cay(S,C) is used to
denote both Cayley graph and its set of edges. As examples we also consider
infinite semigroups and Cayley graphs.

In [5] we have the definitions for various graph products. Information
about various graph categories can be found in [6]. The definitions of the
Cayley graph concepts and of categorical concepts used can be found for
example in [7], the latter also in [3].
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1. The functor Cay
Here we establish some basic and more or less obvious properties of Cay.
Theorem 1.1. Let S and T be semigroups, let C and D be subsets of S
and T respectively. Then Cay: C — D given by

(5,C) +—  Cay(S,C) seS

]f — Cay(f) l

(T,D) +—  Cay(T,D) f(s)eT

for any f € More((S,C), (T, D)) and s € S, where Cay(S,C) is the respec-
tive Cayley graph with connection set C C S, is a covariant functor.

Proof. Suppose (s,sc) is an arc in Cay(S,C), where s € 5, ¢ € C.
Then (f(s), f(sc)) = (f(s), f(s)f(c)) is an arc in Cay(T,D) for each f €
Morc((S,C), (T, D)). 1t follows that Cay(f) is a homomorphism from
Cay(S,C) to Cay(T,D). The preservations of identities and composition
of Clay are obvious. ' O

Let G = (V,E) and G' = (V',E') be two graphs in D with the sets
of vertices V,V' and the sets of edges E,E' respectively. Recall that a
graph homomorphism f : V — V' is said to be a strong homomorphism
if (f(z), f(y)) € E' implies (z,y) € E for z,y € V (see [6],[7]). By the
definition of a strong homomorphism, we have

Lemma 1.2. Suppose that f € Morc((S,C),(T,D)). Then Cay(f) is a
sz‘mng homomorphism in D if and only if (f(s), f(s") € Cay(T, D) implies
that s' = sc for some ¢ € C, where s,s' € S.

In the following, for f € Morc((S,C), (T, D)), by saying that f is injec-
tive, surjective, monomorphism, etc., we mean that both f and f|c have
these properties.

Corollary 1.3. Let f € More((S,C),(T,D)). If f is injective and
f(C) = D then Cay(f) is a strong homomorphism in D.

Proof. Suppose that (f(s), f(s")) € Cay(T, D), where s,s" € S. Then
f(s") = f(s)d for some d € D. Since f(C) = D there exists an element
c € C such that d = f(c). Consequently f(s') = f(s)d = f(s)f(c) = f(sc)
and hence s’ = sc by the assumption that f is injective. Now by Lemma 1.2
we get that Cay(f) is a strong homomorphism. O
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Let f € Morc((S,C),(T,D)). The following four examples show that the

conditions

1. f is injective,

2. f is surjective,

3. f(C)=D

4. f(C)=D and f~Y(D)=C
are neither necessary nor sufficient for Cay(f) to be a strong homomorphism
in D. Example 1.4 shows that 2, 3 and 4 are not necessary. Example 1.5
shows that 1 and 2 are not necessary and Example 1.6 shows that 4 is not
sufficient.

Example 1.4. Let T be a 3-element set {1,2,3} with the following mul-
tiplication table:

|1 23
111 22
212 11
302 11

Clearly this is a semigroup. Take the subsemigroup S = {1,2} of T and
C:={2}, D:={2,3}. Theni:S < T, the natural embedding of S into 7T,
belongs to Morc((S, C), (T, D)). Now we get the following sets of edges for
the respective Cayley graphs:

E(Cay(S,C)) = {(1,2),(2,1)}, E(Cay(T,D)) ={(1,2),(2,1),(3,1)},
and 1 is a strong homomorphism in D. But i(C) # D and 4 is not surjective.

Example 1.5. Set S = (Zg, ') where Zg = {0,1,--- ,5}. Define f : S — §
by
flz) =a?
for all T € Zg. It is clear that f is a semigroup homomorphism. Take
C ={1,5}, D = {1} which are subsets of S. Then f €Morc((S,C), (S, D)).

Since

l
I
I

E(Cay(S, D)) {(6 0) (1,1),(2, 2) (3,3),(4,9),(5,5)},

it is easy to check that f is a strong homomorphism. But clearly f is neither
injective nor surjective.

Next we give another example to show that f(C) = D or f(C) = D and
f~HD) = C do not imply that f is a strong homomorphism.



20 ULRICH KNAUER, YANMING WANG, AND XIA ZHANG

Example 1.6. Let C = {a,b} be considered as a 2-element left zero
semigroup and S = C? which is a left zero semigroup with a zero adjoined.
Let D = {a} be a subset of S. Define a mapping f : $ — S by

f(O) :va(a) :aaf(b) = a.
Then f € Morc((S,C), (S, D)), and
E(Cay(5,C)) ={(0,0), (a,a), (b,b) }.
It is clear that f(C) = D and f~Y(D) = C. But f is not a strong ho-

momorphism in D since (f(a), f(b)) = (a,a) € Cay(S, D) does not imply
(a,b) € Cay(S,C).

The following statement is straightforward.
Proposition 1.7. The functor Cay: C — D is faithful.

Note that for right zero semigroups S and 7', the functor Cay is full.
The reason is that in this case every mapping from S to T is a semigroup
homomorphism. Moreover, every element in a connection set produces a.
loop in the respective Cayley graphs, and these are the only loops, cf. [1].
Since graph homomorphisms map loops onto loops, the condition f(C) C D
is fulfilled in C automatically.

In general, however, a morphism in D between two Cayley graphs whose
vertex sets are semigroups is not a semigroup homomorphism. See the fol-
lowing example.

Example 1.8. Let S =(Z3,+), where Z3 = {0,1,2}. Let C = {2}.
Define a mapping f : S — S by

f@)=z+2

for all T € S. Then f is a morphism in D from Cay(S,C) to Cay(S, C), but
obviously f is not a semigroup homomorphism. Moreover, the example also
shows that the condition f € Morp(Cay(S,C), Cay(T, D)) does not imply
that f|c is a mapping from C to D.

So we get

Proposition 1.9. The functor Cay : C — D is not full.

2. Reflection and preservation of morphisms

By the definition of the Cay functor, and the fact that Cay is covariant
and faithful (see, for example, [7]), one can easily get

Proposition 2.1. The functor Cay preserves and reflects injective map-
pings and surjective mappings. It preserves retractions and coretractions.
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It is known that every faithful covariant functor reflects monomorphisms
and epimorphisms (see [7]). Since in the category C, the monomorphisms
are injective and, as always, surjective mappings are epimorphisms, we have

Corollary 2.2. The functor Cay preserves and reflects monomorphisms,
and reflects epimorphisms.

But by an example we show that the functor Cay does not preserve epi-
morphisms. In fact, let ¢ : (Z,-) — (Q,-) denote the natural embedding,
then 7 is an epimorphism in C from (Z,Z) to (Q,Z). Consider the digraph
(Q,Z x Z) whose set of vertices is Q, edges are Z x Z, mappings g, h : Q — Q
with g(m) = h(m) = m if m € Z and g(m) = 1,h(m) = 0 if m € Z. Ob-
viously gi = hi but g # h. It is easy to see that g, h : Cay(Q,Z) — (Q,Z x Z)
are morphisms in D. So Cay(i) is not an epimorphism in D.

So the preservation of epimorphisms is not granted since there exist non-
surjective epimorphisms in the category of semigroups which will not be
epimorphisms in the category of digraphs.

The following examples show that the functor Cay does not reflect retrac-
tions and coretractions.

Example 2.3. Let 7 : (Np,-) — (Zs,-) be the canonical mapping, where
ZG = {D_,T, ,S} Take C = {0} - No and D = {6} - ZG. Then 7 :
(No,C) = (Zg, D) is a morphism in C. If there is a morphism g : (Zg, D) —
(Np, C) in C such that mg = idyz,, where idz, is the identity mapping of Zg,
then g(4) = g(4)g(4) implies that g(4) = 0 or g(4) = 1, which contradicts
to mg(4) = 4. So 7 is not a retraction in C. Now define ¢’ : Zg — Ny by
g'(7) = n, where n = 0,1,--- ,5. Then ¢’ : Cay(Zg, D) — Cay(Ny,C) is a
morphism in D satisfying mg’ = 1l Cay(z,, o) So 7 is a retraction in D.

Example 2.4. Take S = {2,4} to be the subsemigroup of (Zg, -), where
Z¢ = {0,1,---,5}, and 7 : S — Zg the natural embedding. Then i €
Morc((S,S), (Zs, S)). If g : Zg — S is a semigroup homomorphism such
that gi = idg, where idg is the identity mapping of S, then g(0) = 4 and
g(0)g(2) = 4 implies that g(2) = 4, which contradicts to ¢g(2) = 2. Now
define f : Z¢ — S with f(2) = 2,f(m) = 4 for all 2 # 7 € Zg. Then
[ €Morp(Cay(Zs, S), Cay(S,S)) and fi = ids implies that i is a coretrac-
tion in D.

3. Categorical products and equalizers

Now we turn to the categorical product, the so-called cross product, see
[5] and [6], and equalizers, compare to [7].

Lemma 3.1. Let {(S;, C;)}icr be a family of objects in category C. Then
((TTier SisTier Ci)s i) is the product of {(Si,Ci)}ier in C, where [[;c; S:
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and [[;c; Ci are cartesian products of (S;)icr and (Ci)ieq respectively, and
p;: Hiel S; — S;,i € I, are the canonical projections.

Proof. Clearly, for each'i € I, p; is a morphism in C. For any (7, D) € C
and any family (¢; € Morc((T, D), (Si, Ci)))icr, define g : T — [];; S; with
q(t) = (gi(t))ier,t € T. Then ¢ €Morc((T, D), ([ Lies Si; [Ticr Ci)) is the
unique morphism in C such that p;q = ¢; for all ¢ € 1. O

In what follows the notation {u,v} is used for the edge of product graphs,
where u, v are the vertices of product graphs.

Theorem 3.2. Let x denote the cross product of graphs. Then for semi-
groups S and T with their subsets C and D, we have

Cay(S x T,C x D) = Cay(S,C) x Cay(T, D).
Proof. We have
E(Cay(S,C) x Cay(T, D))
= {(z,9), («",y)} | (z,2) € Cay(S, C), (y,4) € Cay(T, D)}
= {(z,y), (ze,yd)} | (z,y) € S x T, (c,d) € C x D}
= E(Cay(S xT,C x D)).
0

It is clear that Theorem 3.2 can be generalized to the case of arbitrary
(multiple) product. So we obtain the following corollary.

Corollary 3.3. The functor Cay preserves products.

Proof. Since the cross product is the product in category D, the result
follows from Theorem 3.2 and Lemma 3.1. a

However the functor Cay does not reflect products. This can be shown
by the following example.

Example 3.4. Let S = {a,b} be a 2-element left zero semigroup and
C = {a}. By Theorem 3.2, Cay(S',C") is the product of the 2 copies of
Cay(S,C) in D, where ' = S x S,C" = {(a,a), (b,b)}, since

E(Cay(S',C"))
= {{(a,a), (a,0)}, {(a,0), (a,0)}, {(b, a), (b,a)}, {(b, ), (b, ) } }
= E(Cay(S x S,C x C))
= E(Cay(S,C) x Cay(S,C)).
By Lemma 3.1, (S x §,C x C) is the product of the two copies of (S, C) in

C. But obviously (S',C") # (S x §,C x C) and hence (S',C’) is not the
product of the two copies of (S, C) in C.
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Remark 3.5. We observe that the fact that the Cay functor preserves
products together with the preservation of injective and surjective mappings
leads to the preservation of subdirect products of semigroups. This in turn
opens up many possibilities to characterize Cayley graphs of completely re-
gular semigroups, compare to [9], and for some steps in this direction see [8]
or [1].

Now we verify that the standard construction for equalizers in concrete
categories applies to the category C and category D.

Lemma 3.6. Consider an equalizer situation f,g : (S,C) = (S',C") in
C.IfT={{seS|f(s)=9g(s)} #0and D ={ce C| f(c) =glc)} then
(T, D), where T C S, D C C, with the natural embedding is the equalizer of
fand g in C.

Proof. Suppose that T = {s € S | f(s) = g(s)} # 0. If (E,A),q)
satisfies fa = ga, where (E, A) € C,a EMorc((E, A), (S, C)), then a(F) C
T,a(A) C D and @: (E,A) — (T, D) given by a(e) = a(e) for all e € F
is the unique morphism in C such that i@ = «, where 4 is the natural
embedding. |

Lemma 3.7. Consider an equalizer situation f,g: (V1,E1) =3 (Va, E3) in
D, where (V1, Ey) and (Va, Es) are digraphs with the sets of vertices Vy, Vs
and the sets of edges Ey, Eo, respectively. Suppose that V ={v e Vi | f(v) =
g(v)} #0. Set E = {(u,v) € Ey | u,v € V}. Then (V, E) with the natural
embedding i is the equalizer of f and g in D, i.e, (V, E),1) = Eqp(f,g).

Proof. Suppose that (G, A) € D is a digraph with the set of vertices G
and the set of edges A, and h eMorp ((G, A4), (V1, E1)) satisfying fh = gh.

By the hypothesis that fh = gh, we have h(z) € V for all z € G. Moreo-
ver, for any (z,y) € A, since (h(z), h(y)) € E1, it follows that (h(z),h(y)) €
E and hence h €Morp((G, A),(V,E)), where h : G — V is given by
h(z) = h(z) for all z € G.

It is obvious that A €Morp((G, A), (V, E)) is the unique morphism in D
that fulfills ik = h. O

The next example shows that the functor C'ay does not preserve equalizers.

Example 3.8. We consider again the semigroup S = (Zg, -) from Examp-
les 1.5 and 2.4 where Zg = {0,1,--- ,5}. Define f : S — S by f(T) = z2
for all z € Zg. Take C = {0,5},C" = {0,1,5} which are subsets of S. Then
[ €Morc((S,C),(S,C")) and (T, D) with the natural embedding i is the
equalizer of f and idg in C by Lemma 3.6, where T' = {0, 1, 3,4}, D = {0},
ids is the identity mapping on S.

By Lemma 3.7 we have Eqp(f,ids) = ((T, E),1), where

E ={(0,0),(1,0),(3,0),(4,0),(3,3)},
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and 7 is the natural embedding. Clearly (Cay(T, D),1) # Eqp(f,ids), since
E(Cay(T7 D)) = {(6’ 6)7 (1—’ 6)’ (-3_7 6)7 (Z7 6)} # E'

Now we turn to find conditions for the reflection of equalizers of the
functor Cay. We first give an example to show that given an equalizer
(Cay(T, D), Cay(e)) = Eqp(Cay(f),Cay(g)) in category D and (G, 4) €
C, h € Morc((G, A), (S,C)) with fh = gh, if a mapping h* : G — T with
ah* = h fails to satisfy h*(A) C D, then we will not get that ((T,D),a) =
EqC(f7 g)'

Example 3.9. Let S’ = {a, b, ¢, d} be a left zero semigroup, C' = {a, b, d},
and S = {a,b,c}. Define g : S — S’ by g(a) = a,g(b) = b,g(c) = d. Then
g EMorc((S,8),(S,C")). Let ¢ be the inclusion mapping from S to S'. Now
from Lemma 3.7 and the fact that

E(Cay(S, S)) = {(G’?a)v (b, b)v (C, C)}

we have Eqp(g,t) = (Cay(T, D),1), where 7 is the natural embedding, 7' =
{a,b}, and D = {a}.

Now take a 2-element left zero semigroup G = {z,y}. Define h: G — §
with h(z) = a,h(y) = b. Then h €Morc((G,G),(S,S)) and gh = ih.
Moreover, h : G — T satisfies ih = h, where h(z) = h(z) for all z € G.
But obviously for y € G, h(y) = b € D and so h(G) € D. Indeed, for any
f eMorc((G, G), (T, D)), one has if # h and thus (T, D),i) # Eqc(g,t)-
We can also deduce from Lemma 3.6 that Eqc(g,¢) = (({a,b},{a,b}),4)
which is different from ((T', D), ).

Lemma 3.10. Consider an equalizer situation
Cay(f), Cay(g) : Cay(S,C) = Cay(s",C").

Suppose that (Cay(T, D), Cay(a)) = Eqp(Cay(f),Cay(g)). Then the fol-
lowing statements are equivalent:

(1) ((Tu D)7a) = EQC(fv 9)7
(ii) For every (G, A) € C and h € Morc((G,A),(S,C)) with fh = gh,
for every mapping h* : G — T with ah* = h, one has h*(A) C D.

Proof. (ii) = (i). Consider the equalizer situation Cay(f), Cay(g) :
Cay(S,C) = Cay(S’,C") in D such that ((G,A),h) fulfills fA = gh in
C. Then there exists a unique morphism h* : Cay(G, A) — Cay(T, D) in D
such that the following diagram commutes:
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Cay(G,A) Cay(S,C)

Cay(S',C").

h*
Cay(T, D)

We first claim that A* is a semigroup homomorphism. Since (Cay(T, D), o)
is an equalizer in D, « is a monomorphism in D and so « is a monomor-
phism in C by Corollary 2.2. In addition, « is injective by the fact that every
monomorphism in the category of semigroups is injective. For any z,y € G,
we have

ah*(zy) = h(zy) = h(z)h(y) = a(h*(z))a(h*(y)) = a(h*(z)h*(y)),

which implies that h*(zy) = h*(z)h*(y). Moreover, h*(A) C D by condition
(i)). Thus h* €Morc((G, A),(T,D)) and it is the unique morphism in C
such that ah* = h by the uniqueness of h* in D. Therefore ((T, D), ) is
the equalizer of f and g in C.

(i) = (ii). Assume that ((T,D),a) = Eqc(f,9) and h € Morc((G, A)
(S,0)) with fh = gh. Then there is a unique morphism b’ : (G, A) — (T,
in C such that ah’/ = h. So h* = h/ since « is injective, and then h*(A)
D.

;3>

b

0N

Theorem 3.11. Consider an equalizer situation
Cay(f), Cay(g) : Cay($,C) = Cay(S',C").

Suppose that (Cay(T, D),Cay(a)) = Eqp(Cay(f),Cay(g)). Set D' = {c €
C| f(c) =g(c)}. Then the following statements are equivalent:

)
(i) (T, D), « )) Eqc(f,9);

(i) D' C a(D
Proof. (i) = (ii). Assume (i) holds. Then by Lemma 3.6 one has ((T", D),
i) = Eqc(f,9) withT" = {s € S| f(s) = g(s)} and 4 the natural embedding.

Clearly, (T",D") € C, 1 € Morc((T’,D’),(S, C)) and fi = gi. Moreover,
since (Cay(T,D),Cay(a)) = Eqp(Cay(f),Cay(g)) there is a unique mor-
phism h* : Cay(T’,D') — Cay(T, D) such that ah* = 7. Now by Lemma
3.10 we have h*(D') C D, which implies that

D' =i(D') = ah*(D') C a(D).

(11) (i). Assume (ii) holds. Suppose that (G, A) € C and h € Morc((G,
A),(S,C)) with fh = gh. Then by the hypothesis since (Cay(T, D),
Cay(a )) = Eqp(Cay(f),Cay(g)) there exists a unique morphism A* :
Cay(G, A) — Cay(T, D) in D such that ah* = h. By the proof of (ii)=(i) in
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Lemma 3.10 one has that h* is a semigroup homomorphism. Since h(A) C D’
and D' C a(D) by (ii), we have h(A) C a(D) and hence ah*(4) C a(D). So
we get that h*(A) C D since a is injective. Thus A" belongs to C and is the
unique morphism in C such that ah* = h. So (T, D), @) = Eqc(f,g). U

Note that in Example 3.9 we have D' = {a,b} which is not contained in
D = {a}.

Remark 3.12. We consider S and f from Example 3.8. Choose C' =
{2,3,4,5}. Then f,ids € Morc((S,C),(S,S5)), where ids is the identity
mapping of S. By the fact that

E(Cay(S,C)) = {(0,0),(1,2),(T,3),(1,9),(1,5), (2,4),(2,0),(2,2),(3,0),
(3,3),(4,2),(4,0),(4,4), (5,4), (5,3)(5,2), (5, 1)}

and Lemma 3.7, one has (Cay(T, D),) = Eqp(f,1ds), whereT {0,1,3,4},
D = {3,4} and i is the natural embedding. In addition ((7,D),i) =
Eqc(f,ids) by Lemma 3.6. Here we have D' = D. But, nevertheless, C
does not act strongly faithfully on S, since for example 3 3 = 3 5 which
means that there are “multiple edges” in Cay(T, D).

Remark 3.13. Consider a pullback situation in D

(V17E1)
fi

(V27E‘2) — (V> E)

p)

One can easily check that if

V' = {(v1,v2) € Vi x Va | fi(v1) = fa(v2)} #0
then the digraph (V', E'), where
E' = {{(v1,v2), (v}, v5)} € V! x V' | (v1,0]) € Ex, (v2,5) € B},
with the projection p; : V! — Vi,i = 1,2, is the pullback of (fi, f2). By the

results of preservations and reflections of products and equalizers of Cay, we
conclude that the functor Cay does not preserve and reflect pullbacks.

4. Other product constructions

We consider now so-called box products (cartesian products in [5]), box
cross products (strong products in [5]) and lexicographic products of graphs.
Note that in the literature these products have many different names. The
box product is categorically speaking the tensor product in the category D,
see for example [6]. But since we know relatively little about the tensor
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product in the category of semigroups, it does not make sense to talk about
preservation of tensor products in this context.

Remark 4.1. We note first that because of the structure of the coproduct
in the category of semigroups (see for example [7]) we cannot say anything
about the preservation of coproducts by the Cay functor, but we know that
Cay(S,C) & Cay(S,C") = Cay(S,CJC'"), where @ is the edge sum.

Theorem 4.2. Let (1, K denote the box product and the box cross product
respectively. Then for monoids S and T with their subsets C and D and
identities 1g and 17, we have

(1) Cay(S x T, (15 x D)J(C x 17)) = Cay(S,C)OCay(T, D);
(2) Cay(SxT,(1sxD)J(Cx17)J(C x D)) = Cay(S,C)RCay(T, D).

Proof. (1) We have
E(Cay(S x T,(1s x D)|_J(C x 17)))
' = {{(s,1), (s,td)} | (s,t) € S x T, d € D}

J{{(s,8), (sc,0)} | (s,1) € S x Tyc € C}
= E(Cay(S,C)OCay(T, D)).

(2) It is known that the box cross product of two graphs G and Gy is the
edge sum of G1[0G5 and G1 x G5. We denote the edge sum of graphs by .
Now using Theorem 3.2 and Theorem 4.2 (1), we have

Cay(S,C) R Cay(T, D)
= (Cay(S,C)OCay(T, D)) & (Cay(S,C) x Cay(T, D))
= (S x T, E(Cay(S,C)OCay(T,D))| ] E(Cay(S,C) x Cay(T, D)))
= (8 x T, E(Cay(S x T,(1s x D)| J(C x 17)))
|JE(Cay(S x T,C x D)))
= (S x T, E(Cay(S x T, (1s x D) J(C x 17) [ J(C x D))))
= Cay(S x T, (15 x D)| J(C x 17)| J(C x D)).
0

For the case where S and T are groups, the statements of Theorems 3.2
and 4.2 are contained in [4]. Moreover, concerning the lexicographic product
of graphs, there it is stated, also for groups G,G’, that Cay(G,C)[Cay(G’,
C"] = Cay(G x G, (C x G"YU(Lg x C")), where 1¢ is the identity of G. For
the situation of semigroups, we have
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Theorem 4.3. Let S be a monoid with identity 1s, T a semigroup, C' and
D subsets of S and T respectively. Then Cay(S x T, (C x T)|J(1s x D)) =
Cay(S,C)[Cay(T,D)] if and only if tT =T for any t € T, that is, if and
only if T is a right group.

Proof. 1t is known that
E(Cay(S x T,(C x T)| J(1s x D))
= {{(s,1), (s, t)(c "} (s,t) € Sx T, (c,t') € C x T}
U{(5,0), (5,0)(1s,d)} | (5,8) € S x T, (1s,d) € 15 x D},
E((Cay(S, C)[Cay(T, )])
= {{(s,1), (sc,t)} | (s,8¢) € Cay(S,C),t,t' € T}
U{{Gs,1), (s,td)} | s € S, (¢, td) € Cay(T, D)}

Suppose that Cay(S x T,(C x T)U(ls x D)) = Cay(S,C)[Cay(T, D)].
Then for any ¢, € T and {(s,1), (sc,t')} € Cay(S,C)[Cay(T,D)], where
(s,s¢) € Cay(S,C), we have t' = tx for some z € T. So T C tT and then
T =T for any t € T.

On the contrary, suppose that tT' = T for any ¢ € T. Then for any arc
{(s,1), (s',¥)} in Cay(S, C)[Cay(T, D)], one has that either s = s', t' = td
for some d € D or s' = sc for some ¢ € C and ¢, € T. But for any ¢,t' € T,
there
isay € T such that ¢’ = ty by assumption. Therefore {(s,t), (s',¢')} is an arc
of Cay(SxT,(CxT)|J(lsxD)), and so Cay(S,C)[Cay(T,D)] C Cay(SxT,
(C x TYUU(lg x D)). The inclusion Cay(S x T,(C x T)U(1ls x D)) C
Cay(S, C)[Cay(T, D)] is obvious. O
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